首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
分子筛制氧是医疗机构自己通过分子筛制氧设备制造氧气直接用于临床患者治疗,目前暂没有进行GMP认证、也不需要获得药品注册号和药品生产许可证,对分子筛制氧在临床使用的监管缺失已经演变成为了多年未决的热点问题。通过分析医用分子筛制取氧气在临床上使用存在的问题,阐述了加强医用分子筛制取医用氧气管理的建议。  相似文献   

2.
为了解决氧站和取氧困难的医疗部门供氧问题,我们经过论证,设计,研制成8ZY—84型制氧设备。本设备是利用吸附塔内的5A 分子筛对压缩空气中氧与氮的亲和力差别,优先吸附氮和其它杂质(水分和二氧化碳),分离出氧。研制的氧压机和改进的空压机都是无油润滑设备,制取的氧气不含油分,可以保证压氧时的安全。  相似文献   

3.
王平  张胜 《医疗装备》2007,20(7):38-38
在医院,氧气是人命关天的大事,麻醉机、呼吸机、ICU病房、高压氧舱、急救室、普通病房等很有可能2,4小时在不停地用氧气抢救或治疗病人,这就要求中心供氧系统源源不断地供应压力、流量、纯度合格的医用氧气。而医用变压吸咐制氧设备的空气或氧气压力均属于低压范围,氧气是助燃气体,不是氢气等易燃气体,国家或行业没有对医用变压吸附制氧设备做氧源的制氧站作出专门的规定,也没有相应的规范。这就对医用中心制氧设备的安全管理,提出了更高的要求,因而也具有十分重要的意义。  相似文献   

4.
目的 设计一种制氧装置,即利用在使用康复设备和健身器材过程中产生的动能来制取氧气。方法 通过康复者运动产生的动能驱动压缩机工作,将压缩机产生的压缩空气过滤后,经电动旋转分离阀装置输送至分子筛吸附塔,通过分子筛去除空气中的其他气体即可产生高纯度氧气。结果 经测试发现,在体力和助力模式下,氧气浓度均可达到90%以上。这种康复制氧装置可以用于运动中吸氧,也可以将所制氧气先存储于氧气袋,用于运动后吸氧。结论 该制氧装置的研究设计,可实现康复运动动能的有效利用,节约能源,并帮助患者增强康复信心。  相似文献   

5.
根据分子筛变压吸附制取富氧的原理,我们与上海医院设备厂设计试制了两套“XY-1型制氧设备”,氧产量为2米~3/小时,氧浓度可达84%。出氧压力为3公斤/厘米~2,制取的氧气不含油雾,可压缩灌瓶,也可直接用管道输送到病房。经解放军184医院和上海市普陀区中心医院试用表明,临床效果与一般氧瓶基本相同,可供部队师级医院或地  相似文献   

6.
田维良 《医疗装备》2006,19(6):19-20
医用分子筛制氧设备是以沸石分子筛为吸附剂,用变压吸附法制取医用氧气的设备(以下简称制氧机)。该设备是在常温低压下以空气为原料,将空气中的氧气用物理的方法直接分离,制取浓度为90%~96%的氧气,剩余的成分主要是氩和氮。医院医用氧气的供应方式经历了氧气瓶、液氧与制氧机等  相似文献   

7.
我院中心供氧是由2台PSA-16型医用分子筛制氧设备作为氧源的。该设备的制氧原理是:以空气为原料,以沸石分子筛为吸附剂,在常温低压条件下,利用沸石分子筛加压时对氮的吸附容量增加,减压时对氮的吸附容量减少的特性,在充填沸石分子筛的吸附塔内形成加压吸附、减压解吸的快速循环过程,使空气中的氧、氮气体分离而制取医用氧气。由于PSA-16型医用分子筛制氧设备的工艺流程及其独特的结构决定了这种设备的运行故障率很低,但设备经长期运行后,有些零配件磨损或疲劳损坏,将会导致以下故障。1故障现象一设备产氧量不足,低于指标要求。故障分析造…  相似文献   

8.
目的:研制可临时加载到船舶上,提高淡水保障能力的制水站。方法:以40ft国际标准集装箱为载体.配置反渗透海水淡化装置、压力水柜、高压水泵等组成制水站,利用反渗透原理制取淡水。结果:制水站可日产淡水80t.制取的淡水水质符合国家、军队饮用水卫生标准。结论:制水站结构紧凑、机动性强、环境适应性好、自动化程度高,非常适合船舶使用。  相似文献   

9.
PSA制氧机常见故障处理及管理体会   总被引:1,自引:1,他引:0  
氧气是医院正常运转过程中必不可少的一个要素。高技术含量的PSA医用分子筛制氧设备的应用,改变了医院氧气由制氧厂提供的传统模式,医院可以自己生产氧气供临床使用。PSA医用分子筛制氧设备的工作原理是利用分子筛(吸附剂)对氮、氧吸附的选择性,从空气中获得医用氧气。通过对PSA医用制氧机的应用,谈一些故障处理方法及管理体会。  相似文献   

10.
野战医疗供氧方法探讨   总被引:1,自引:0,他引:1  
目的:研究野战医疗供氧方法。方法:从其基本原理出发,对储氧供氧、物理制氧和化学制氧方法的使用、成本、运输、储存等因素进行综合分析。结果:氧气钢瓶、液氧罐、变压吸附空气分离法和氧烛适用于野战医疗供氧;深冷空分法可用变压吸附空气分离法取代;氧气袋、普通液态化学制氧不适用于野战医疗供氧;膜分离技术和氧泵还有待发展。结论:单兵、野战急救车、野战医疗队、野战医疗所和野战医院可以因地制宜地采取氧气钢瓶、液氧罐、变压吸附空气分离法和氧烛供氧。  相似文献   

11.
目的:研制一种可应用于野战医疗急救环境、易于携带和使用的固态氧气发生装置。方法:按照4 L/min流量,供氧30 min标准制造固态氧气发生器。选用氧烛为产氧剂(在氯酸钠中加入燃料、催化剂、抑氯剂、黏结剂等,按照一定比例和体积铸成圆柱形),加上过滤系统、外壳、点火装置和隔热装置后制成固态氧气发生器。使用时启动点火装置,释放出氧气。结果:该装置所产生的氧气符合国家标准《GB 8982—1998医用氧》,气体成分性能指标符合美国军标和美国道格拉斯规范。经野战医疗所试用,其流量和供氧时间均能满足野战急救要求。结论:该装置可替代野战环境下的传统急救供氧装置(氧气钢瓶、氧气袋),其可挂在担架上,或挂于医护人员和伤病员腰间,小巧轻便。  相似文献   

12.
分析了麻醉科、ICU、高压氧科等科室用氧医疗设备以及普通病房用氧情况,阐述了医用分子筛制氧设备的工作原理,对临床应用效果进行了评估。结果表明,医用分子筛制氧设备具有低压安全、高效节能、操作简便、全自动运行等性能特点,完全能够满足临床的需要,其应用开创了现代化医院供氧新局面。  相似文献   

13.
目的:检测分子筛制氧机在拉萨地区房间弥散式供氧效果.方法:检测供氧房间内氧气体积分数、二氧化碳体积分数、检测人员的睡眠血氧饱和度和心率.结果:制氧机开机2h后,房间内的供氧水平可以达到海拔2200m以下高度的氧浓度;供氧房间人员睡眠血氧饱和度高于未供氧房间人员、睡眠心率低于未供氧房间人员.结论:在拉萨地区,分子筛制氧机向房间内进行弥散式供氧可以避免高原缺氧反应的发生.  相似文献   

14.
目的:针对医院几种制供氧模式进行比较,提出基于PSA制氧机的制供氧系统选型配置方案。方法:对液氧供氧与分子筛制氧机供氧的原理、安全性、经济性等,进行比较分析;依据医院病床实例,提出基于分子筛制氧机的设备容量配置方案。结果:医院制供氧方式适宜采用PSA制供氧设备,其安全性、经济效益优于液氧供氧。结论:PSA制供氧设备具有自产氧能力,合理选用及有效管理可提升医院供氧安全性,实现医院效益最大化。  相似文献   

15.
高原高效医用制氧机的研制   总被引:1,自引:3,他引:1  
目的:研制一种高原高效制氧机,用于解决高原部队用氧问题。方法:运用分子筛变压吸附制氧(PSA)技术,主要研究六吸附床制氧流程及其控制方法,用多通旋转分配阀实现六吸附床制氧流程的气体分配;应用可编程控制(PLC)技术,主要研究运行过程全自动控制及不同海拔高度参数可在线调整控制系统。结果:该制氧机达到技术指标要求,氧收率达58%。结论:该制氧机制氧效率高,功耗低;智能化程度高,操作与维护方便,适于高原地区使用。  相似文献   

16.
以空气或氧气为气源,采用电晕放电技术,设计了一种由臭氧管、高频电源、风机和控制系统组成臭氧发生器。性能检测表明,气源及气体流量对臭氧产量有很大影响,随着气体中氧含量及气体流量升高,臭氧产量增加。该臭氧发生器产生臭氧浓度高,稳定性好,在空气及水净化方面有很好的应用前景。  相似文献   

17.
双血氧饱和度监测在新生儿持续性肺动脉高压(Persistent Pulmonary Hypertension of Newborn,PPHN)的筛查和评估治疗疗效中有着重要的意义.血氧监测虽然是监护仪的必备参数之一,但一般情况下监护仪仅支持一个通道的血氧,需要另外配模块才能达到双血氧饱和度监测的目的,这样不仅增加的设备成本,还需要进行模块管理.文章提出了一种基于一通道血氧但实现了双血氧饱和度监测的监护仪系统设计.  相似文献   

18.
抗震救灾条件下的医用气体供应   总被引:2,自引:0,他引:2  
目的:分析解决医用气体不间断供应的难点及对策。方法:针对医用气体不间断供应的难点,制氧机制取氧气后以压氧机灌装氧气瓶为主,供氧时以氧气瓶连接供氧台向各功能舱输送氧气。结果:确保了医用气体方舱发挥最大效能,并合理满足不间断供氧需求。结论:其适用于各野战方舱医院,在今后组织灾害医学救援行动中值得借鉴。  相似文献   

19.
医用制氧机以其操作简单,自动化程度高,氧浓度稳定,越来越在各医院普及。结合方框图介绍了PTSI型制氧机原理及常见故障。  相似文献   

20.
医用分子筛变压吸附制氧技术的探讨   总被引:1,自引:0,他引:1  
分子筛制氧机仅仅利用空气就可以生产纯度在90-95%的氧气,近年来各级医院的中心供氧系统愈来愈多的选用了分子筛制氧设备;这种制氧设备的核心技术是让大气通过分子筛利用变压吸附气体分离和提纯技术获取低成本的氧气。其制氧机工艺流程简单、安全、投资少,能耗比较低,符合低品质资源的开发利用的世界潮流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号