首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previously, we reported that levels of chymase activity and its mRNA in cardiac tissues were significantly increased along with progression of cardiac fibrosis in cardiomyopathic hamsters, but the involvement of chymase in the progression of fibrosis has been unclear. In cultured human fibroblasts, the concentration of transforming growth factor-beta in the supernatant of medium was significantly increased after injection of human chymase. Furthermore, human chymase dose dependently increased cell proliferation, and this chymase-dependent proliferation was completely suppressed by a chymase inhibitor, Suc-Val-Pro-Phe(p)(OPh)(2) (10 micro M) or an anti-transforming growth factor-beta antibody (100 micro g/ml). In this study, we used Bio14.6 and F1B hamsters as cardiomyopathic and control hamsters, respectively. Cardiomyopathic hamsters were orally administered a novel chymase inhibitor, 4-[1-([bis-(4-methylphenyl)-methyl]-carbamoyl)-3-(2-ethoxy-benzyl)-4-oxo-azetidine-2-yloxy]-benzoic acid (BCEAB; 100 mg/kg per day), or placebo from 5- to 45-week-old. In the placebo-treated group, the cardiac chymase activity in cardiomyopathic hamsters 45 weeks old was significantly increased compared with that in control hamsters. BCEAB significantly reduced the cardiac chymase activity. The indexes (+dP/dt and -dP/dt) of cardiac function were significantly improved by treatment with BCEAB. The mRNA levels of collagen I and collagen III in the placebo-treated hamsters were significantly reduced to 69.6 and 76.5% by treatment with BCEAB, respectively. The fibrotic area in cardiac tissues in the BCEAB-treated hamsters was significantly suppressed to 50.7% compared with that in the placebo-treated treated hamsters. Therefore, the activation of transforming growth factor-beta by chymase may play an important role in the progression of cardiac fibrosis and cardiac dysfunction in cardiomyopathy.  相似文献   

2.
We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.  相似文献   

3.
(+)-trans-4-(3-dodecanoyl-2,4,6-trihydroxyphenyl)-7-hydroxy-2-(4- hydroxyphenyl)chroman (YM-26567-1), a novel natural product isolated from the fruit of Horsfieldia amygdaline, dose-dependently inhibited group II phospholipase A2 (PLA2) prepared from rabbit platelet with an IC50 value of 6.7 microM (4.6-9.6 microM, n = 4). In contrast to irreversible PLA2 inhibitors such as manoalide and p-bromophenacyl bromide, the PLA2 inhibition of YM-26567-1 was independent of preincubation time. Lineweaver-Burk analysis revealed that YM-26567-1 behaved as a competitive inhibitor of rabbit platelet PLA2 with a Ki value of 1.6 +/- 0.3 microM (n = 5). Although YM-26567-1 also competitively inhibited group I PLA2 derived from porcine pancreas, the Ki value was approximately 10-fold greater for porcine pancreas than for rabbit platelet PLA2. In vivo, topical application of YM-26567-1 to the mouse ear inhibited 12-O-tetradecanoylphorbol-13-acetate (1 micrograms/ear)-induced mouse ear edema in a dose-dependent manner with a 50% effective dose of 28 micrograms/ear (13-63 micrograms/ear, n = 10/dose), but did not improve arachidonic acid (4 mg/ear)-induced mouse ear edema at 1 mg/ear. These results suggest that YM-26567-1 is a competitive PLA2 inhibitor showing a higher affinity for group II than group I PLA2, and that it may act as a potent anti-inflammatory compound through its direct inhibition of PLA2.  相似文献   

4.
The pathogenic form of the cyclooxygenase (COX) enzyme, COX-2, is also constitutively present in the spinal cord and has been implicated in chronic pain states in rat and man. A number of COX-2 inhibitors, including celecoxib and rofecoxib, are already used in man for the treatment of inflammatory pain. Preclinically, the dual-acting COX-2 inhibitor, GW406381X [2-(4-ethoxyphenyl)-3-[4-(methylsulfonyl)phenyl]-pyrazolo[1,5-b]pyridazine, where X denotes the free base], is as effective as rofecoxib and celecoxib in the rat established Freund's Complete Adjuvant model with an ED(50) of 1.5 mg/kg p.o. compared with 1.0 mg/kg p.o. for rofecoxib and 6.6 mg/kg p.o. for celecoxib. However, in contrast to celecoxib (5 mg/kg p.o. b.i.d.) and rofecoxib (5 mg/kg p.o. b.i.d.), which were without significant effect, GW406381X (5 mg/kg p.o. b.i.d.) fully reversed mechanical allodynia in the chronic constriction injury model and reversed thermal hyperalgesia in the mouse partial ligation model, both models of neuropathic pain. GW406381X, was also effective in a rat model of capsaicin-induced central sensitization, when given intrathecally (ED(50) = 0.07 mug) and after chronic but not acute oral dosing. Celecoxib and rofecoxib had no effect in this model. Several hypotheses have been proposed to try to explain these differences in efficacy, including central nervous system penetration, enzyme kinetics, and potency. The novel finding of effectiveness of GW406381X in these models of neuropathic pain/central sensitization, in addition to activity in inflammatory pain models and together with its central efficacy, suggests dual activity of GW406381X compared with celecoxib and rofecoxib, which may translate into greater efficacy in a broader spectrum of pain states in the clinic.  相似文献   

5.
Previous studies identified partial inhibitors of serotonin (5-HT) transporter and dopamine transporter binding. We report here on a partial inhibitor of 5-HT transporter (SERT) binding identified among a group of 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine analogs (4-[2-[bis(4-fluorophenyl)-methoxy]ethyl]-1-(2-trifluoromethyl-benzyl)-piperidine; TB-1-099). Membranes were prepared from rat brains or human embryonic kidney cells expressing the cloned human dopamine (hDAT), serotonin (hSERT), and norepinephrine (hNET) transporters. beta-(4'-(125)Iodophenyl)tropan-2beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding and other assays followed published procedures. Using rat brain membranes, TB-1-099 weakly inhibited DAT binding (K(i) = 439 nM), was inactive at NET binding ([(3)H]nisoxetine), and partially inhibited SERT binding with an extrapolated plateau ("A" value) of 20%. Similarly, TB-1-099 partially inhibited [(125)I]RTI-55 binding to hSERT with an extrapolated plateau (A value) of 14%. Upon examining the effect of increasing concentrations of TB-1-099 on the apparent K(d) and B(max) of [(125)I]RTI-55 binding to hSERT, we found that TB-1-099 decreased the B(max) in a dose-dependent manner and affected the apparent K(d) in a manner well described by a sigmoid dose-response curve. TB-1-099 increased the K(d) but not to the magnitude expected for a competitive inhibitor. In rat brain synaptosomes, TB-1-099 noncompetitively inhibited [(3)H]5-HT, but not [(3)H]dopamine, uptake. Dissociation experiments indicated that TB-1-099 promoted the rapid dissociation of a small component of [(125)I]RTI-55 binding to hSERT. Association experiments demonstrated that TB-1-099 slowed [(125)I]RTI-55 binding to hSERT in a manner unlike that of the competitive inhibitor indatraline. Viewed collectively, these results support the hypothesis that TB-1-099 allosterically modulates hSERT binding and function.  相似文献   

6.
S-16924 is a potential antipsychotic that displays agonist and antagonist properties at serotonin (5-HT)1A and 5-HT2A/2C receptors, respectively. In a pigeon conflict procedure, the benzodiazepine clorazepate (CLZ) increased punished responses, an action mimicked by S-16924, whereas the atypical antipsychotic clozapine and the neuroleptic haloperidol were inactive. Similarly, in a Vogel conflict paradigm in rats, CLZ increased punished responses, an action shared by S-16924 but not by clozapine or haloperidol. This action of S-16924 was abolished by the 5-HT1A antagonist WAY-100,635. Ultrasonic vocalizations in rats were inhibited by CLZ, S-16924, clozapine, and haloperidol. However, although WAY-100,635 abolished the action of S-16924, it did not affect clozapine and haloperidol. In a rat elevated plus-maze, CLZ, but not S-16924, clozapine, and haloperidol, increased open-arm entries. Like CLZ, S-16924 increased social interaction in rats, whereas clozapine and haloperidol were inactive. WAY-100,635 abolished this action of S-16924. CLZ, S-16924, clozapine, and haloperidol decreased aggressive interactions in isolated mice, but this effect of S-16924 was not blocked by WAY-100, 635. All drugs inhibited motor behavior, but the separation to anxiolytic doses was more pronounced for S-16924 than for CLZ. Finally, in freely moving rats, CLZ and S-16924, but not clozapine and haloperidol, decreased dialysis levels of 5-HT in the nucleus accumbens: this action of S-16924 was blocked by WAY-100,165. In conclusion, in contrast to haloperidol and clozapine, S-16924 possessed a broad-based profile of anxiolytic activity at doses lower than those provoking motor disruption. Its principal mechanism of action was activation of 5-HT1A (auto)receptors.  相似文献   

7.
Plaques in the parenchyma of the brain containing Abeta peptides are one of the hallmarks of Alzheimer's disease. These Abeta peptides are produced by the final proteolytic cleavage of the amyloid precursor protein by the intramembraneous aspartyl protease gamma-secretase. Thus, one approach to lowering levels of Abeta has been via the inhibition of the gamma-secretase enzyme. Here, we report a novel, bioavailable gamma-secretase inhibitor, N-[cis-4-[(4-chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) that displayed oral pharmacokinetics suitable for once-a-day dosing. It was able to markedly reduce Abeta in the brain and cerebrospinal fluid (CSF) in the rat, with ED(50) values of 6 and 10 mg/kg, respectively. Time-course experiments using MRK-560 demonstrated these reductions in Abeta could be maintained for 24 h, and comparable temporal reductions in rat brain and CSF Abeta(40) further suggested that these two pools of Abeta are related. This relationship between the brain and CSF Abeta was maintained when MRK-560 was dosed once a day for 2 weeks, and accordingly, when all the data for the dose-response curve and time courses were correlated, a strong association was observed between the brain and CSF Abeta levels. These results demonstrate that MRK-560 is an orally bioavailable gamma-secretase inhibitor with the ability to markedly reduce Abeta peptide in the brain and CSF of the rat and confirm the utility of the rat for assessing the effects of gamma-secretase inhibitors on central nervous system Abeta(40) levels in vivo.  相似文献   

8.
Ro 63-1908, 1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol, is a novel subtype-selective N-methyl-D-aspartate (NMDA) antagonist that has been characterized in vitro and in vivo. Ro 63-1908 inhibited [(3)H]dizocilpine ((3)H-MK-801) binding in a biphasic manner with IC(50) values of 0.002 and 97 microM for the high- and low-affinity sites, respectively. Ro 63-1908 selectively blocked recombinant receptors expressed in Xenopus oocytes containing NR1C + NR2B subunits with an IC(50) of 0.003 microM and those containing NR1C + NR2A subunits with an IC(50) of >100 microM, thus demonstrating greater than 20,000-fold selectivity for the recombinant receptors expressing NR1C + NR2B. Ro 63-1908 blocked these NMDA NR2B-subtype receptors in an activity-dependent manner. Ro 63-1908 was neuroprotective against glutamate-induced toxicity and against oxygen/glucose deprivation-induced toxicity in vitro with IC(50) values of 0.68 and 0.06 microM, respectively. Thus, the in vitro pharmacological characterization demonstrated that Ro 63-1908 was a potent and highly selective antagonist of the NR2B subtype of NMDA receptors. Ro 63-1908 was active against sound-induced seizures (ED(50) = 4.5 mg/kg i.p. when administered 30 min beforehand) in DBA/2 mice. The dose required to give a full anticonvulsant effect did not produce a deficit in the Rotarod test. NMDA-induced seizures were also inhibited by Ro 63-1908 with an ED(50) of 2.31 mg/kg i.v. when administered 15 min before testing. Ro 63-1908 gave a dose-related neuroprotective effect against cortical damage in a model of permanent focal ischemia. Maximum protection of 39% was seen at a plasma concentration of 450 ng/ml. There were, however, no adverse cardiovascular or CNS side-effects seen at this dosing level.  相似文献   

9.
There is a substantial body of evidence indicating that beta-amyloid peptides (Abeta) are critical factors in the onset and development of Alzheimer's disease (AD). One strategy for combating AD is to reduce or eliminate the production of Abeta through inhibition of the gamma-secretase enzyme, which cleaves Abeta from the amyloid precursor protein (APP). We demonstrate here that chronic treatment for 3 months with 3 mg/kg of the potent, orally bioavailable and brain-penetrant gamma-secretase inhibitor N-[cis-4-[(4-chlorophenyl)-sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) attenuates the appearance of amyloid plaques in the Tg2576 mouse. These reductions in plaques were also accompanied by a decrease in the level of reactive gliosis. The morphometric and histological measures agreed with biochemical analysis of Abeta(40) and Abeta(42) in the cortex. Interestingly, the volume of the plaques across treatment groups did not change, indicating that reducing Abeta levels does not significantly alter deposit growth once initiated. Furthermore, we demonstrate that these beneficial effects can be achieved without causing histopathological changes in the ileum, spleen, or thymus as a consequence of blockade of the processing of alternative substrates, such as the Notch family of receptors. This indicates that in vivo a therapeutic window between these substrates seems possible--a key concern in the development of this approach to AD. An understanding of the mechanisms whereby MRK-560 shows differentiation between the APP and Notch proteolytic pathway of gamma-secretase should provide the basis for the next generation of gamma-secretase inhibitors.  相似文献   

10.
We synthesized a novel phosphodiesterase type 4 (PDE4) inhibitor, YM976, that is structurally different from the other PDE4 inhibitors like rolipram. In the present study, the pharmacological profile of YM976 was investigated. YM976 exhibited a strong and competitive inhibition against PDE4 purified from human peripheral leukocytes with an IC(50) of 2.2 nM. IC(50) values of rolipram and RP73401 were 820 and 0.43 nM, respectively. Test compounds had no effects on the other PDE isozymes, PDE1, -2, -3, and -5. YM976 potentiated prostaglandin E(2)-induced cAMP accumulation in a human mononuclear cell line, U937, and inhibited tumor necrosis factor-alpha production from human peripheral blood mononuclear cells stimulated by lipopolysaccharide. Anti-inflammatory activities of PDE4 inhibitors were compared in rat carrageenan-induced pleurisy models. YM976, rolipram, and RP73401 inhibited the cell infiltration into the pleural cavity with oral ED(30) values of 9.1, 10, and 7.4 mg/kg, respectively. YM976 produced no emesis up to 10 mg/kg, whereas rolipram and RP73401 induced emesis at oral doses of 3 mg/kg. To evidence the dissociation of anti-inflammatory activity from emesis, the anti-inflammatory effect of YM976 was examined in ferrets. YM976 dose dependently reduced carrageenan-induced leukocyte infiltration at the doses of 1, 3, and 10 mg/kg, p.o. On the other hand, rolipram failed to show obvious inhibition at doses that do not induce emesis. In conclusion, YM976 is a novel and orally active PDE4 inhibitor and possesses a good separation of emetogenicity from anti-inflammatory activity.  相似文献   

11.
Y-700 (1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid) is a newly synthesized inhibitor of xanthine oxidoreductase (XOR). Steady-state kinetics with the bovine milk enzyme indicated a mixed type inhibition with K(i) and K(i) ' values of 0.6 and 3.2 nM, respectively. Titration experiments showed that Y-700 bound tightly both to the active sulfo-form and to the inactive desulfo-form of the enzyme with K(d) values of 0.9 and 2.8 nM, respectively. X-ray crystallographic analysis of the enzyme-inhibitor complex revealed that Y-700 closely interacts with the channel leading to the molybdenum-pterin active site but does not directly coordinate to the molybdenum ion. In oxonate-treated rats, orally administered Y-700 (1-10 mg/kg) dose dependently lowered plasma urate levels. At a dose of 10 mg/kg, the hypouricemic action of Y-700 was more potent and of longer duration than that of 4-hydroxypyrazolo(3,4-d)pyrimidine, whereas its action was approximately equivalent to that of 2-(3-cyano-4-isobutoxyphenyl)-4-methyl-5-thiazolecarboxylic acid, a nonpurine inhibitor of XOR. In normal rats, orally administered Y-700 (0.3-3 mg/kg) dose dependently reduced the urinary excretion of urate and allantoin, accompanied by an increase in the excretion of hypoxanthine and xanthine. Y-700 (1 mg/kg) was absorbed rapidly by the oral route with high bioavailability (84.1%). Y-700 was hardly excreted via the kidneys but was mainly cleared via the liver. These results suggest that Y-700 will be a promising candidate for the treatment of hyperuricemia and other diseases in which XOR may be involved.  相似文献   

12.
The massive activation of poly(ADP-ribose) polymerase-1 (PARP-1) by DNA-damaging stimuli, such as exposure to reactive oxygen species (ROS), can lead to cell injury via severe, irreversible depletion of the NAD and ATP pool, and PARP-1 inhibitors have been expected to rescue neurons from degeneration in a number of disease models. We have recently identified 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4(3H)-quinazolinone (FR255595) as a novel and potent PARP-1 inhibitor through structure-based drug design and high-throughput screening. This compound potently inhibited PARP activity with an IC(50) value of 11 nM and was orally active and highly brain penetrable. Here, we show that prevention of PARP activation by FR255595 protects against both ROS-induced cells injury in vitro and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal dopaminergic damage in an in vivo Parkinson's disease (PD) model. In cell death models in vitro, exposure of hydrogen peroxide induced cell death with PARP overactivation in PC12 cells and SH-SY5Y cells, and pre- and post-treatment with FR255595 (10(-9)-10(-5) M) significantly reduced PARP activation and cell death. In mouse MPTP model, MPTP (20 mg/kg i.p.) intoxication lead to PARP activation and cell damage in the nigrostriatal dopaminergic pathway, which was significantly ameliorated by oral administration of FR255595 (10-32 mg/kg), both in the substantia nigra and in the striatum via marked reduction of PARP activation, even with delayed treatment. These findings clearly indicate that the novel PARP-1 inhibitor FR255595 exerts neuroprotective effect through its potent PARP-1 inhibitory actions in PD model, suggesting that the drug could be an attractive candidate for several neurodegenerative disorders, including PD.  相似文献   

13.
ATP-sensitive potassium (K(ATP)) channel openers (KCOs) have been shown to inhibit spontaneous myogenic contractile activity of the urinary bladder, a mechanism hypothesized to underlie detrusor instability and symptoms of overactive bladder. However, the therapeutic utility of KCOs has been limited by a lack of differentiation of bladder versus vascular effects. In this study, we evaluated the in vivo potency and bladder selectivity of (-)-(9S)-9-(3-bromo-4-fluorophenyl)-2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a novel dihydropyridine KCO, in a pig model of detrusor instability secondary to partial bladder outlet obstruction. For comparison, we profiled two KCOs, ((R)-4-[3,4-dioxo-2-(1,2,2-trimethyl-propylamino)-cyclobut-1-enylamino]-3-ethyl-benzonitrile (WAY-133537) and (S)-N-(4-benzoylphenyl)-3,3,3-trifluro-2-hydroxy-2-methyl-propionamide (ZD6169), reported previously to have improved bladder selectivity in vivo and a calcium channel blocker, nifedipine. Effective doses of A-278637, WAY-133537, ZD6169, and nifedipine to inhibit unstable contraction area under the curve by 35% and to decrease mean arterial pressure by 10% were 4.2 and 12, 109 and 51, 661 and 371, and 136 and 30 nmol/kg i.v., yielding corresponding bladder selectivity ratios of 3, 0.5, 0.6, and 0.2. Therefore, A-278637 was approximately 5- to 6-fold more bladder-selective than the other KCOs and 15-fold more selective than nifedipine, the latter approximately 4.5-fold vascular-selective. The potency of KCOs to inhibit unstable contraction in vivo was accurately predicted by their potency to inhibit spontaneous contractile activity of pig detrusor strips in vitro. These results indicate that A-278637, with enhanced potency and bladder selectivity compared with the other compounds evaluated, could serve as a useful tool in the investigation of smooth muscle K(ATP) channel openers as novel therapeutic agents for the treatment of overactive bladder.  相似文献   

14.
Alterations in the myogenic activity of the bladder smooth muscle are thought to serve as a basis for the involuntary detrusor contractions associated with the overactive bladder. Activation of ATP-sensitive K(+) (K(ATP)) channels has been recognized as a potentially viable mechanism to modulate membrane excitability in bladder smooth muscle. In this study, we describe the preclinical pharmacology of (-)-(9S)-9-(3-bromo-4-fluorophenyl)-2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a novel 1,4-dihydropyridine K(ATP) channel opener (KCO) that demonstrates enhanced bladder selectivity for the suppression of unstable bladder contractions in vivo relative to other reference KCOs. A-278637 activated K(ATP) channels in bladder smooth muscle cells in a glyburide (glibenclamide)-sensitive manner as assessed by fluorescence membrane potential assays using bis-(1,3-dibutylbarbituric acid)trimethine oxonol (EC(50) = 102 nM) and by whole cell patch clamp. Spontaneous (myogenic) phasic activity of pig bladder strips was suppressed (IC(50) = 23 nM) in a glyburide-sensitive manner by A-278637. A-278637 also inhibited carbachol- and electrical field-stimulated contractions of bladder strips, although the respective potencies were 8- and 13-fold lower compared with inhibition of spontaneous phasic activity. As shown in the accompanying article [Brune ME, Fey TA, Brioni JD, Sullivan JP, Williams M, Carroll WA, Coghlan MJ, and Gopalakrishnan M (2002) J Pharmacol Exp Ther 303:387-394], A-278637 suppressed myogenic contractions in vivo in a model of bladder instability with superior selectivity compared with other KCOs, WAY-133537 [(R)-4-[3,4-dioxo-2-(1,2,2-trimethyl-propylamino)cyclobut-1-enylamino]-3-ethyl-benzonitrile] and ZD6169 [(S)-N-(4-benzoylphenyl)3,3,3-trifluro-2hydroxy-2-methyl-priopionamide]. A-278637 did not interact with other ion channels, including L-type calcium channels or other neurotransmitter receptor systems. The pharmacological profile of A-278637 represents an attractive basis for further investigations of selective K(ATP) channel openers for the treatment of overactive bladder via myogenic etiology.  相似文献   

15.
The potency, efficacy, and pharmacokinetic properties of IDN-6556 (3-[2-[(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid), a first-in-class caspase inhibitor in clinical trials for the treatment of liver diseases, were characterized in vivo in rodent models. In the mouse alpha-Fas model of liver injury, i.p. administration of IDN-6556 resulted in marked reduction of alanine aminotransferase (ALT), apoptosis, and caspase activities at a dose of 3 mg/kg. At this dose, IDN-6556 was also effective when given up to 2 h before alpha-Fas and as late as 4 h after alpha-Fas administration. In both the alpha-Fas and d-galactosamine/lipopolysaccharide (D-Gln/LPS) model, ED(50) values in the sub-milligram per kilogram range were established after a number of routes of administration (i.p., i.v., i.m., or p.o.), ranging from 0.04 to 0.38 mg/kg. Efficacy was also demonstrated in the rat D-Gln/LPS model with 67 and 72% reductions in ALT activities after i.p. and p.o. treatment with IDN-6556 (10 mg/kg), respectively. Pharmacokinetic analysis in the rat demonstrated rapid clearance after i.v., i.p., and s.c. administration with terminal t(1/2) ranging from 46 to 51 min. Low absolute bioavailability after p.o. administration was seen (2.7-4%), but portal drug concentrations after oral administration were 3-fold higher than systemic concentrations with a 3.7-fold increase in the terminal t(1/2), indicating a significant first-pass effect. Liver concentrations remained constant after oral administration for at least a 4-h period, reaching a C(max) of 2558 ng/g liver at 120 min. Last, 51 +/- 20 and 4.9 +/- 3.4% of IDN-6556 was excreted intact in bile after i.v. and p.o. administration, respectively. This evaluation indicates that IDN-6556 has marked efficacy in models of liver disease after oral administration and thus, is an excellent candidate for the treatment of liver diseases characterized by excessive apoptosis.  相似文献   

16.
To develop new anticancer agents that are effective for treatment of chemoresistant tumors, we screened a chemical library for compounds that can effectively kill both paclitaxel-sensitive lung cancer cell H460 and P-glycoprotein-overexpressing paclitaxel-resistant cell H460/TaxR. A synthetic compound, MMPT (5-[(4-methylphenyl)methylene]-2-(phenylamino)-4(5H)-thiazolone), was identified to induce cytotoxic effects in both H460 and H460/TaxR cells but not in normal fibroblasts. MMPT effectively inhibited the growth of several human lung cancer cell lines in a dose-dependent manner, with 50% inhibitory concentrations ranging from 4.9 to 8.0 microM. The inhibitory effect on cancer cells is independent of the status of p53 and P-glycoprotein. Moreover, MMPT had no obvious toxic effects on normal human fibroblasts and mesenchymal stem cells at the 50% inhibitory concentration for lung cancer cell lines. Treating lung cancer cells with MMPT-induced apoptosis with caspase-3, -8, -9, and poly(ADP-ribose) polymerase cleavage and cytochrome c release from mitochondria. MMPT-induced apoptosis was abrogated when c-Jun N-terminal kinase (JNK) activation was blocked with a specific JNK inhibitor, SP600125. Furthermore, in vivo administration of MMPT suppressed human H460 xenograft tumor growth in nude mice. Our results suggest that MMPT may induce tumor-selective cell killing in both P-glycoprotein-negative and -positive cancer cells and could be a new anticancer agent for treatment of refractory tumors.  相似文献   

17.
P-selectin plays a significant and well documented role in vascular disease by mediating leukocyte and platelet rolling and adhesion. This study characterizes the in vitro activity, pharmacokinetic properties, and the anti-inflammatory and antithrombotic efficacy of the orally active P-selectin small-molecule antagonist PSI-697 [2-(4-chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[h] quinoline-4-carboxylic acid; molecular mass, 367.83]. Biacore and cell-based assays were used to demonstrate the ability of PSI-697 to dose dependently inhibit the binding of human P-selectin to human P-selectin glycoprotein ligand-1, inhibiting 50% of binding at 50 to 125 microM. The pharmacokinetics of PSI-697 in rats were characterized by low clearance, short half-life, low volume of distribution, and moderate apparent oral bioavailability. A surgical inflammation model, using exteriorized rat cremaster venules, demonstrated that PSI-697 (50 mg/kg p.o.) significantly reduced the number of rolling leukocytes by 39% (P < 0.05) versus vehicle control. In a rat venous thrombosis model, PSI-697 (100 mg/kg p.o.) reduced thrombus weight by 18% (P < 0.05) relative to vehicle, without prolonging bleeding time. Finally, in a rat carotid injury model, PSI-697 (30 or 15 mg/kg p.o.) administered 1 h before arterial injury and once daily thereafter for 13 days resulted in dose-dependent decreases in intima/media ratios of 40.2% (P = 0.025) and 25.7% (P = 0.002) compared with vehicle controls. These data demonstrate the activity of PSI-697 in vitro and after oral administration in animal models of both arterial and venous injury and support the clinical evaluation of this novel antagonist of P-selectin in atherothrombotic and venous thrombotic indications.  相似文献   

18.
Therapeutic strategies focused on kinase inhibition rely heavily on surrogate measures of kinase inhibition obtained from in vitro assay systems. There is a need to develop methodology that will facilitate measurement of kinase inhibitor activity or specificity in tissue samples from whole animals treated with these compounds. Many of the current methods are limited by the use of antibodies, many of which do not cross-react between several species. The proteomics approach described herein has the potential to reveal novel tissue substrates, potential new pathway interconnections, and inhibitor specificity by monitoring differences in protein phosphorylation. We used the protein kinase inhibitor H89 (N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide) as a tool to determine whether differential profiling of tissue phosphoproteins can be used to detect treatment-related effects of a protein kinase A (PKA) inhibitor in vivo. With a combination of phosphoprotein column enrichment, high-throughput two-dimensional gel electrophoresis, differential gel staining with Pro-Q Diamond/SYPRO Ruby, statistical analysis, and matrix-assisted laser desorption ionization/time of flight mass spectrometry analysis, we were able to show clear differences between the phosphoprotein profiles of rat liver protein extract from control and treated animals. Moreover, several proteins that show a potential change in phosphorylation were previously identified as PKA substrates or have putative PKA phosphorylation sites. The data presented support the use of differential proteomic methods to measure effects of kinase inhibitor treatment on protein phosphorylation in vivo.  相似文献   

19.
Reactive oxygen species (ROS) play a vital role in brain damage after cerebral ischemia-reperfusion injury, and ROS scavengers have been shown to exert neuroprotective effects against ischemic brain injury. We have recently identified 8-(4-fluorophenyl)-2-((2E)-3-phenyl-2-propenoyl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (FR210575) as a novel, powerful free-radical scavenger. In the present study, the neuroprotective efficacy of FR210575 was evaluated in two neuronal death models in vitro as well as rat focal cerebral ischemia models in vivo. In the first model, primary cortical cultures were exposed to a high oxygen atmosphere (50% O2) for 48 h to induce cell death with apoptotic features. Treatment with FR210575 (10-7-10-5 M) significantly inhibited neuronal death. The second model used a growth-factor withdrawal paradigm. Withdrawal of TIP (transferrin, insulin, putrescine and progesterone)-supplemented medium induced apoptotic cell death after 2 days, but treatment with FR210575 exhibited dramatic protection against neuronal death. In two models of cerebral ischemia [photothrombotic occlusion of middle cerebral artery (MCA) for transient model and by permanent MCA occlusion for permanent model], rats received 3-h intravenous infusion (1-10 mg/kg/3 h) of FR210575, with brain damage determined 24 h later. FR210575 (3.2 mg/kg/3 h) significantly reduced the volume of focal damage in the cortex by 36% in the transient model and also reduced the size of ischemic brain damage in the permanent model. These findings indicate that the powerful radical scavenger FR210575 has potent neuroprotective activity and that FR210575 could be an attractive candidate for the treatment of stroke or other neurodegenerative disorders.  相似文献   

20.
Leukotriene (LT) A(4) hydrolase is a dual function enzyme that is essential for the conversion of LTA(4) to LTB(4) and also possesses an aminopeptidase activity. SC-57461A (3-[methyl[3-[4-phenylmethyl)phenoxy]propyl]amino]propanoic acid HCl) is a potent inhibitor of human recombinant LTA(4) hydrolase (epoxide hydrolase and aminopeptidase activities, K(i) values = 23 and 27 nM, respectively) as well as calcium ionophore-induced LTB(4) production in human whole blood (IC(50) = 49 nM). In the present study, we investigated its action in several animal models. Oral activity was evident from the ability of the compound to inhibit mouse ex vivo calcium ionophore-stimulated blood LTB(4) production with ED(50) values at 1.0 and 3.0 h of 0.2 and 0.8 mg/kg, respectively. A single oral dose of 10 mg/kg SC-57461A blocked mouse ex vivo LTB(4) production 67% at 18 h and 44% at 24 h, suggesting a long pharmacodynamic half-life. In a rat model of ionophore-induced peritoneal eicosanoid production, SC-57461 inhibited LTB(4) production in a dose-dependent manner (ED(50) = 0.3-1 mg/kg) without affecting LTC(4) or 6-keto-prostaglandin F(1alpha) production. Oral pretreatment with SC-57461 in a rat reversed passive dermal Arthus model blocked LTB(4) production with an ED(90) value of 3 to 10 mg/kg, demonstrating good penetration of drug into skin. Plasma level of intact SC-57461 (3 h after oral gavage dosing with 3 mg/kg) was 0.4 microg/ml, which corresponds to >80% inhibition of dermal LTB(4) production. Oral or topical pretreatment with SC-57461A 1 h before challenge with arachidonic acid blocked ear edema in the mouse. SC-57461A is a competitive, selective, and orally active inhibitor of LTA(4) hydrolase in vivo, making it useful to explore the contribution of LTB(4) to a number of inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号