首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a nitric oxide (NO) donor, sodium nitroprusside (SNP), on N-methyl-D-aspartate (NMDA) receptors were assessed by optical measurements of intracellular calcium concentration ([Ca2+]i) and patch-clamp techniques in cultured central neurons. SNP selectively blocked NMDA-mediated currents and increases in [Ca2+]i. SNP inhibited the binding of [3H]-CGS 19755. The blockade of NMDA responses by SNP was prevented by CPP or APV which are selective competitive NMDA receptor antagonists. These effects were not necessarily mediated by NO, since they were mimicked by ferrocyanide ions, the NO companion photolysis product of SNP.  相似文献   

2.
Although the N-methyl-D-aspartate (NMDA) receptor is known to play a crucial role in activity-dependent remodeling of synaptic connections in the fetal superior colliculus (SC), its contribution to the electrical activity of fetal SC neurons has not been determined. Furthermore, whether gamma-aminobutyric acid (GABA)-mediated inhibition occurs either as early as prenatal periods or only after eye opening has been controversial. We therefore performed optical recordings using voltage-, Ca2+- and Cl--sensitive fluorescent dyes to analyse synaptic transmission and changes in intracellular Ca2+ and Cl- in the SC of fetal rats that were still connected with the dams by the umbilical cord. Excitatory and inhibitory responses were evoked by focal SC stimulation. The excitatory synaptic responses are composed of early and late components. The early component was mediated by both non-NMDA and NMDA receptors, whereas the late component occurred mainly via NMDA receptors. Train pulse stimulation at higher currents was required for induction of the inhibition, which was antagonized by bicuculline, and blocking of the GABA-mediated inhibition by bicuculline uncovered masked excitatory synaptic responses. Focal SC stimulation induced increases in [Cl-]i and [Ca2+]i that were mediated by GABA-A receptors and mainly by NMDA receptors, respectively. GABA antagonists augmented SC-induced increases in [Ca2+]i. These results indicate that, in the fetal SC, excitatory and inhibitory synaptic transmissions occur before birth, that the NMDA receptor is a major contributor to excitatory synaptic transmission and increased [Ca2+]i, and that the GABA-A receptor is already functioning to inhibit excitatory neurotransmission.  相似文献   

3.
NMDA receptor-mediated Ca2+ flux was studied in cultured rat retinal ganglion cells and neocortical neurons. Intracellular free calcium ([Ca2+]i was measured with fura-2 fluorescence imaging. Baseline [Ca2+]i was 59 +/- 5 nM. In low [Mg2+]o, 200 microM NMDA reversibly increased [Ca2+]i to 421 +/- 70 nM. This rise in [Ca2+]i was blocked by the NMDA antagonists APV (200 microM) or [Mg2+]o (1 mM), but only slightly inhibited by the non-NMDA antagonist CNQX (10 microM). Chemical reduction with dithiothreitol (DTT) had no effect on resting [Ca2+]i. However, DTT increased the NMDA-induced rise in [Ca2+]i approximately 1.6-fold; the oxidizing agent dithiobisnitrobenzoic acid (DTNB) reversed this effect. In patch-clamp experiments, DTT increased NMDA-activated whole-cell conductance approximately 1.7-fold in low and high [Ca2+]o. The Ca2+/Na+ permeability ratio of approximately 7 for NMDA channels remained unaltered by chemical reduction. Thus, redox modulation of the NMDA receptor/channel complex results in a dramatic alteration in current magnitude but no change in ionic permeabilities.  相似文献   

4.
We investigated the effects of antidepressants on the intracellular Ca2+ concentration ([Ca2+]i) increases induced by gamma-aminobutyric acid (GABA) or N-methyl-D-aspartate (NMDA) in primary cultured rat cortical neurons using fluorescence imaging. Acute treatment with imipramine inhibited GABA- and NMDA-induced increases in [Ca2+]i in a concentration-dependent manner. Doses of 30 microM clomipramine, desipramine, amoxapine and maprotiline also inhibited both the GABA- and NMDA-induced [Ca2+]i increases significantly. Both inhibitory effects of the five major antidepressants on the GABA- or the NMDA-induced [Ca2+]i increases were well-correlated. Imipramine could inhibit significantly high-K+-induced [Ca2+]i increases. Our previous study has already shown that the GABA-induced [Ca2+]i increase involves a similar pathway to high-K+-induced Ca2+ influx. In conclusion, imipramine and several other antidepressants have acute inhibitory effects on the GABA-, NMDA- and high-K+-induced [Ca2+]i increases, suggesting that these inhibitory effects are not related to specific receptors. One possibility is that these effects may be commonly mediated via part of the high-K+-induced [Ca2+]i pathway.  相似文献   

5.
We monitored increases in both intracellular calcium concentration [( Ca2+]i) and whole-cell current responses induced by N-methyl-D-aspartate (NMDA), applied with co-agonist glycine, using fura-2 digital imaging and patch-clamp recording techniques. Extracellular application of oxidized glutathione (GSSG), but not reduced glutathione (GSH), inhibited responses mediated by activation of the NMDA subtype of glutamate receptor in cultures of rat cortical and retinal ganglion cell neurons. The NMDA responses were persistently inhibited by GSSG (500 microM to 10 mM) until introduction of a selective sulfhydryl reducing agent, dithiothreitol, which resulted in complete recovery of the responses. Exposure of the neurons to 5,5-dithio-bis-2-nitrobenzoic acid (DTNB), an efficacious oxidizing agent, also resulted in persistently smaller responses to NMDA. The addition of GSSG following exposure to DTNB, however, did not result in a further decrement in NMDA responses in our experimental paradigm. These findings suggest that a predominant action of GSSG is oxidation of vicinal thiol groups to form a peptide disulfide bond(s) comprising the redox modulatory site of the NMDA receptor-channel complex. Evidence for such regulatory sulfhydryl centers associated with the NMDA receptor has been presented previously. Moreover, the fact that DTNB produced little if any additional attenuation of the NMDA [Ca2+]i response when administered after GSSG implies that GSSG is also an efficacious oxidant at this site. GSSG displayed little or no effect on [Ca2+]i responses elicited by high extracellular K+ or by kainate, suggesting that, at least under the conditions of the present experiments, GSSG was somewhat selective for the NMDA redox modulatory site. Based on these observations, we suggest that GSSG exerts its NMDA-specific redox effects in a novel extracellular manner.  相似文献   

6.
Nitric oxide (NO) is a molecule that plays a prominent role in neurotoxic as well as neuroprotective pathways. Here, we investigated the effects of NO on potentially excitotoxic glutamate-induced intracellular calcium ([Ca2+]i) dynamics. Our hypothesis was that pre- and coexposure to NO in conjunction with glutamate receptor stimulation modulates [Ca2+]i responses differentially. [Ca2+]i transients, assessed by the fluorescent cytosolic Ca2+ indicator dye fluo-4, were elicited in mouse striatal neurons by consecutive NMDA applications (200 microM for 100 s each). Subgroups of neuronal cultures were additionally exposed to a NO donor (S-nitroso-N-acetyl-d,l-penicillamine, SNAP, 50-500 microM), either by pre- (for 6 h prior to NMDA) or cotreatment (for 30 min during NMDA). Pretreatment with NO led to dramatically decreased NMDA-evoked [Ca2+]i rises in comparison to controls (NMDA alone). Annexin V/propidium iodide staining showed consistently that NO pretreatment is protective against NMDA-induced cell death. In contrast, NO/NMDA cotreatment caused a potentiation of [Ca2+]i rises, whereby the duration of [Ca2+]i transients following NMDA application was prolonged and remained at an increased plateau level. Simultaneous application of the mitochondrial permeability transition pore (mtPTP) blocker cyclosporin A (2 microM) during the NO/NMDA cotreatment prevented the deregulation of [Ca2+]i. The observed [Ca2+]i deregulation was accompanied by a decrease in the mitochondrial membrane potential as indicated by tetramethylrhodamine methylester (TMRM) fluorescence. These findings suggest that NO can act in a protective way due to preconditioning or can have a possibly detrimental impact in case of acute release. They provide a possible explanation for the ambivalence of NO in neurodegenerative processes where glutamate receptor stimulation and mitochondrial [Ca2+]i sequestration are causally involved.  相似文献   

7.
M Okada  A Urae  K Iwasaki  K Mine  M Fujiwara 《Brain research》1992,583(1-2):227-236
The effects of non-competitive NMDA antagonists, MK-801 and dextrorphan in relation to the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM K+ in whole brain synaptosomes from young (3 months old) and aged (24 months old) Fisher344 rats were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. In young rats, the rise in [Ca2+]i following depolarization was affected by neither dextrorphan (1, 10, 100 microM) nor MK-801 (0.1, 1, 10 microM), while in aged rats, 1 microM dextrorphan and 0.1 microM MK-801 brought about a significant increase in [Ca2+]i following depolarization. In low Mg2+ medium, 10 microM MK-801 and 100 microM dextrorphan significantly inhibited the rise in [Ca2+]i after stimulation with 15 mM K+ in young rats, while neither dextrorphan nor MK-801 could affect the rise in [Ca2+]i significantly in aged rats. When 100 microM NMDA was applied in a medium containing 1.2 mM Mg2+, the rise in [Ca2+]i following depolarization was slightly inhibited by 1 microM MK-801 in young rats, but it was not inhibited significantly by dextrorphan. In aged rats, both 100 microM dextrorphan and 10 microM MK-801 strongly inhibited the rise in [Ca2+]i following depolarization in the presence of 100 microM NMDA. Instead of NMDA, when 100 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a non-NMDA receptor agonist, was applied, dextrorphan did not inhibit the rise in [Ca2+]i. In low Mg2+ medium, 100 microM NMDA potentiated the inhibitory effect of 10 microM dextrorphan in young rats, while 100 microM dextrorphan or MK-801 did not show any further inhibition by adding 100 microM NMDA. The addition of 100 microM AMPA did not affect the effect of dextrorphan in a low Mg2+ medium in young rats. These results suggest that NMDA antagonist-mediated [Ca2+]i homeostatic system may alter through aging. In addition, the findings that NMDA potentiated the inhibitory effect of NMDA antagonist, which being further potentiated by aging or lowered extrasynaptosomal Mg2+, indicate the possibility that the Mg2+ block to NMDA receptors might be attenuated through aging.  相似文献   

8.
The HIV envelope glycoprotein, GP120, increases intracellular Ca2+ concentration and induces degeneration of human and animal neurons in culture. Using patch-clamp recordings and Ca2+ imaging techniques, we have now examined the contribution of intracellular stores of calcium in the effects of GP120. We report that in rat hippocampal neuronal cultures, GP120 induces a dramatic and persistent increase in [Ca2+]i which is prevented by drugs that either deplete (caffeine, carbachol, thapsigargin) or block (dantrolene) Ca2+ release from intracellular stores. In contrast, N-methyl-d-aspartate (NMDA) receptors or voltage-dependent calcium channels do not participate in these effects, as: (i) the increase in [Ca2+]i was not affected by NMDA receptor antagonists or calcium channel blockers; and (ii) and GP120 did not generate any current in whole-cell recording. Dantrolene, a ryanodine stores inhibitor, also prevented neuronal death induced by GP120. Our results show that the GP120-induced rise in [Ca2+]i originates from intracellular calcium stores, and suggest that intracellular stores of calcium may play a determinant role in the pathological actions of GP120.  相似文献   

9.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in rat cerebellar granule cells using the fluorescent indicator fura-2. Culturing the cells as monolayers on plastic squares which could be placed into cuvettes allowed measurements of [Ca2+]i to be performed on large and homogeneous populations of CNS neurons. Granule cells so cultured maintained low levels of [Ca2+]i (around 90 nM) which increased promptly upon the addition of various excitatory amino acids including N-methyl-D-aspartate (NMDA). Increases in [Ca2+]i elicited by NMDA were inhibited by Mg2+ (1 mM) and often potentiated by glycine (1 microM). The addition of TTX or strychnine (5 microM each) did not alter responses to NMDA or NMDA plus glycine. Cytosolic Ca2+ responses to NMDA/glycine were dependent on the presence of extracellular Ca2+ and were unaffected by concentrations of nifedipine or verapamil that blocked increases in [Ca2+]i elicited by K+ depolarization. Responses elicited by NMDA/glycine were inhibited competitively by 2-amino-5-phosphonovalerate or 3-((+-)-2-carboxypiperazin-4-yl)-propyl-1- phosphonic acid and non-competitively by MK-801 or Mg2+. HA-966 and 7-chlorokynurenate inhibited responses to NMDA alone and blocked competitively the potentiating effects of glycine. The results demonstrate NMDA-mediated increases in [Ca2+]i in cerebellar granule cells that arise solely from influx of extracellular Ca2+ through dihydropyridine-insensitive channels. The strict dependence of the NMDA-evoked response on extracellular Ca2+ provides little evidence for a coupling of NMDA receptors to inositol phosphate metabolism and mobilization of intracellular Ca2+. The effect of various agents on NMDA/glycine-induced increases in [Ca2+]i parallels their effects on ligand binding to or current flow through the NMDA receptor-channel complex. The measurement of cytosolic Ca2+ in this preparation of neuronal cells thus appears especially well suited for assessing, on a functional level, the regulation of NMDA receptors in the CNS.  相似文献   

10.
11.
To study the mechanism by which cholecystokinin octapeptide (CCK-8) and its potent analogue, ceruletide, prevent glutamate-induced neuronal cell death in rat neuron cultures, we examined the effect of both peptides on glutamate-induced increases in the intracellular free calcium concentrations ([Ca2+]i), which are known to be a crucial trigger of the neurodegeneration induced by glutamate. CCK-8 itself did not alter [Ca2+]i in rat neuron cultures. Glutamate increased [Ca2+]i in neuron cultures rapidly and markedly. CCK-8 and ceruletide significantly suppressed the increases in [Ca2+]i induced by glutamate. The maximum inhibitory effects of CCK-8 and ceruletide at 10(-6) M reached 43 and 46% of the response to glutamate, respectively. Gastrin-I and CCK-4 also significantly attenuated the increases in [Ca2+]i induced by glutamate. The inhibitory effect of CCK-8 was completely blocked by the selective antagonist for CCK-B receptors, (+)L-365,260, but not by (-)L-364,718, which is a selective antagonist for CCK-A receptors. CCK-8 significantly suppressed [Ca2+]i response to kainate and high concentrations of extracellular K+, but not to N-methyl-D-aspartate. With cultured astrocytes, CCK-8 did not inhibit the increment of [Ca2+]i induced by glutamate. These findings clearly demonstrated that CCK-8 and ceruletide inhibit glutamate-induced increases in [Ca2+]i in neuron cultures through CCK-B receptors, suggesting that CCK-8 may participate in the central actions of glutamate.  相似文献   

12.
The low-affinity use-dependent N-methyl-D-aspartate (NMDA) receptor antagonist AR-R15896AR is neuroprotective in primary rat cortical cultures exposed to toxic concentrations of NMDA and reduces the magnitude of NMDA-triggered increases in [Ca2+]i. Here we show using fluorescence staining and measurements of microtubule-associated protein-2 (MAP2) levels, that AR-R15896AR inhibits the NMDA-induced loss of MAP2 that occurs within 2 min following NMDA exposure. Understanding the multiple, Ca(2+)-triggered intracellular events that occur following NMDA receptor stimulation is important to the development of safe and effective neuroprotective agents.  相似文献   

13.
Isaev D  Gerber G  Park SK  Chung JM  Randik M 《Neuroreport》2000,11(18):4055-4061
This study employing a rodent model of neuropathic pain investigated the influence of partial nerve injury on the ability of NMDA receptor activation to induce membrane currents and rises in cytosolic concentration of free calcium ([Ca2+]i) in the rat substantia gelatinosa (SG) neurons using simultaneous whole-cell patch-clamp recording and fura-2 calcium imaging in spinal slices. The novel findings are that: (I) L5-L6 spinal nerve ligation produces a sustained facilitation of NMDA-mediated membrane currents and [Ca2+]i rises both in the soma and dendrites of SG neurons on the injured side on post-operative days 4-13 after injury. (2) It appears that SG neurons in slices from injured rats recover from Ca2+ load less efficiently than neurons from naive rats. (3) The membrane depolarization-induced Ca2+ transients in SG neurons are not modified following spinal nerve ligation. The temporal profile of the changes in Ca2+ transients correlated well with the development of mechanical and thermal allodynia and hyperalgesia. These results suggest an important role of NMDA-mediated calcium signalling in the pathogenesis of neuropathic pain following spinal nerve injury.  相似文献   

14.
Although inhibitory postsynaptic currents (IPSCs) mediated by GABA(A) receptor is thought to be affected by intracellular calcium ion concentration ([Ca2+]i), origin or route of [Ca2+]i increment has not been well elucidated. Reports on the effect of [Ca2+]i elevation on GABA(A)ergic IPSCs per se are also controversial. In this study, effects of caffeine and several other [Ca2+]i-mobilizing drugs were examined on the IPSCs in acute slices of rat hippocampus. Using the patch clamp recording method, spontaneous and evoked currents were recorded from CA3 neurons. Caffeine strongly inhibited both extra-synaptic and synaptic GABAergic IPSCs, regardless of the presence or absence of extracellular Ca2+. This inhibition was not relieved by the intracellular application of EGTA or 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA). This inhibition by caffeine was not prevented by preequilibration with caffeine. Ca2+ store depletion caused by thapsigargin or repetitive stimulation by caffeine could not prevent the inhibition. Moreover, ruthenium red and ryanodine could not overcome the inhibition. On the contrary, GABA(A)ergic currents were not inhibited by stimulation with several Ca2+-mobilizing agonists. Forskolin could not mimic the effect of caffeine on the IPSC, and caffeine inhibited the IPSC in the presence of adenosine. These results suggest that intracellular Ca2+ mobilization through ryanodine-sensitive store stimulation does not significantly affect GABAergic IPSCs, and most of the inhibitory effect of caffeine is independent of [Ca2+]i elevation under the present experimental conditions.  相似文献   

15.
The neuroprotectant fructose-1,6-bisphosphate (FBP) preserves cellular [ATP] and prevents catastrophic increases in [Ca2+]i during hypoxia. Because FBP does not enter neurons or glia, the mechanism of protection is not clear. In this study, we show that FBP's capacity to protect neurons and stabilize [Ca2+]i during hypoxia derives from signaling by a phospholipase-C-intracellular Ca2+-protein kinases pathway, rather than Ca2+ chelation or glutamate receptor inhibition. FBP reduced [Ca2+]i changes in hypoxic hippocampal neurons, regardless of [Ca2+]e, and preserved cellular integrity as measured by trypan blue or propidium iodide exclusion and [ATP]. FBP also prevented hypoxia-induced increases in [Ca2+]i when glucose was absent and when [Ca2+]e was increased to negate Ca2+ chelation by FBP. These protective effects were observed equally in postnatal day 2 (P2) and P16 neurons. Inhibiting glycolysis with iodoacetate eliminated the protective effects of FBP in P16 neurons. FBP did not alter Ca2+ influx stimulated by brief applications of NMDA or glutamate during normoxia or hypoxia, but did reduce the increase in [Ca2+]i produced by 10 min of glutamate exposure during hypoxia. Because FBP increases basal [Ca2+]i and stimulates membrane lipid hydrolysis, we tested whether FBP's protective action was dependent on phospholipase C signaling. The phospholipase C inhibitor U73122 prevented FBP-induced increases in [Ca2+]i and eliminated FBP's ability to stabilize [Ca2+]i and increase survival during anoxia. Similarly, FBP's protection was eliminated in the presence of the mitogen/extracellular signal protein kinase (MEK) inhibitor U0126. We conclude that FBP may produce neuroprotection via activation of neuroprotective signaling pathways that modulate Ca2+ homeostasis.  相似文献   

16.
17.
Using microspectrofluorimetry and the calcium-sensitive dye fura-2, we examined the effect of excitatory amino acids on [Ca2+]i in single striatal neurons in vitro. N-methyl-D-aspartic acid (NMDA) produced rapid increases in [Ca2+]i. These were blocked by DL-2-amino-5-phosphonovaleric acid (AP5), by Mg2+, by phencyclidine, and by MK801. The block produced by Mg2+ and MK801 could be relieved by depolarizing cells with veratridine. When external Ca2+ was removed, NMDA no longer increased [Ca2+]i. Furthermore, the effects of NMDA were not blocked by concentrations of La3+ that blocked depolarization induced rises in [Ca2+]i. Substitution of Na+o by Li+ did not block the effects of NMDA. Concentrations of L-glutamate greater than or equal to 10(-6) M also increased [Ca2+]i. The effects of moderate concentrations of glutamate were blocked by AP5 but not by La3+ or by substitution of Na+ by Li+. The effects of glutamate were blocked by removal of external Ca2+ but were not blocked by concentrations of Mg2+ or MK801 that completely blocked the effects of NMDA. The glutamate analogs kainic acid (KA) and quisqualic acid also increased [Ca2+]i. The effects of KA were blocked by removal of external Ca2+ but not by La3+, Mg2+, MK801, or replacement of Na+ by Li+. Although AP5 was able to block the effects of KA partially, very high concentrations were required. These results may be explained by considering the properties of glutamate-receptor-linked ionophores. Excitatory amino acid induced increases in [Ca2+]i are consistent with the possibility that Ca2+ mediates excitatory amino acid induced neuronal degeneration.  相似文献   

18.
The Ca2+-dependent retrograde inhibition of inhibitory postsynaptic currents (depolarization-induced-suppression of inhibition; DSI) was investigated using fura-2 Ca2+ measurements and whole-cell patch-clamp recordings in rat cerebellar Purkinje cells. DSI was studied in cells loaded with different concentrations of the Ca2+ chelators BAPTA and EGTA. A concentration of 40 mM BAPTA was required to significantly interfere with DSI, whereas 10 mM BAPTA was almost ineffective. 40 mM EGTA reduced DSI, but was less effective than 40 mM BAPTA. Ratiometric Ca2+ measurements indicated that the extent of DSI depended critically on the changes in intracellular calcium ([Ca2+]i). The relationship between DSI and peak Delta[Ca2+]i could be approximated by a hyperbolic function, with apparent half-saturation concentrations of 200 and 40 nM for dendritic and somatic [Ca2+]i, respectively. It is suggested that DSI is due to somatodendritic exocytosis of a retrograde messenger, and that this exocytosis is highly sensitive to [Ca2+]i.  相似文献   

19.
[Ca2+]i was measured using fura-2-loaded isolated catfish horizontal cells in the presence of L-glutamate and the glutamate analogs kainate (KA), quisqualate (QA), and NMDA. Caffeine was used to release Ca2+ from intracellular stores. Cell membrane potential was controlled with a voltage clamp to prevent activation of voltage-dependent Ca2+ channels in the presence of agonist. All excitatory amino acid agonists produced a rapid and sustained rise in [Ca2+]i with the order of potency being QA greater than Glu greater than KA greater than NMDA. The agonist-induced [Ca2+]i increase was blocked in reduced [Ca2+]o and by 6-cyano-7-nitroquinoxaline-2,3-dione and 2-amino-5-phosphonopentanoate, which are specific blockers for QA/KA and NMDA receptors, respectively. The metabotropic receptor agonist trans-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD; 10-200 microM) had no effect on [Ca2+]i. Hill coefficients from curves fitted to concentration-response data suggested an amplification of the Ca2+ signal that was interpreted as calcium-induced calcium release (CICR) from intracellular Ca2+ stores. Caffeine (10 mM) produced a rapid transient rise in [Ca2+]i, confirming the existence of a Ca(2+)-sensitive store. Following caffeine-induced depletion of Ca2+ from intracellular stores, agonists were still able to produce increases in [Ca2+]i, confirming Ca2+ influx through the agonist-gated channel. The agonist-induced increase in [Ca2+]i was decreased following caffeine-induced depletion, confirming a process of CICR. These results are consistent with the hypothesis that excitatory amino acids can produce direct modulation of [Ca2+]i by influx through the agonist-gated channel and by CICR from intracellular stores.  相似文献   

20.
Spinal cord neurons is dissociated cell culture were loaded with the calcium indicator arsenazo III using the whole-cell patch-clamp recording technique. Under voltage-clamp, depolarizing voltage steps evoked transient increases in absorbance at 660 nm, with no change at 570 nm, the isosbestic wavelength for calcium-arsenazo III complexes. The optical response occurred with a threshold depolarization to -30 mV, peaked at +10 mV, and decreased with further depolarization, consistent with an elevation of cytoplasmic free calcium resulting from Ca2+ flux through voltage-dependent calcium channels. Inward current responses to the excitatory amino acids N-methyl-D-aspartic acid (NMDA) and L-glutamate were also accompanied by calcium transients; these were dose-dependent, varied with the driving force for inward current, and were blocked by extracellular Mg2+ in a voltage-dependent manner, suggesting Ca2+ flux through NMDA-receptor channels. Responses to kainate, quisqualate, and GABA were not accompanied by comparable calcium transients. [Ca2+]i transients evoked by depolarizing voltage steps were of maximal amplitude at the start of recording and declined with time, reflecting rundown of voltage-dependent calcium channels. In contrast, [Ca2+]i transients evoked by NMDA gradually increased in amplitude during periods of whole-cell recording lasting 1-2 hr. Procedures resulting in loading of the neuron with Ca2+ accelerated the increase in amplitude of [Ca2+]i transients evoked by NMDA, but slowed the decay of [Ca2+]i transients evoked by voltage steps. Our results provide evidence for 2 independent sources of transmembrane Ca2+ flux in vertebrate neurons, through voltage-gated calcium channels and through NMDA-receptor channels. The Ca2+ flux gated by NMDA-receptor-specific agonists may play a role in synaptic plasticity, in regulating excitability, and in the excitotoxic response to excitatory amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号