首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: In this study, the performances of the TinyPump (priming volume 5 mL) system including the pediatric cannulae (Stöckert Pediatric Arterial Cannulae 2.6, 3.0, and 4.0 mm, Stöckert Instruments GmbH, Munich, Germany; Polystan 20‐Fr Venous Catheter, MAQUET GmbH, Rastatt, Germany) and an oxygenator (Terumo Capiox RX05 Baby‐RX, Terumo Cardiovascular Systems Co., Tokyo, Japan) were studied in vitro followed with preliminary ex vivo studies in 20‐kg piglets. In vitro results revealed that the TinyPump system met the requirements for pump speed, pump flow, and pressure drop as extracorporeal circulatory support during open heart surgery and extracorporeal membrane oxygenation (ECMO) in pediatric patients. In 2‐h ex vivo studies using 20‐kg piglets where the blood contacting surface of the TinyPump was coated with a biocompatible phospholipid polymer, the plasma‐free hemoglobin levels remained less than 5.0 mg/dL and no thrombus formation was observed inside the pump. The TinyPump system including the oxygenator and connecting circuits resulted in an overall priming volume of 68 mL, the smallest ever reported. The TinyPump can be a safe option for pediatric circulatory support during open heart surgery and ECMO without requiring blood transfusion.  相似文献   

2.
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.  相似文献   

3.
The CentriMag centrifugal blood pump is a newly developed ventricular assist device based on magnetically levitated bearingless rotor technology. A combined computational and experimental study was conducted to characterize the hemodynamic and hemocompatibility performances of this novel blood pump. Both the three-dimensional flow features of the CentriMag blood pump and its hemolytic characteristics were analyzed using computational fluid dynamics (CFD)-based modeling. The hydraulic pump performance and hemolysis level were quantified experimentally. The CFD simulation demonstrated a clean and streamlined flow field in the main components of the CentriMag blood pump. The predicted results by hemolysis model indicated no significant high shear stress regions in the pump. A comparison of CFD predictions and experimental results showed good agreements. The relatively large gap passages (1.5 mm) between the outer rotor walls and the lower housing cavity walls provide a very good surface washing through a secondary flow path while the shear stresses in the secondary flow paths are reduced, resulting in a low rate of hemolysis ([Normalized Index of Hemolysis] NIH = 0.0029 +/- 0.006) without a decrease of the pump's hydrodynamic performance (pressure head: 352 mm Hg at a flow rate of 5.0 L/min and a rotational speed of 4,000 rpm).  相似文献   

4.
Computational fluid dynamics analysis of an intra-cardiac axial flow pump   总被引:7,自引:0,他引:7  
A low rate of hemolysis is an important factor for the development of a rotary blood pump. It is, however, difficult to identify the areas where hemolysis occurs. Computational fluid dynamics (CFD) analysis enables the engineer to predict hemolysis on a computer. In this study, fluid dynamics throughout intracardiac axial flow pumps with different designs were analyzed three-dimensionally using CFD software. The computed pressure-flow characteristics of the pump were in good agreement with the measurements. The Reynolds shear stress was computed along particle trace lines. Hemolysis was estimated on the basis of shear stress (tau) and its exposure time (Deltat): dHb/Hb = 3.62 x 10(-7)(tau)(i)(2.416) x Delta(t)(i)(0.785). Particle damage increased with time along the particle trace lines. Hemolysis of each of the pumps was measured in vitro. The computed hemolysis values were in good agreement with the experimental results. CFD is a useful tool for developing a rotary blood pump.  相似文献   

5.
The TinyPump is an extracorporeal, magnetically driven centrifugal blood pump with its impeller suspended magnetically and hydrodynamically to provide short-term mechanical circulatory support for children and infants. We have previously demonstrated that the in vivo experiments of the experimental TinyPump showed acceptable stable performance at pump flows averaging around 1.0 L/min with low hemolytic and thrombogenic properties for up to 2 weeks. We present here the 1-month in vivo evaluation of the TinyPump, whose design was modified further for more durable operation. The pump was implanted as a left ventricular assist device in five goats (12.5-26.7 kg), with inflow inserted into the left ventricular apex and outflow anastomosed to the descending aorta. Five animals were supported for 110 pump days, with mean pump flow of 1.19 ± 0.03 L/min at a pump speed of 2679 ± 97 rpm. Two animals reached the scheduled end point of 30 days without device failure, and mean plasma-free hemoglobin was 1.7 ± 0.8 mg/dL. Hematologic and biochemical data of these two animals showed no evidence of cardiovascular, renal, or hepatic dysfunction. Although further experiments are needed, the modified TinyPump offers promise as a short-term mechanical circulatory support device in pediatric population.  相似文献   

6.
This study explores a quantitative evaluation of blood damage that occurs in a continuous flow left ventricular assist device due to fluid stress. Computational fluid dynamics (CFD) analysis is used to track the shear stress history of 388 particle streaklines. The accumulation of shear and exposure time is integrated along the streaklines to evaluate the levels of blood trauma. This analysis, which includes viscous and turbulent stresses, provides a statistical estimate of possible damage to cells flowing through the pump. In vitro normalized index of hemolysis values for clinically available ventricular assist devices were compared to our damage indices. This allowed for an order of magnitude comparison between our estimations and experimentally measured hemolysis levels, which resulted in a reasonable correlation. This work ultimately demonstrates that CFD is a convenient and effective approach to analyze the Lagranian behavior of blood in a heart assist device.  相似文献   

7.
This article summarizes the use of computational fluid dynamics (CFD) to design a novel suspended Tesla left ventricular assist device. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750, and 7000 rpm and at flow rates varying from 3 to 7 liters per minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mm Hg with a hydraulic efficiency of 16% at the design conditions of 6 LPM through flow and a 6750 rpm rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance.  相似文献   

8.
A computational fluid dynamics study of blood flow in the continuous flow ventricular assist device, Prototype No. 3 (CFVAD3), which consists of a 4 blade shrouded impeller fully supported in magnetic bearings, was performed. This study focused on the regions within the pump where return flow occurs to the pump inlet, and where potentially damaging shear stresses and flow stagnation might occur: the impeller blade passages and the narrow gap clearance regions between the impeller-rotor and pump housing. Two separate geometry models define the spacing between the pump housing and the impeller's hub and shroud, and a third geometry model defines the pump's impeller and curved blades. The flow fields in these regions were calculated for various operating conditions of the pump. Pump performance curves were calculated, which compare well with experimentally obtained data. For all pump operating conditions, the flow rates within the gap regions were predicted to be toward the inlet of the pump, thus recirculating a portion of the impeller flow. Two smaller gap clearance regions were numerically examined to reduce the recirculation and to improve pump efficiency. The computational and geometry models will be used in future studies of a smaller pump to determine increased pump efficiency and the risk of hemolysis due to shear stress, and to insure the washing of blood through the clearance regions to prevent thrombosis.  相似文献   

9.
The authors studied avoidance of coagulation occurrence using computational fluid dynamics (CFD) analysis from the fluid dynamical point of view. Concerning centrifugal pumps, blood coagulation sometimes occurs at the region behind the impeller where the flow is generally stagnant. Therefore, we conducted a thorough study with the specimen pump with and without washout holes, mocking up the Nikkiso HPM-15. As the result, the model with washout holes indicated that the fluid rotates rapidly at the vicinity of the shaft and generates washout effects near the stationary rear casing. On the other hand, the model without washout holes showed that fluid cannot be quickly shipped out of the area behind the impeller and rotates mildly around the shaft. To clarify the moving relations between the impeller and the fluid, validation studies by comparing the results of CFD analysis and flow visualization experiments are ongoing; thus far, the studies show that CFD results are similar to the results from flow visualization experiments.  相似文献   

10.
We are developing the Baylor-Kyocera KP implantable centrifugal blood pump for small sized adult and pediatric patients. This pump eccentrically positions the inlet port, which eliminates flow stagnation around the top pivot bearing. The inlet port design is important because it may vary the inlet orifice pressure on the top housing and change hydraulic performance and hemolytic characteristics. The pressure distribution inside the KP pump was assessed by a computational fluid dynamic (CFD) analysis with 2.7 x 10(5) elements and 3.16 x 10(5) nodes. Hydraulic performance and hemolysis were evaluated with 3 different pump housings, which had 3.8, 4.5, and 6.1 mm offset inlet ports from the center in a mock circuit. The CFD analysis revealed that the pressure gradually increased from the center toward the peripheral. The pressure difference between the 3.8 to 6.1 mm offsets was less than 600 Pa. The hydraulic performance did not drastically change at 3.8, 4.5, and 6.1 mm offset from the center. However, the hemolysis increased with the increase of the port offset from 0.0080+/- 0.0048 to 0.054 +/- 0.028 g/100 L. The inlet port positioning is important to attain less blood trauma in this small Gyro centrifugal blood pump. The preferable position of the inlet port is less than 4.5 mm offset from the center.  相似文献   

11.
Evaluation of hemolysis within a blood pump on a computer is useful for developing rotary blood pumps. The flow fields in the axial flow blood pump were analyzed using computational fluid dynamics (CFD). A blood damage index was calculated based on the changes in shear stress with time along 937 streamlines. Hemolysis of the pumps was measured using bovine blood. A good correlation between the computed and measured hemolysis results was observed. CFD analysis is useful for estimating hemolysis of rotary blood pumps on a computer.  相似文献   

12.
Abstract:  In the development of a ventricular assist device, computational fluid dynamics (CFD) analysis is an efficient tool to obtain the best design before making the final prototype. In this study, different designs of a centrifugal blood pump were developed to investigate flow characteristics and performance. This study assumed the blood flow as being an incompressible homogeneous Newtonian fluid. A constant velocity was applied at the inlet; no slip boundary conditions were applied at device wall; and pressure boundary conditions were applied at the outlet. The CFD code used in this work was based on the finite volume method. In the future, the results of CFD analysis can be compared with flow visualization and hemolysis tests.  相似文献   

13.
In centrifugal blood pumps, blood is moved into a circular path with the help of an impeller. In a nutating pump, the nutating body takes over the role of the impeller. Since the nutating body itself does not rotate, this pump needs no seal, no blood contacting, and no magnetic bearings. To examine the suitability of the nutating pump principle for mechanical heart assist, the flow performance of different nutating pump models was investigated by computational fluid dynamics. The geometrical parameters of the pump were varied and flow-pressure curves were calculated for 12 models at different rotation frequencies. All models showed satisfactory flow-pressure curves. One model was computed minutely at 1 flow configuration to examine shear stresses within the fluid. A flow of 5 L/min and a frequency of 3,300 rotations per min (rpm) resulted in a differential pressure of 85 mm Hg. The maximum shear stress in the fluid at this flow was estimated to be 193 Pa which is considered to be an acceptable value for a blood pump.  相似文献   

14.
Finite-volume computations are described for laminar flow in the hydrodynamic bearings supporting 2 different versions of the impeller of the VentrAssist rotary pump. Pressure boundary conditions are taken from prior computations of turbulent flow in the whole pump with frictionless sliding of the impeller on the inside of the pump body. By investigating various impeller positions, the true ride height is determined. Net lift and combined drag from all 8 bearings of the 4-bladed impeller are compared with predictions based on 2-D theory. The computations also reveal the extent of net force and moment acting to move the impeller away from its nominal axis of rotation.  相似文献   

15.
Flow visualization experiments and computational fluid dynamic (CFD) analyses were performed and the results were compared to clarify the detailed fluid dynamic characteristics for the prototype design of a centrifugal pump, namely, an implantable ventricular assist system from Sun Medical, whose hemocompatibility was previously demonstrated in a series of animal experiments. The flow visualization was conducted with particle tracking velocimetry, and the CFD analysis was performed with STAR-CD software. The findings were as follows: (1). There were no flow separations around the curved open impeller. (2). Antithrombogenic design concepts for the inducer and the vane-shaft clearance were effective in producing axial velocity along the shaft surface and generat-ing suitable shear rates against the stationary fluid. (3). Unsteady vortex shedding in the outlet, which adversely affected the fluid dynamic efficiency, was observed clearly by flow visualization. Comparison of velocity distribution measured by flow visualization and CFD analysis showed reasonably good correlation. Our findings indicate that the impeller is suitable for an implantable artificial heart. The techniques of flow visualization and CFD analysis are complementary evaluation tools in research and development efforts.  相似文献   

16.
The impeller design for a miniature centrifugal blood pump is an important consideration since the small diameter impeller requires higher rotational speed, which may cause more blood trauma compared to the larger diameter impeller. Three different impeller vanes (straight vanes with a height of 4 mm and 8 mm, and 8 mm curved vanes) of which the diameter was 35 mm were subjected to hydraulic performance and hemolysis tests in the same pump housing. Both straight vane impellers attained left ventricular assist condition (5 L/min against 100 mm Hg) at 2,900 rpm while the curved vane required 3,280 rpm. There was no significant hemolysis difference between the tall and short vanes. The curved impeller vanes did not exhibit sufficient hydraulic performance when compared to the straight vanes. The straight vane impellers, even with different heights, were incorporated into the same pump housings, and the vane heights did not drastically change the hydraulic performance or hemolysis.  相似文献   

17.
Rational design of blood-wetted devices requires a careful consideration of shear-induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear exposure. However, it is exceptionally difficult to create a homogeneous shear-exposure history by conventional means. This study was undertaken to develop a Blood Shearing Instrument (BSI) with an optimized flow path which localized shear exposure within a rotating outer ring and a stationary conical spindle. By adjustment of the rotational speed and the gap dimension, the BSI is designed to generate shear stress magnitudes up to 1500 Pa for exposure time between 0.0015 and 0.20 s with a pressure drop of 100 mm Hg. Computational fluid dynamics (CFD) revealed that a flow path designed by first-order analysis and intuition exhibited unfavorable pressure gradient, vortices, and undesirable regions of reverse flow. An optimized design was evolved utilizing a parameterized geometric model and automatic mesh generation to eliminate vortices and reversal flow and to avoid unfavorable pressure gradients. Analysis of the flow and shear fields for the extreme limits of the shear gap demonstrated an improvement in homogeneity due to shape optimization and the limitations of an annular shear device for achieving completely uniform shear exposure.  相似文献   

18.
The computational fluid dynamics (CFD) package CFX-TASCflow was applied to simulate the flows through the blood pump hydrodynamic bearings. The three-dimensional flow patterns through the bearings were predicted and the hydraulic performance analyzed. The computations were carried out at 3 axial positions of the pump impeller. Net lift force away from the nearer part of the housing increased when the impeller moved closer to this part. Radial force and drag force were also found. Separated flows were observed at the leading and trailing edge of the bearing gap. To test the CFD package, a series of two-dimensional computations were also carried out for various bearing geometries. The results were compared with published experimental data.  相似文献   

19.
Yang XC  Zhang Y  Gui XM  Hu SS 《Artificial organs》2011,35(10):948-955
The advent of various technologies has allowed mechanical blood pumps to become more reliable and versatile in recent decades. In our study group, a novel structure of axial flow blood pump was developed for assisting the left ventricle. The design point of the left ventricular assist blood pump 25 (LAP-25) was chosen at 4 Lpm with 100 mm Hg according to our clinical practice. Computational fluid dynamics was used to design and analyze the performance of the LAP-25. In order to obtain a required hydraulic performance and a satisfactory hemolytic property in the LAP-25 of a smaller size, a novel structure was developed including an integrated shroud impeller, a streamlined impeller hub, and main impeller blades with splitter blades; furthermore, tandem cascades were introduced in designing the diffuser. The results of numerical simulation show the LAP-25 can generate flow rates of 3-5 Lpm at rotational speeds of 8500-10,500 rpm, producing pressure rises of 27.5-148.3 mm Hg with hydraulic efficiency points ranging from 13.4 to 27.5%. Moreover, the fluid field and the hemolytic property of the LAP-25 were estimated, and the mean hemolysis index of the pump was 0.0895% with Heuser's estimated model. In conclusion, the design of the LAP-25 shows an acceptable result.  相似文献   

20.
To design a miniaturized centrifugal blood pump, the impeller internal diameter (ID), which is a circle diameter on the inner edge of the vane, is considered one of the important aspects. Hydraulic performance, hemolysis, and thrombogenicity were evaluated with different impeller IDs. Two impellers were fabricated with an outer diameter of 35 mm, of which 1 had an 8 mm ID impeller and the other had a 12 mm ID. These impellers were combined with 2 different housings in which the inlet port was eccentrically positioned 3.8 and 4.5 mm offset from the center. The hydraulic performance and hemolysis were evaluated in a mock circuit, and thrombogenicity was evaluated in a 2 day ex vivo study with each impeller housing combination. Both impellers required 3,000 rpm in the 3.8 mm offset inlet to attain 5 L/min against 100 mm Hg (left ventricular assist device condition). The 8 mm ID impeller required 3,200 rpm, and the 12 mm ID impeller required 3,100 rpm in the 4.5 mm offset housing. The normalized index of hemolysis was 0.0080 +/- 0.0048 g/100 L in the 8 mm ID impeller with the 3.8 mm offset and 0.022 +/- 0.018 g/100 L with 4.5 mm offset. The 12 mm ID impeller had 0.068 +/- 0.028 g/100 L with the 3.8 mm offset and 0.010 +/- 0.002 g/100 L with the 4.5 mm offset. After the 2 day ex vivo study, no blood clot was formed around the top bearing in all the pump heads. The 8 mm ID impeller with 3.8 mm offset inlet and the 12 mm ID impeller with the 4.5 mm offset had less hemolysis compared to the other pump heads that were subjected to 14 day ex vivo and 10 day in vivo studies. The 8 mm ID impeller with the 3.8 mm offset inlet had a blood clot around the top bearing after the 14 day ex vivo study. No thrombus was found around the top bearing of the 12 mm ID impeller with the 4.5 mm offset in the 10 day in vivo study. These results suggest that the ID does not greatly change the hydraulic performance of a small centrifugal blood pump. The proper combination of the impeller ID and inlet port offset obtains less hemolysis. The larger impeller ID is considered to have less thrombogenicity around the top bearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号