首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patients with cholestatic liver diseases like primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) have a different gut microbiome composition than healthy controls. In contrast with PBC, PSC has a strong association with inflammatory bowel disease and is the prototypical disease of the gut‐liver axis. Still, there are some distinct overlapping microbial features in the microbiome of patients with PSC and PBC suggesting similarities in cholestatic diseases, although the possible pathogenetic involvement of these shared microbial changes is unknown. Herein, we present an overview of the available data and discuss the relevance for potential disease relevant host‐microbiota interactions. In general, the microbiome interacts with the host via the immunobiome (interactions between the host immune system and the gut microbiome), the endobiome (where the gut microbiome contributes to host physiology by producing or metabolizing endogenous molecules) and the xenobiome (gut microbial transformation of exogenous compounds, including nutrients and drugs). Experimental and human observational evidence suggest that the presence and functions of gut microbes are relevant for the severity and progression of cholestatic liver disease. Interestingly, the majority of new drugs that are currently being tested in PBC and PSC in clinical trials act on bile acid homeostasis, where the endobiome is important. In the future, it will be paramount to perform longitudinal studies, through which we can identify new intervention targets, biomarkers or treatment‐stratifiers. In this way, gut microbiome‐based clinical care and therapy may become relevant in cholestatic liver disease within the foreseeable future.  相似文献   

2.
BACKGROUND: Non-alcoholic fatty liver disease(NAFLD) is a common disorder with poorly understood pathogenesis. Beyond environmental and genetic factors,cumulative data support the causative role of gut microbiota in disease development and progression.DATA SOURCE: We performed a Pub Med literature search with the following key words: "non-alcoholic fatty liver disease","non-alcoholic steatohepatitis","fatty liver","gut microbiota" and "microbiome",to review the data implicating gut microbiota in NAFLD development and progression.RESULTS: Recent metagenomic studies revealed differences in the phylum and genus levels between patients with fatty liver and healthy controls. While bacteroidetes and firmicutes remain the dominant phyla among NAFLD patients,their proportional abundance and genera detection vary among different studies. New techniques indicate a correlation between the methanogenic archaeon(methanobrevibacter smithii) and obesity,while the bacterium akkermanshia municiphila protects against metabolic syndrome. Among NAFLD patients,small intestinal bacterial overgrowth detected by breath tests might induce gut microbiota and host interactions,facilitating disease development.CONCLUSIONS: There is evidence that gut microbiota participates in NAFLD development through,among others,obesity induction,endogenous ethanol production,inflammatory response triggering and alterations in choline metabolism. Further studies with emerging techniques are needed to further elucidate the microbiome and host crosstalk in NAFLD pathogenesis.  相似文献   

3.
The world population is aging, which poses a significant burden to the economy and health care system. As people age, so do their gut microbiomes. Age-related changes in gut microbiome have been reported, including decreased microbial diversity and increased Proteobacteria. Recently, we characterized the gut microbiome of a group of long-living (≥ 90 years old) Chinese people. Interestingly, the diversity of their gut microbiome was greater than that of a young adult control group. We also identified several potentially beneficial bacteria enriched in the long-living Chinese group. These results were validated using data from an independent Italian cohort that included a group of long-living individuals. Other recent studies have found similar results. Here, we provide a summary of these discoveries and discuss their implications in healthy aging.  相似文献   

4.
ABSTRACT

Hirschsprung disease (HSCR) is a birth defect with an approximate incidence of 1/5,000 live births, and up to one-third of HSCR patients develop Hirschsprung-associated enterocolitis (HAEC), the leading cause of HSCR-related death. Very little is known about the pathogenesis, prevention, and early diagnosis of HAEC. Here, we used a prospective study to investigate the enteric microbiome composition at the time of surgery as a predictor for developing postoperative HAEC. We identified a microbiome signature containing 21 operational taxonomic units (OTUs) that can potentially predict postoperative HAEC with ~85% accuracy. Furthermore, we identified exclusive breastfeeding as a novel protective factor for total HAEC (i.e., preoperative and postoperative HAEC combined). In addition, we discovered that breastfeeding was associated with a lowered risk for HAEC potentially mediated by modulating the gut microbiome composition characterized by a lower abundance of Gram-negative bacteria and lower LPS concentrations. In conclusion, modulating the gut microbiome by encouraging breastfeeding might prevent HAEC progression in HSCR patients.  相似文献   

5.
6.
Jones BV 《Gut microbes》2010,1(6):415-431
Using the culture independent TRACA system in conjunction with a comparative metagenomic approach, we have recently explored the pool of plasmids associated with the human gut mobile metagenome. This revealed that some plasmids or plasmid families are present in the gut microbiomes of geographically isolated human hosts with a broad global distribution (America, Japan and Europe), and are potentially unique to the human gut microbiome. Functions encoded by the most widely distributed plasmid (pTRACA22) were found to be enriched in the human gut microbiome when compared to microbial communities from other environments, and of particular interest was the increased prevalence of a putative RelBE toxin-antitoxin (TA) addiction module. Subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes, but homologues of the RelE toxin were associated with all major bacterial divisions comprising the human gut microbiota. In this addendum, functions of the gut mobile metagenome are considered from the perspective of the human host, and within the context of the hologenome theory of human evolution. In doing so, our original analysis is also extended to include the gut metagenomes of a further 124 individuals comprising the METAHIT dataset. Differences in the incidence and relative abundance of pTRACA22 and associated TA modules between healthy individuals and those with inflammatory bowel diseases are explored, and potential functions of pTRACA22 type RelBE modules in the human gut microbiome are discussed.  相似文献   

7.
Type 1 diabetes (T1D) is an autoimmune disease, which is characterized by the destruction of islet β cells in the pancreas triggered by genetic and environmental factors. In past decades, extensive familial and genome‐wide association studies have revealed more than 50 risk loci in the genome. However, genetic susceptibility cannot explain the increased incidence of T1D worldwide, which is very likely attributed by the growing impact of environmental factors, especially gut microbiome. Recently, the role of gut microbiome in the pathogenesis of T1D has been uncovered by the increasing evidence from both human subjects and animal models, strongly indicating that gut microbiome might be a pivotal hub of T1D‐triggering factors, especially environmental factors. In this review, we summarize the current aetiological and mechanism studies of gut microbiome in T1D. A better understanding of the role of gut microbiome in T1D may provide us with powerful prognostic and therapeutic tools in the near future.  相似文献   

8.
Our understanding of the microbial involvement in inflammatory bowel disease(IBD) pathogenesis has increased exponentially over the past decade. The development of newer molecular tools for the global assessment of the gut microbiome and the identification of nucleotide-binding oligomerization domain-containing protein 2 in 2001 and other susceptibility genes for Crohn’s disease in particular has led to better understanding of the aetiopathogenesis of IBD. The microbial studies have elaborated the normal composition of the gut microbiome and its perturbations in the setting of IBD. This altered microbiome or "dysbiosis" is a key player in the protracted course of inflammation in IBD. Numerous genome-wide association studies have identified further genes involved in gastrointestinal innate immunity(including polymorphisms in genes involved in autophagy: ATG16L1 and IGRM), which have helped elucidate the relationship of the local innate immunity with the adjacent luminal bacteria. These developments have also spurred the search for specific pathogens which may have a role in the metamorphosis of the gut microbiome from a symbiotic entity to a putative pathogenic one. Here we review advances in our understanding of microbial involvement in IBD pathogenesis over the past 10 years and offer insight into how this will shape our therapeutic management of the disease in the coming years.  相似文献   

9.

There is now a wealth of evidence showing that communication between microbiota and the host is critical to sustain the vital functions of the healthy host, and disruptions of this homeostatic coexistence are known to be associated with a range of diseases including obesity and type 2 diabetes. Microbiota-derived metabolites act both as nutrients and as messenger molecules and can signal to distant organs in the body to shape host pathophysiology. In this review, we provide a new perspective on succinate as a gut microbiota-derived metabolite with a key role governing intestinal homeostasis and energy metabolism. Thus, succinate is not merely a major intermediary of the TCA traditionally considered as an extracellular danger signal in the host, but also a by-product of some bacteria and a primary cross-feeding metabolite between gut resident microbes. In addition to maintain a healthy microbiome, specific functions of microbiota-derived succinate in peripheral tissues regulating host nutrient metabolism should not be rule out. Indeed, recent research point to some probiotic interventions directed to modulate succinate levels in the intestinal lumen, as a new microbiota-based therapies to treat obesity and related co-morbidities. While further research is essential, a large body of evidence point to succinate as a new strategic mediator in the microbiota-host cross-talk, which might provide the basis for new therapeutically approaches in a near future.

  相似文献   

10.
Intestinal microbiome of poultry and its interaction with host and diet   总被引:1,自引:0,他引:1  
Deng Pan 《Gut microbes》2014,5(1):108-119
The gastrointestinal (GI) tract of poultry is densely populated with microorganisms which closely and intensively interact with the host and ingested feed. The gut microbiome benefits the host by providing nutrients from otherwise poorly utilized dietary substrates and modulating the development and function of the digestive and immune system. In return, the host provides a permissive habitat and nutrients for bacterial colonization and growth. Gut microbiome can be affected by diet, and different dietary interventions are used by poultry producers to enhance bird growth and reduce risk of enteric infection by pathogens. There also exist extensive interactions among members of the gut microbiome. A comprehensive understanding of these interactions will help develop new dietary or managerial interventions that can enhance bird growth, maximize host feed utilization, and protect birds from enteric diseases caused by pathogenic bacteria.  相似文献   

11.
Genomic sequencing, bioinformatics, and initial speciation (e.g., relative abundance) of the commensal microbiome have revolutionized the way we think about the “human” body in health and disease. The interactions between the gut bacteria and the immune system of the host play a key role in the pathogenesis of gastrointestinal diseases, including those impacting the esophagus. Although relatively stable, there are a number of factors that may disrupt the delicate balance between the luminal esophageal microbiome (EM) and the host. These changes are thought to be a product of age, diet, antibiotic and other medication use, oral hygiene, smoking, and/or expression of antibiotic products (bacteriocins) by other flora. These effects may lead to persistent dysbiosis which in turn increases the risk of local inflammation, systemic inflammation, and ultimately disease progression. Research has suggested that the etiology of gastroesophageal reflux disease-related esophagitis includes a cytokine-mediated inflammatory component and is, therefore, not merely the result of esophageal mucosal exposure to corrosives (i.e., acid). Emerging evidence also suggests that the EM plays a major role in the pathogenesis of disease by inciting an immunogenic response which ultimately propagates the inflammatory cascade. Here, we discuss the potential role for manipulating the EM as a therapeutic option for treating the root cause of various esophageal disease rather than just providing symptomatic relief (i.e., acid suppression).  相似文献   

12.
The gut microbiome plays an important role in the development of inflammatory disease as shown using experimental models of central nervous system (CNS) demyelination. Gut microbes influence the response of regulatory immune cell populations in the gut-associated lymphoid tissue (GALT), which drive protection in acute and chronic experimental autoimmune encephalomyelitis (EAE). Recent observations suggest that communication between the host and the gut microbiome is bidirectional. We hypothesized that the gut microbiota differs between the acute inflammatory and chronic progressive stages of a murine model of secondary-progressive multiple sclerosis (SP-MS). This non-obese diabetic (NOD) model of EAE develops a biphasic pattern of disease that more closely resembles the human condition when transitioning from relapsing-remitting (RR)-MS to SP-MS. We compared the gut microbiome of NOD mice with either mild or severe disease to that of non-immunized control mice. We found that the mice which developed a severe secondary form of EAE harbored a dysbiotic gut microbiome when compared with the healthy control mice. Furthermore, we evaluated whether treatment with a cocktail of broad-spectrum antibiotics would modify the outcome of the progressive stage of EAE in the NOD model. Our results indicated reduced mortality and clinical disease severity in mice treated with antibiotics compared with untreated mice. Our findings support the hypothesis that there are reciprocal effects between experimental CNS inflammatory demyelination and modification of the microbiome providing a foundation for the establishment of early therapeutic interventions targeting the gut microbiome that could potentially limit disease progression.  相似文献   

13.
14.
Dysregulated interactions between host inflammation and gut microbiota over the course of life increase the risk of colorectal cancer (CRC). While environmental factors and socio-economic realities of race remain predominant contributors to CRC disparities in African-Americans (AAs), this review focuses on the biological mediators of CRC disparity, namely the under-appreciated influence of inherited ancestral genetic regulation on mucosal innate immunity and its interaction with the microbiome. There remains a poor understanding of mechanisms linking immune-related genetic polymorphisms and microbiome diversity that could influence chronic inflammation and exacerbate CRC disparities in AAs. A better understanding of the relationship between host genetics, bacteria, and CRC pathogenesis will improve the prediction of cancer risk across race/ethnicity groups overall.  相似文献   

15.
Cirrhosis is an increasing cause of morbidity and mortality. Recent studies are trying to clarify the role of microbiome in clinical exacerbation of patients with decompensated cirrhosis. Nowadays, it is accepted that patients with cirrhosis have altered salivary and enteric microbiome, characterized by the presence of dysbiosis. This altered microbiome along with small bowel bacterial overgrowth, through translocation across the gut, is associated with the development of decompensating complications. Studies have analyzed the correlation of certain bacterial families with the development of hepatic encephalopathy in cirrhotics. In general, stool and saliva dysbiosis with reduction of autochthonous bacteria in patients with cirrhosis incites changes in bacterial defenses and higher risk for bacterial infections, such as spontaneous bacterial peritonitis, and sepsis. Gut microbiome has even been associated with oncogenic pathways and under circumstances might promote the development of hepatocarcinogenesis. Lately, the existence of the oral-gutliver axis has been related with the development of decompensating events. This link between the liver and the oral cavity could be via the gut through impaired intestinal permeability that allows direct translocation of bacteria from the oral cavity to the systemic circulation. Overall, the contribution of the microbiome to pathogenesis becomes more pronounced with progressive disease and therefore may represent an important therapeutic target in the management of cirrhosis.  相似文献   

16.
The complex and multifactorial etiology of obesity creates challenges for its effective long-term management. Increasingly, the gut microbiome is reported to play a key role in the maintenance of host health and wellbeing, with its dysregulation associated with chronic diseases such as obesity. The gut microbiome is hypothesized to contribute to obesity development and pathogenesis via several pathways involving food digestion, energy harvest and storage, production of metabolites influencing satiety, maintenance of gut barrier integrity, and bile acid metabolism. Moreover, the gut microbiome likely contributes to the metabolic, inflammatory, and satiety benefits and sustained weight-loss effects following bariatric procedures such as sleeve gastrectomy. While the field of gut microbiome research in relation to obesity and sleeve gastrectomy outcomes is largely in its infancy, the gut microbiome nonetheless holds great potential for understanding some of the mechanisms behind sleeve gastrectomy outcomes as well as for optimizing post-surgery benefits. This review will explore the current literature within the field as well as discuss the current limitations, including the small sample size, variability in methodological approaches, and lack of associative data, which need to be addressed in future studies.  相似文献   

17.
Consequences of bile salt biotransformations by intestinal bacteria   总被引:1,自引:0,他引:1  
Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon.  相似文献   

18.
A growing body of evidence from multiple areas proposes that periodontal disease, accompanied by oral inflammation and pathological changes in the microbiome, induces gut dysbiosis and is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A subgroup of NAFLD patients have a severely progressive form, namely nonalcoholic steatohepatitis (NASH), which is characterized by histological findings that include inflammatory cell infiltration and fibrosis. NASH has a high risk of further progression to cirrhosis and hepatocellular carcinoma. The oral microbiota may serve as an endogenous reservoir for gut microbiota, and transport of oral bacteria through the gastro-intestinal tract can set up a gut microbiome dysbiosis. Gut dysbiosis increases the production of potential hepatotoxins, including lipopolysaccharide, ethanol, and other volatile organic compounds such as acetone, phenol and cyclopentane. Moreover, gut dysbiosis increases intestinal permeability by disrupting tight junctions in the intestinal wall, leading to enhanced translocation of these hepatotoxins and enteric bacteria into the liver through the portal circulation. In particular, many animal studies support that oral administration of Porphyromonas gingivalis, a typical periodontopathic bacterium, induces disturbances in glycolipid metabolism and inflammation in the liver with gut dysbiosis. NAFLD, also known as the hepatic phenotype of metabolic syndrome, is strongly associated with metabolic complications, such as obesity and diabetes. Periodontal disease also has a bidirectional relationship with metabolic syndrome, and both diseases may induce oral and gut microbiome dysbiosis with insulin resistance and systemic chronic inflammation cooperatively. In this review, we will describe the link between periodontal disease and NAFLD with a focus on basic, epidemiological, and clinical studies, and discuss potential mechanisms linking the two diseases and possible therapeutic approaches focused on the microbiome. In conclusion, it is presumed that the pathogenesis of NAFLD involves a complex crosstalk between periodontal disease, gut microbiota, and metabolic syndrome. Thus, the conventional periodontal treatment and novel microbiome-targeted therapies that include probiotics, prebiotics and bacteriocins would hold great promise for preventing the onset and progression of NAFLD and subsequent complications in patients with periodontal disease.  相似文献   

19.
Obesity is a global pandemic with immense health consequences for individuals and societies. Multiple factors, including environmental influences and genetic predispositions, are known to affect the development of obesity. Despite an increasing understanding of the factors driving the obesity epidemic, therapeutic interventions to prevent or reverse obesity are limited in their impact. Manipulation of the human gut microbiome provides a new potential therapeutic approach in the fight against obesity. Specific gut bacteria and their metabolites are known to affect host metabolism and feeding behaviour, and dysbiosis of this biosystem may lead to metabolic syndrome. Potential therapies to alter the gut microbiota to treat obesity include dietary changes, supplementation of the diet with probiotic organisms and prebiotic compounds that influence bacterial growth, and the use of faecal microbiota transplant, in which gut microbiota from healthy individuals are introduced into the gut. In this review, we examine the growing scientific evidence supporting the mechanisms by which the human gut microbiota may influence carbohydrate metabolism and obesity, and the various possible therapies that may utilize the gut microbiota to help correct metabolic dysfunction.  相似文献   

20.
ABSTRACT

Bile acid metabolism by the gut microbiome exerts both beneficial and harmful effects on host health. Microbial bile salt hydrolases (BSHs), which initiate bile acid metabolism, exhibit both positive and negative effects on host physiology. In this study, 5,790 BSH homologs were collected and classified into seven clusters based on a sequence similarity network. Next, the abundance and distribution of BSH in 380 metagenomes from healthy participants were analyzed. It was observed that different clusters occupied diverse ecological niches in the human microbiome and that the clusters with signal peptides were relatively abundant in the gut. Then, the association between BSH clusters and 12 human diseases was analyzed by comparing the abundances of BSH genes in patients (n = 1,605) and healthy controls (n = 1,540). The analysis identified a significant association between BSH gene abundance and 10 human diseases, including gastrointestinal diseases, obesity, type 2 diabetes, liver diseases, cardiovascular diseases, and neurological diseases. The associations were further validated by separate cohorts with inflammatory bowel diseases and colorectal cancer. These large-scale studies of enzyme sequences combined with metagenomic data provide a reproducible assessment of the association between gut BSHs and human diseases. This information can contribute to future diagnostic and therapeutic applications of BSH-active bacteria for improving human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号