首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Citrullinemia type I is an autosomal recessive disorder that is caused by a deficiency of the urea cycle enzyme argininosuccinate synthetase (ASS1). Deficiency of ASS1 shows various clinical manifestations encompassing severely affected patients with fatal neonatal hyperammonemia as well as asymptomatic individuals with only a biochemical phenotype. This is a comprehensive report of all 87 mutations found to date in the ASS1 gene on chromosome 9q34.1. A large proportion of the mutations (n=27) are described here for the first time. Mutations are distributed throughout exons 3 to 15, most of them being identified in exons 5, 12, 13, and 14. The mutation G390R in exon 15 is the single most common mutation in patients with the classical phenotype. Certain mutations clearly link to specific clinical courses but the clinical phenotype cannot be anticipated in all patients. This update presents a survey of the correlation between mutations in the ASS1 gene and the respective clinical courses as described so far. It also sheds light on the geographic incidence of the mutations. Enzymatic studies have been done in bacterial and human cell systems. However, the prognostic value of genetic aberrations with respect to their effect on protein function and clinical manifestation remains uncertain. Hum Mutat 0, 1–8, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Classical citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase (ASS). We have previously identified 20 mutations in ASS mRNA of human classical citrullinemia and already established the DNA diagnosis of seven mutations as follows. By Southern blot analysis, each of the alleles with exon 5 or 6 deletion in mRNA appears to involve deletion of genomic DNA from this region. Five mutations involving R304W, G324S, IVS-6−2 (ΔEx7), IVS-13+5 (ΔEx13), and Δ13bp Ex15&IVS-15 (ins37b/Ex15&16) are diagnosed by a combination of PCR (or modified PCR) and restriction enzyme digestion. It is important to identify the mutation in genomic DNA for prenatal diagnosis and carrier detection. In the present study, we report a novel missense mutation (R279Q) and a new abnormality in the ASS gene (Δ11bp/IVS-15). As three missense mutations (R272C, R279Q, and G280R) were found in exon 12, we isolated and sequenced the intron regions surrounding exon 12 to establish a DNA diagnostic test. Although a mutation with a deletion of the first seven bases in exon 16 of mRNA (Δ7b/Ex16) was found in both Japanese and American patients, the abnormality on the ASS gene was different between the Japanese allele (Δ11bp/IVS-15) and American allele (IVS-15−1). The DNA diagnosis of 47 Japanese alleles with classical citrullinemia showed that the IVS-6−2 and R304W mutations were found in 49% and 17% of the mutated alleles, respectively. We now have DNA diagnosis systems to detect 14 out of 22 mutations and are performing prenatal diagnosis and carrier detection using genomic DNA on classical citrullinemia. Hum Mutat 9:250–259, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Mild citrullinemia is an allelic variant of classical citrullinemia type I also caused by deficiency of the urea cycle enzyme argininosuccinate synthetase (ASS). Affected patients comprise a biochemical but no clinical phenotype. However, there is no reliable parameter allowing conclusions regarding the course of the disorder or its type of manifestation. The aim of this study was to test the importance of varying levels of ASS residual activities for the severity at diagnosis. Bacterial in vitro expression studies allowed the enzymatic analysis of purified wild-type and the mutant ASS proteins p.Ala118Thr (c.352G>A), p.Trp179Arg (c.535T>C), p.Val263Met (c.787G>A), p.Arg265Cys (c.793C>T), p.Met302Val (c.904A>G), p.Gly324Ser (c.970G>A), p.Gly362Val (c.1085G>T), and p.Gly390Arg (c.1168G>A). In the chosen system, classical mutations do not show any significant enzymatic activity, whereas mutations associated with a mild course yield significant ASS activity levels. The mutation p.Ala118Thr (c.352G>A) impresses by a high residual activity (62%) but a severe reduction of affinity toward the substrates citrulline and aspartate. This mutation was identified in a hitherto healthy female adult with no history of known citrullinemia who had died during the postpartum period from hyperammonemic coma. The results of this study suggest that even a high level of residual ASS activity is not a reliable prognostic marker for an uneventful clinical course. Determination of ASS residual activities, therefore, cannot help in anticipating the risk of metabolic derangement. This study should guide clinicians as well as patients with mild citrullinemia toward a lifelong awareness of the disorder.  相似文献   

4.
Citrullinemia type 1 is an autosomal recessive urea cycle disorder caused by defects in the argininosuccinate synthetase (ASS) enzyme due to mutations in ASS1 gene. An impairment of ASS function can lead to a wide spectrum of phenotypes, from life‐threatening neonatal hyperammonemia to a later onset with mild symptoms, and even some asymptomatic patients exhibiting an only biochemical phenotype. The disease is panethnic. In this update, we report 137 mutations (64 of which are novel), consisting of 89 missense mutations, 19 nonsense mutations, 17 mutations that affect splicing, and 12 deletions. The change p.Gly390Arg is by far the most common mutation and is widely spread throughout the world. Other frequent mutations (p.Arg157His, p.Trp179Arg, p.Val263Met, p.Arg304Trp, p.Gly324Ser, p.Gly362Val, and p.Arg363Trp), each found in at least 12 independent families, are mainly carried by patients from the Indian subcontinent, Turkey, Germany, and Japan. To better understand the disease, we collected clinical data of >360 patients, including all published information available. This information is related to the patients’ genetic background, the conservation of the mutated residues and a structural rationalization of the effect of the most frequent mutations. In addition, we review ASS regulation, animal models, diagnostic strategies, newborn screening, and treatment options.  相似文献   

5.
Carbamyl Phosphate Synthetase I deficiency (CPSID) is a rare autosomal recessive urea cycle disorder usually characterized by potentially lethal neonatal hyperammonemia. The large (5215 bp) CPS1-cDNA, expressed only in liver and epithelial cells of intestinal mucosa, has been cloned. Until now the CPS1 genomic organization was unknown. Taking advantage of the phylogenetic lineage between the CPS1 gene of Homo sapiens and Rattus norvegicus, we determined the intron-exon organization of the human CPS1 gene. Starting from the ATG codon, the CPS I gene is organized in 38 exons spanning from 50bp to 200 bp. We also report the molecular studies on an Italian patient affected by neonatal CPSD. Two novel genetic lesions (c.1370T>G and c.2429A>G) that lead to the novel amino acid substitutions V457G and Q810R, and the known N1406T polymorphism, were detected in the patient's CPS1 RNA and in genomic DNA isolated from peripheral blood lymphocytes. The characterization of the CPS1 genomic organization will allow the identification of the genetic lesions of CPSD patients, the detection of carriers, better genetic counseling and a more certain, less invasive method of prenatal diagnosis.  相似文献   

6.
7.
Molecular analysis of argininosuccinate lyase (ASAL) deficiency has led to the identification of a deletion hotspot in the ASL gene. Six individuals with ASAL deficiency had alleles that led to a complete absence of exon 13 from the ASL mRNA; each had a partial deletion of exon 13 in the genomic DNA. In all six patients, the deletions begin 18 bp upstream of the 3' end of exon 13. In four cases, the deletions were 13 bp in length, and ended within exon 13, whereas in two other patients the deletions were 25 bp and extended into intron 13. The sequence at which these deletions begin overlaps both a putative topoisomerase II recognition site and a DNA polymerase alpha mutation/frameshift site. Moreover, the topoisomerase II cut site is situated precisely at the beginning of the deletions, which are flanked by small (2- and 3-bp) direct repeats. We note that a similar concurrence of these two putative enzyme sites can be found in a number of other deletion sites in the human genome, most notably the DeltaF508 deletion in the CFTR gene. These findings suggest that the joint presence of these two enzyme sites represents a DNA sequence context that may favor the occurrence of small deletions.  相似文献   

8.
Deficiency of carbamoyl phosphate synthetase I (CPSI) results in hyperammonemia ranging from neonatally lethal to environmentally induced adult-onset disease. Over 24 years, analysis of tissue and DNA samples from 205 unrelated individuals diagnosed with CPSI deficiency (CPSID) detected 192 unique CPS1 gene changes, of which 130 are reported here for the first time. Pooled with the already reported mutations, they constitute a total of 222 changes, including 136 missense, 15 nonsense, 50 changes of other types resulting in enzyme truncation, and 21 other changes causing in-frame alterations. Only ~10% of the mutations recur in unrelated families, predominantly affecting CpG dinucleotides, further complicating the diagnosis because of the "private" nature of such mutations. Missense changes are unevenly distributed along the gene, highlighting the existence of CPSI regions having greater functional importance than other regions. We exploit the crystal structure of the CPSI allosteric domain to rationalize the effects of mutations affecting it. Comparative modeling is used to create a structural model for the remainder of the enzyme. Missense changes are found to directly correlate, respectively, with the one-residue evolutionary importance and inversely correlate with solvent accessibility of the mutated residue. This is the first large-scale report of CPS1 mutations spanning a wide variety of molecular defects highlighting important regions in this protein.  相似文献   

9.
Fabry disease is an X-linked recessive disorder caused by a deficiency in the lysosomal enzyme alpha-galactosidase A, which results in a progressive multisystem disease. Most families have private mutations and no general correlation between genotype and disease manifestations has been described to date. Forty-nine patients (47 males and 2 females) from 36 affected families were selected for the study. Their evaluation included clinical examination, identification of alpha-galactosidase A gene mutations and residual enzymatic activity. For mutation detection, each exon with flanking intronic sequences was amplified by polymerase chain reaction (PCR) from the patient's genomic DNA and sequenced. Analysis of the resulting sequences was conducted to identify structural defects in the gene. Each of the Fabry patients carried a mutation in the alpha-galactosidase A gene. Fifteen mutations were novel. They included missense mutations (M51K, Y123M, G261D), nonsense point mutations (E251X) and small insertions or deletions creating a premature translational termination signal (P6X, D93X, W162X, K240X, H302X, I303X, L403X, S345X, G375X, F396X). Residual alpha-galactosidase A activity was significantly lower in patients with neuropathic pain (p=0.01) and in patients with mutations leading to a nonconservative amino acid change (p=0.04). Our findings emphasize the wide variety of genetic mechanisms leading to Fabry disease. A significant genotype-phenotype relationship was found.  相似文献   

10.
11.
12.
Propionyl‐CoA carboxylase (PCC) is a biotin‐dependent enzyme located in the mitochondrial matrix. Mutations in the PCCA and PCCB genes, which encode the a and b subunits of this heteropolymer, result in propionic acidemia (PA). We report the molecular analysis of b‐deficient patients from Spain and Austria. Subjects were screened for defects affecting the PCCB gene by direct sequencing from genomic PCR products, restriction digests and mRNA analysis by RT‐PCR. Study by western blot of the presence of immunoreactive b‐PCC protein was also performed. A total of four novel sequence variations were found including the point mutations V205D, and M442T, and the frameshift mutation 790‐791insG. Additionaly, a new point change, L17M, was identified on the same allele as 790‐791insG. The missense changes described above were not found in at least 40 control chromosomes analyzed. The Austrian patients were homozygous for V205D. One of the Spanish subjects was heterozygous for M442T and the known mutation c1170insT. The other Spanish patient carried L17M+790‐791insG on one allele, and the described mutation E168K on the other mutant chromosome. The mutations V205D and M442T were confirmed at RNA level and also we have detected the presence of immunoreactive b‐PCC protein translated from these mutant alleles. The patient having L17M+790‐791insG and E168K also presented immunoreactive b‐PCC protein. However, no cDNA product was obtained from the chromosome carrying L17M+790‐791insG. We propose that 790‐791insG, which causes a frameshift and a premature stop codon, is responsible for this finding. In any case, the translation from this mutant cDNA would produce a severily truncated peptide and, in consequence, a non‐functional protein. Expression analysis of all these changes will help us to clarify their structural/functional consequences. Hum Mutat 14:89–90, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Mutations in the WFS1 gene have been reported in Wolfram syndrome (WS), an autosomal recessive disorder defined by early onset of diabetes mellitus (DM) and progressive optic atrophy. Because of the low prevalence of this syndrome and the recent identification of the WFS1 gene, few data are available concerning the relationships between clinical and molecular aspects of the disease. Here, we describe 12 patients from 11 families with WS. We report on eight novel (A214fsX285, L293fsX303, P346L, I427S, V503fsX517, R558C, S605fsX711, P838L) and seven previously reported mutations. We also looked for genotype-phenotype correlation both in patients included in this study and 19 additional WS patients that were previously reported. Subsequently, we performed a systematic review and meta-analysis of five published clinical and molecular studies of WFS1 for genotype-phenotype correlation, combined with our current French patient group for a total of 96 patients. The presence of two inactivating mutations was shown to predispose to an earlier age of onset of both DM and optic atrophy. Moreover, the clinical expression of WS was more complete and occurred earlier in patients harboring no missense mutation.  相似文献   

14.
Deficiency of citrin, liver-type mitochondrial aspartate-glutamate carrier, is an autosomal recessive disorder caused by mutations of the SLC25A13 gene on chromosome 7q21.3 and has two phenotypes: neonatal intrahepatic cholestatic hepatitis (NICCD) and adult-onset type II citrullinemia (CTLN2). So far, we have described 19 SLC25A13 mutations. Here, we report 13 novel SLC25A13 mutations (one insertion, two deletion, three splice site, two nonsense, and five missense) in patients with citrin deficiency from Japan, Israel, UK, and Czech Republic. Only R360X was detected in both Japanese and Caucasian. IVS16ins3kb identified in a Japanese CTLN2 family seems to be a retrotransposal insertion, as the inserted sequence (2,667-nt) showed an antisense strand of processed complementary DNA (cDNA) from a gene on chromosome 6 (C6orf68), and the repetitive sequence (17-nt) derived from SLC25A13 was found at both ends of the insert. All together, 30 different mutations found in 334 Japanese, 47 Chinese, 11 Korean, four Vietnamese and seven non-East Asian families have been summarized. In Japan, IVS16ins3kb was relatively frequent in 22 families, in addition to known mutations IVS11 + 1G > A, 851del4, IVS13 + 1G > A, and S225X in 189, 173, 48 and 30 families, respectively; 851del4 and IVS16ins3kb were found in all East Asian patients tested, suggesting that these mutations may have occurred very early in some area of East Asia.  相似文献   

15.
We have recently identified SLC25A13 on chromosome 7q21.3 as the gene responsible for adult‐onset type II citrullinemia (CTLN2) and found seven mutations in the SLC25A13 gene of CTLN2 patients. Most recently, the SLC25A13 mutations have been detected in neonatal/infantile patients with a type of neonatal hepatitis associated with cholestasis (NICCD). In the present study, we identified a novel mutation, E601X, in the SLC25A13 gene and established multiple DNA diagnosis methods for eight mutations by using a genetic analyzer with GeneScan and the single primer extension procedure (SNaPshot). An additional novel missense mutation (variation), E601K, was detected by SNaPshot analysis and was indistinguishable from the mutation E601X detected by the PCR/RFLP method. Multiple DNA diagnoses for the nine mutations revealed that 100 (male/female: 70/30) out of 115 CTLN2 and 38 (14/24) out of 45 NICCD patients tested were homozygotes or compound heterozygotes. The frequency of homozygotes carrying SLC25A13 mutations in both alleles is estimated to be minimally 1 in 21,000 from carrier detection (18 in 1,315 individuals tested) in the Japanese population. The differences in the gender ratio and in mutation types between CTLN2 and NICCD patients are significant. It is, however, unknown whether all homozygotes with mutated SLC25A13 in both alleles suffer from NICCD, CTLN2, both, or neither. Hum Mutat 19:122–130, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

16.
Marfan syndrome (MFS) is an autosomal-dominant disorder of the fibrous connective tissue that is typically caused by mutations in the gene coding for fibrillin-1 (FBN1), a major component of extracellular microfibrils. The clinical spectrum of MFS is highly variable and includes involvement of the cardiovascular, skeletal, ocular, and other organ systems; however, the genotype-phenotype correlations have not been well developed. Various screening methods have led to the identification of about 600 different mutations (FBN1-UMD database; www.umd.be). In this study we performed SSCP and/or direct sequencing to analyze all 65 exons of the FBN1 gene in 116 patients presenting with classic MFS or related phenotypes. Twenty-nine novel and nine recurrent mutations were identified in 38 of the analyzed patients. The mutations comprised 18 missense (47%), eight nonsense (21%), and five splice site (13%) mutations. Seven further mutations (18%) resulted from deletion, insertion, or duplication events, six of which led to a frameshift and subsequent premature termination. Additionally, we describe new polymorphisms and sequence variants. On the basis of the data presented here and in a previous study, we were able to establish highly significant correlations between the FBN1 mutation type and the MFS phenotype in a group of 76 mutation-positive patients for whom comprehensive clinical data were available. Most strikingly, there was a significantly lower incidence of ectopia lentis in patients who carried a mutation that led to a premature termination codon (PTC) or a missense mutation without cysteine involvement in FBN1, as compared to patients whose mutations involved a cysteine substitution or splice site alteration.  相似文献   

17.
 目的: 本研究对2个不同马凡综合征(Marfan syndrome)的小家系进行致病基因FBN1的编码区和剪切位点突变检测,以寻找致病的突变,并初步探索马凡综合征基因型-表型的关联。方法: 通过临床检查、实验室检查及心脏超声检查确诊2个无血缘关系的家庭中原疑似为马凡综合征的3例患者。运用新一代测序对家系1的疑似患者行FBN1基因的全外显子组测序,并对检出的致病性遗传变异进行Sanger验证及在所有家系成员中验证;对于家系2的存活成员,本研究直接进行PCR扩增FBN1基因的所有编码区及剪切位点,对产物进行直接Sanger测序。另外在50个正常对照中对新发现的突变位点进行基于PCR产物的测序分析,以排除多态性;并对实验结果行生物信息学分析。结果: 所有存活的疑似患者均确诊为马凡综合征。在家系1中,我们检测到了一个FBN1基因数据库中尚未报道的新突变c.4685G>A(p.Cys1562Tyr),并且患者父母和同胞姐姐均未检测到此变异,故此突变为一个新生突变。该错义突变使第1562位上极性中性的含硫的半胱氨酸被极性中性的含羟苯基的酪氨酸所替代,影响了fibrillin-1蛋白一个TGF-β结合结构域,导致蛋白质的二级结构发生改变。家系2含父母及一对同卵双胎患者,其中一患者已去世。我们在存活患者检测到1个FBN1基因的已报道致病突变c.3706T>C(p.Cys1236Arg),该突变在患者父母中不存在,故也为新生突变。结论: 本文报道了一例FBN1基因的新突变及另一例由FBN1基因已知突变引起的马凡综合征,二者皆为新生突变,并在家系中进行了基因型-表型的比较,表明家系1的新突变可能与经典马凡综合征的表型相关,而家系2的已知突变确和新生儿重症马凡综合征表型相关。  相似文献   

18.
Rett syndrome is an X-linked dominant neurodevelopmental disorder that affects females almost exclusively. The recent identification of mutations of the methyl-CpG-binding protein 2 gene (MECP2) in patients with RTT, encouraged us to analyze the gene in 37 Japanese patients divided into classical RTT (14 cases), variant RTT (13 cases), and mentally retarded patients with Rett-like features (10 cases). Mutations in MECP2 were identified from most of the patients with classical and variant RTT (25 of 27 cases). Six reported common mutations were detected in 17 cases, and rare single nucleotide substitutions were found in 3 patients. In addition, one insertion mutation (1189insA) and four deletion mutations including one double deletion mutant (451delG, 100del4, 1124del53 and 881del289 plus 1187del8) were newly identified. In the 10 mentally retarded patients with Rett-like features, however, no mutation was detected in the coding region of MECP2. The finding of MECP2 mutations in 92.5% of patients with RTT indicates that RTT fulfilling the diagnostic criteria are due to genetic alteration.  相似文献   

19.
Kubota T, Sakurai A, Arakawa K, Shimazu M, Wakui K, Furihata K, Fukushima Y. Identification of two novel mutations in the OCRL1 gene in Japanese families with Lowe syndrome. Clin Genet 1998: 54: 199–202. 0 Munksgaard, 1998
The oculocerebrorenal syndrome of Lowe (OCRL) is a rare X-linked disorder with features of congenital cataracts. Fanconi syndrome of the renal tubule, and mental retardation. The OCRLI gene has been positionally cloned and shown to encode a phosphatidylinositol 4.5–biphos-phate-5–phosphatase. OCRL is thus thought to be an inborn error of inositol polyphosphate metabolism. We analyzed the gene in two Japanese OCRL patients and their families by DNA sequencing and mismatch polymerase chain reaction (PCR) followed by restriction digestion. A novel nonsense mutation (C1399T) replacing the glutamine of codon 391 (Gln 391 Stop) was identified in exon 12 in 1 patient and also in his mother. A novel missense mutation (C1743G) was identified in exon 15 in the second patient, his mother and maternal grandmother. The missense mutation predicts a substitution of serine for arginine (Ser 505 Arg) in a domain highly conserved among the inosi-tol-5–phosphatase family. Our observations expand the range of OCRLI mutations that cause Lowe syndrome. and will be useful for genetic counseling in these two Fdmilies.  相似文献   

20.
Type A insulin resistance syndrome is characterized by the association of ovarian hyperandrogenism, acanthosis nigricans, and severe insulin resistance. We have identified three novel mutant alleles of the insulin receptor gene in 3 patients with type A syndrome, a severe form of insulin resistance. Two of the patients were sisters (A1, A2), 1 of them was a compound heterozygote for a mutation at the 3'-splice acceptor site of intron 21 (AG-->AA), and a missense mutation Val140Leu in exon 2. Her sister was a simple heterozygote for the 3'-splice acceptor mutation. The third patient (A3) was heterozygous for the missense mutation Ala1028Val in exon 17, in the consensus sequence for ATP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号