首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
近红外光谱技术在制药过程分析中的应用进展   总被引:2,自引:1,他引:2  
目的对近红外光谱技术在制药过程分析中的应用进展进行综述,为药品生产过程控制提供参考。方法采用文献查阅法,对有关近红外光谱技术的文献进行综述。结果近红外光谱技术在粉末混合、干燥、制粒、结晶、包衣、发酵、中药预处理及药物合成等过程控制中均有应用。结论近红外光谱技术在制药过程分析中应用前景广阔。  相似文献   

2.
近红外光谱在制药过程控制分析中的应用   总被引:9,自引:0,他引:9  
简介了控制分析的意义,概述近红外光谱(NIR)技术在制药过程控制分析中的应用情况及其广阔前景。  相似文献   

3.
目的:采用近红外光谱分析技术检测制药过程中物料的混合均匀度,确定混合时间及混合终点。方法:使用近红外光谱分析技术采集中药粉末混合过程图谱,通过计算机分析软件进行粉末混合均匀度的趋势分析,以其所含成分的含量变化结合文件要求确定混合时间和混合终点。结果:经过大量的试验数据分析和验证,物料混合均匀并稳定后与近红外光谱趋势相一致。结论:此方法简便、有效、可靠,可以用于测定制药生产过程中物料的混合均匀度,并确定混合时间和混合终点。  相似文献   

4.
近红外光谱技术在中药分析领域中的应用   总被引:1,自引:0,他引:1  
介绍近红外光谱技术的基本原理和特点,以及近红外光谱技术在中药材鉴别、产地分析、有效成分测定和在线质量控制方面的应用。  相似文献   

5.
近红外光谱法是一种简便、快速、无损的分析方法。随着化学计量学的发展,近红外光谱分析法得到极大地发展,广泛应用于药物的定性分析、定量分析和在线过程分析。该文概述了近红外光谱分析技术的原理及其在药物分析领域的应用。  相似文献   

6.
近红外光谱技术及其在药物分析中的应用   总被引:3,自引:3,他引:3  
近红外光谱技术及其在药物分析中的应用屈凌波,陈国广,盛龙生,相秉仁,安登魁(中国药科大学分析计算中心南京210009)红外光谱一般分为近红外(NearInfrared)、中红外(MiddleInfrared)和远红外(FarInfrared)3个区域...  相似文献   

7.
近红外光谱分析技术在药学领域中的应用   总被引:1,自引:0,他引:1  
蒋正立  朱萍  秦雄 《海峡药学》2007,19(8):118-120
近红外光谱分析技术自20世纪90年代以来发展迅速,该技术在药学领域有着广泛的应用,本文综述了近几年近红外光谱分析技术在定性鉴别,定量分析,在线检测及质量控制方面的最新进展,并对其应用前景进行了展望。  相似文献   

8.
近红外光谱分析技术在假药识别中的应用   总被引:2,自引:0,他引:2  
黄安丽 《中国药业》2008,17(2):17-17
简要介绍近红外光谱分析技术及其特点,重点介绍近红外光谱分析技术在假药识别的定性分析和定量分析中的应用及其注意事项。指出近红外光谱分析技术在药品快速检测工作中的应用前景广阔。  相似文献   

9.
浅谈近红外光谱技术在药物分析领域的应用   总被引:2,自引:0,他引:2  
近红外光谱(near infrared spectroscopy,NIR)是指波长介于可见光(VIS)与中红外(MIR)区之间的电磁波,美国材料试验学会(ASTM)规定其波长范围为780~2526nm(波数范围约为12500—4000cm。),NIR是最早为人们发现的非可见光区域,距今已有200多年的历史。近红外光谱分析技术的特点如下:①几乎可以与所有含氢基团有关的样品理化性质相关,可广泛应用于定性定量分析;②可以获取样品内部深处的物质信息,可用于对复杂样品进行非破坏性测定、原位分析、在线分析和活体分析;③仪器成本低,分析速度快;④分析过程不消耗试剂,不产生污染,属于“绿色分析”技术。  相似文献   

10.
近红外光谱分析技术在药学领域的应用   总被引:1,自引:0,他引:1  
李季静 《首都医药》2010,17(4):15-16
综述了近红外光谱分析技术在药学领域的应用现状并对其应用前景进行了展望。  相似文献   

11.
目的应用近红外光谱分析技术和化学计量学方法对厄贝沙坦分散片(A公司)快速鉴别。方法以厄贝沙坦分散片为分析对象,用光纤法测定近红外光谱,通过一致性指数值和CI限度比较法建立一致性检验模型,通过相关系数法建立特征谱段相关系数模型。结果上述两个模型均可快速鉴别并准确区分厄贝沙坦分散片(A公司)与其他生产厂家的同类产品,其他生产厂家验证样品的一致性指数值均大于7.0,与参考样品的相关系数值(R2)均小于97%。结论本方法简便,快速,可用于厄贝沙坦分散片(A公司)的现场快速鉴别。  相似文献   

12.
The physical properties of pharmaceutical powders are of upmost importance in the pharmaceutical industry. The knowledge of their flow properties is of critical significance in operations such as blending, tablet compression, capsule filling, transportation, and in scale-up operations. Powders flow properties are measured using a number of parameters such as, angle of repose, compressibility index (Carr's index) and Hausner ratio. To estimate these properties, specific and expensive equipment with time-consuming analysis is required. Near infrared spectroscopy is a fast and low-cost analytical technique thoroughly used in the pharmaceutical industry in the quantification and qualification of products. To establish the potential of this technique to determine the parameters associated with the flow properties of pharmaceutical powders, blended powders based on paracetamol as the active pharmaceutical ingredient were constructed in pilot scale. Spectra were recorded on a Fourier-transform near infrared spectrometer in reflectance mode. The parameters studied were the angle of repose, aerated and tapped bulk density. The correlation between the reference method values and the near infrared spectrum was performed by partial least squares and optimized in terms of latent variables using cross-validation. The near infrared based properties predictions were compared with the reference methods results. Prediction errors, which varied between 2.35% for the angle of repose, 2.51% for the tapped density and 3.18% for the aerated density, show the potential of NIR spectroscopy in the determination of physical properties affecting the flowability of pharmaceutical powders.  相似文献   

13.
Near infrared (NIR) spectroscopy was employed to perform a quantitative analysis of gentiopicroside, the bioactive component of the medicinal plant Gentiana scabra Bunge. Modified partial least squares regression (MPLSR) and stepwise multiple linear regression (SMLR) calibration models were built using 94 plant tissue culture samples and 136 grown plant samples, respectively, over the full wavelength range (400–2498 nm) and the silicon charge-coupled-device (CCD) sensing band (400–1098 nm). For tissue culture, the smoothing, first-derivative MPLSR model can produce the best effect [calibration set (Rc) = 0.868, standard error of calibration (SEC) = 0.606%, standard error of validation (SEV) = 0.862%] in the wavelength ranges of 900–1000, 1200–1300, and 1600–1700 nm. By contrast, for grown plant samples, the smoothing, second-derivative MPLSR model can produce the best effect (Rc = 0.944, SEC = 0.502%, SEV = 0.685%) in the wavelength ranges of 400–500, 1100–1200, 1600–1800, and 2200–2300 nm. With the silicon CCD sensing band, the smoothing, second-derivative, four-wavelength (670, 786, 474, and 826 nm) SMLR model showed best predictability (Rc = 0.860, SEC = 0.775%, SEV = 0.848%). This study successfully built spectral calibration models for determining gentiopicroside content at different growth stages of G. scabra Bunge. The specific wavelengths selected within the silicon CCD sensing band can be used in combination with multispectral imaging as a powerful tool for monitoring or inspecting the quality of G. scabra Bunge during cultivation.  相似文献   

14.
目的研究近红外光谱法在异烟肼片快速测定中的应用。方法应用偏最小二乘法建立计算模型,通过方差分析法选择计算波长,主成分分析法选择验证集和训练集,交互验证法选择适当的计算因子数。结果应用所建立的偏最小二乘法模型,对9份异炯肼片测定异烟肼含量,与HPLC法相比,所测结果相对误差≤±0.8%,方法准确可靠。结论可将近红外光谱法应用于异烟肼的快速测定,在异烟肼生产中的过程控制和快速质量检测上有较大应用前景。  相似文献   

15.
目的利用NIRS结合化学计量学技术建立一种简单有效的鉴别头孢菌素类粉针剂的方法.方法 收集8种常见头孢菌素类粉针,采集其近红外漫反射光谱,用化学计量学方法对光谱进行处理和判别分析.结果 采用一阶导数+矢量归一化预处理后所建立的模型可有效的对8种头孢类粉针进行识别.结论 NIRS可以实现头孢菌素类粉针剂的无损快速判别,为头孢类粉针的鉴别提供了一种简便可行的参考方法.  相似文献   

16.
简要介绍了近红外光谱技术的发展历程,产生及测定过程,现代近红外光谱技术的特点以及近红外光谱技术在粮食、食用油、肉类、乳制品、果蔬、茶叶等食品安全方面的应用和检测中的局限性以及存在问题。  相似文献   

17.
The aim of the present study was first to develop a robust near infrared (NIR) calibration model able to determine the acetaminophen content of a low-dose syrup formulation (2%, w/v). Therefore, variability sources such as production campaigns, batches, API concentration, syrup basis, operators and sample temperatures were introduced in the calibration set. A prediction model was then built using partial least square (PLS) regression. First derivative followed by standard normal variate (SNV) were chosen as signal pre-processing. Based on the random subsets cross-validation, 4 PLS factors were selected for the prediction model. The method was then validated for an API concentration ranging from 16 to 24 mg/mL (1.6–2.4%, w/v) using an external validation set. The 0.26 mg/mL RMSEP suggested the global accuracy of the model. The accuracy profile obtained from the validation results, based on tolerance intervals, confirmed the adequate accuracy of the results generated by the method all over the investigated API concentration range. Finally, the NIR model was used to monitor in real time the API concentration while mixing syrups containing various amounts of API, a good agreement was found between the NIR method and the theoretical concentrations.  相似文献   

18.
目的运用近红外光谱分析技术建立罗红霉素胶囊的一致性检验模型。方法采用一阶导数法在12000~4000cm-1范围内对各厂家的罗红霉素胶囊光谱进行预处理,并建立一致性检验模型。结果针对多厂家和单一厂家建立的一致性检验模型在CI=5时,均能达到各自的快速分析目标。结论近红外光谱法是一种很实用的分析技术,针对罗红霉素胶囊建立的两种一致性检验模型具有快速、可靠的特点,适用于药品检测车对罗红霉素胶囊的快速筛查。  相似文献   

19.
Near infrared Fourier-transform (FT) Raman spectroscopy is shown to be a useful spectroscopic tool for the molecular structural analysis of drugs and biomedical polymers. The technique has been applied to the non-invasive investigation of the hydrolytic degradation of a biodegradable polymer in water over a period of 15 days and to the analysis of a drug within a polymer vehicle over a wide drug concentration range. This work demonstrates the potential value of FT Raman spectroscopy in the field of pharmaceutical science.  相似文献   

20.
综述红外光谱技术与化学计量学相结合在中药质量控制中的应用,包括利用导数校正(包括一阶、二阶求导)、标准正态变换、多元信号校正、小波变换、数据平滑等方法处理原始红外光谱,提高谱图的信噪比、改良分析信号的质量;利用正交偏最小方差判别分析、主成分分析、偏最小二乘法等校正方法处理红外光谱数据,可以迅速而准确地鉴别中药、定量分析中药有效成分;用SIMCA方法、聚类分析方法、红外指纹图谱法等化学模式识别红外光谱数据可以判断中药的产地、道地性和中成药的质量等;利用二维相关红外光谱法可以鉴别中药材的产地、研究中药炮制质量变化等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号