首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accentuated right ventricular (RV) gradients in action potential duration (APD) have been implicated in the arrhythmogenicity observed in Brugada syndrome in studies assuming that ventricular effective refractory periods (VERPs) vary in concert with APDs. The present experiments use a genetically modified mouse model to explore spatial heterogeneities in VERP that in turn might affect conduction velocity, thereby causing arrhythmias. Activation latencies, APDs and VERPs recorded during programmed S1S2 protocols were compared in RV and left ventricular (LV) epicardia and endocardia of Langendorff-perfused wild-type (WT) and Scn5a (+/-) hearts. Scn5a (+/-) and WT hearts showed similar patterns of shorter VERPs in RV than LV epicardia, and in epicardia than endocardia. However, Scn5a (+/-) hearts showed longer VERPs, despite shorter APD(90)s, than WT in all regions examined. The pro- and anti-arrhythmic agents flecainide and quinidine increased regional VERPs despite respectively decreasing and increasing the corresponding APD(90)s particularly in Scn5a (+/-) RV epicardia. In contrast, Scn5a (+/-) hearts showed greater VERP gradients between neighbouring regions, particularly RV transmural gradients, than WT (9.1 ± 1.1 vs. 5.7 ± 0.5 ms, p < 0.05, n = 12). Flecainide increased (to 21 ± 0.9 ms, p < 0.05, n = 6) but quinidine decreased (to 4.5 ± 0.5 ms, p < 0.05, n = 6) these gradients, particularly across the Scn5a (+/-) RV. Finally, Scn5a (+/-) hearts showed greater conduction slowing than WT following S2 stimuli, particularly with flecainide administration. Rather than arrhythmogenesis resulting from increased transmural repolarization gradients in an early, phase 2, reentrant excitation mechanism, the present findings implicate RV VERP gradients in potential reentrant mechanisms involving impulse conduction slowed by partial refractoriness.  相似文献   

2.
Aim: We explored the anti‐arrhythmic efficacy of K+ channel activation in the hypokalaemic murine heart using NS1643 and nicorandil, compounds which augment IKr and IKATP respectively. Methods: Left ventricular epicardial and endocardial monophasic action potentials were compared in normokalaemic and hypokalaemic preparations in the absence and presence of NS1643 (30 μm ) and nicorandil (20 μm ). Results: Spontaneously beating hypokalaemic hearts (3 mm K+) all elicited early afterdepolarizations (EADs) and episodes of ventricular tachycardia (VT). Perfusion with NS1643 and nicorandil suppressed EADs and VT in 7 of 13 and five of six hypokalaemic hearts. Provoked arrhythmia studies using programmed electrical stimulation induced VT in all hypokalaemic hearts, but failed to do so in 7 of 13 and five of six hearts perfused with NS1643 and nicorandil respectively. These anti‐arrhythmic effects were accompanied by reductions in action potential duration at 90% repolarization (APD90) and changes in the transmural gradient of repolarization, reflected in ΔAPD90. NS1643 and nicorandil reduced epicardial APD90 from 68.3 ± 1.1 to 56.5 ± 4.1 and 51.5 ± 1.5 ms, respectively, but preserved endocardial APD90 in hypokalaemic hearts. NS1643 and nicorandil thus restored ΔAPD90 from ?9.6 ± 4.3 ms under baseline hypokalaemic conditions to 3.9 ± 4.1 and 9.9 ± 2.1 ms, respectively, close to normokalaemic values. Conclusion: These findings demonstrate, for the first time, the anti‐arrhythmic efficacy of K+ channel activation in the setting of hypokalaemia. NS1643 and nicorandil are anti‐arrhythmic through the suppression of EADs, reductions in APD90 and restorations of ΔAPD90.  相似文献   

3.
Aim: Prolongation of ventricular repolarization is characteristic of myocardial cooling. In the present study, we investigated whether this prolongation is uniform or not throughout ventricular epicardium and how these hypothermia‐induced changes express in the body surface potential distribution. Methods: Epicardial and body surface potential mapping from 64 unipolar leads was carried out in 18 anaesthetized adult rabbits. Mild hypothermia documented by lowering the mediastinal and rectal temperature from 38 to 32 °C was elicited by perfusion of the mediastinum with cooled saline. Activation times, repolarization times and activation–recovery intervals were determined in each epicardial lead. Results: Baseline activation–recovery intervals distributed non‐uniformly on the ventricular epicardium, increasing progressively from the apex to the base and from the left ventricular (LV) sites to the right ventricular (RV) sites (P < 0.05), governing the repolarization sequence of ventricular epicardium. Heart cooling from 38 to 32 °C produced the heterogeneous prolongation of activation–recovery intervals which was more pronounced at the apex than at the base, and in the LV areas compared to the RV areas (P < 0.05). These nonuniform changes in local repolarization durations resulted in the development of base‐to‐apex repolarization sequence and inversion of the body surface potential distribution during the T wave. Conclusion: Thus, under cooling the rabbit heart from 38 to 32 °C, the nonuniform prolongation of local repolarization durations resulted in the reversal of ventricular epicardial repolarization sequence which, in turn, was responsible for the inversion in the body surface potential distribution during the T wave.  相似文献   

4.
This study assessed in vivo temporal and spatial electrophysiological properties of murine hearts and the effect of manipulation of transmural action potential durations (APDs) on T wave morphology. Monophasic action potentials (MAPs) were acquired from multiple left ventricular sites. All MAPs exhibited a plateau phase, with a spike and dome appearance being present in epicardial recordings. Activation occurred from endocardial apex to epicardial apex and apex to base while repolarization occurred from base (shortest 90 η0 level of repolarization (MAP90), 95.4 ± 8.9 ms) to apex and epicardium to endocardium (longest MAP90, 110.77 ± 10.6 ms). The peak of phase 0 of the epicardial base MAP correlated with the return to baseline of the initial and usually dominant waveform of the QRS and the onset of the second usually smaller wave, which clearly occurred in early repolarization, thus establishing where depolarization ended and repolarization began on the murine ECG. This second waveform was similar to the J wave seen in larger animals. Despite temporal and spatial electrophysiological similarities, a T wave is frequently not seen on a murine ECG. There are several determinants of T wave morphology, including transmural activation time, slope of phase 3 repolarization and differences in epicardial, endocardial and M cell APDs. Experimental manipulation of murine transmural gradients by shortening epicardial MAP90 to 84% of endocardial MAP90 the epicardial/endocardial ratio in larger mammals when a positive T wave is present, resulted in a positive murine T wave. Thus, manipulation of the transmural gradients such that they are similar to larger mammals can result in T waves with similar morphology.  相似文献   

5.
Transmural electrical dispersion determines the repolarization sequence across the ventricular wall, and plays an important role in the development of arrhythmias under pathological conditions. While it is clear that the transmural gradient of the transient outward current ( I to) underlies the dramatic difference in phase 1 repolarization across the ventricle, its contribution to the transmural action potential duration (APD) dispersion is not clear. We investigated this problem using the dynamic clamp technique in canine ventricular myocytes. The dynamic clamp allows quantitative 'insertion' of simulated conductances in real, biological cells, bridging pure computer modelling and experimental electrophysiology. 'Insertion' of an epicardial level of I to in endocardial cells produced a prominent phase 1 repolarization and a 'spike-and-dome' action potential morphology, but did not significantly affect the APD. Increasingly larger I to densities prolonged, and then dramatically shortened the endocardial APD. We also used the dynamic clamp to subtract, or 'block' the native I to in epicardial cells. Such 'blockade' eliminated the epicardial action potential notch, but had no significant effect on the APD. We conclude that I to, while being a key regulator of phase 1 repolarization, does not significantly affect the APD of canine ventricular myocytes, and that the I to gradient is not a significant contributor to the transmural APD dispersion in the canine ventricle. By allowing computer simulation on a biological background, the dynamic clamp is a new and effective tool to study the ionic basis of the electrical properties of cardiac cells.  相似文献   

6.
Aims: We resolved roles for early afterdepolarizations (EADs) and transmural gradients of repolarization in arrhythmogenesis in Langendorff‐perfused hypokalaemic murine hearts paced from the right ventricular epicardium. Methods: Left ventricular epicardial and endocardial monophasic action potentials (MAPs) and arrhythmogenic tendency were compared in the presence and absence of the L‐type Ca2+ channel blocker nifedipine (10 nm –1 μm ) and the calmodulin kinase type II inhibitor KN‐93 (2 μm ). Results: All the hypokalaemic hearts studied showed prolonged epicardial and endocardial MAPs, decreased epicardial‐endocardial APD90 difference, EADs, triggered beats and ventricular tachycardia (VT) (n = 6). In all spontaneously beating hearts, 100 (but not 10) nm nifedipine reduced both the incidence of EADs and triggered beats from 66.9 ± 15.7% to 28.3 ± 8.7% and episodes of VT from 10.8 ± 6.3% to 1.2 ± 0.7% of MAPs (n = 6 hearts, P < 0.05); 1 μm nifedipine abolished all these phenomena (n = 6). In contrast programmed electrical stimulation (PES) still triggered VT in six of six hearts with 0, 10 and 100 nm but not 1 μm nifedipine. 1 μm nifedipine selectively reduced epicardial (from 66.1 ± 3.4 to 46.2 ± 2.5 ms) but not endocardial APD90, thereby restoring ΔAPD90 from ?5.9 ± 2.5 to 15.5 ± 3.2 ms, close to normokalaemic values. KN‐93 similarly reduced EADs, triggered beats and VT in spontaneously beating hearts to 29.6 ± 8.9% and 1.7 ± 1.1% respectively (n = 6) yet permitted PES‐induced VT (n = 6), in the presence of a persistently negative ΔAPD90. Conclusions: These findings empirically implicate both EADs and triggered beats alongside arrhythmogenic substrate of ΔAPD90 in VT pathogenesis at the whole heart level.  相似文献   

7.
The clinically established proarrhythmic effect of bradycardia and antiarrhythmic effect of lidocaine (10 μM) were reproduced in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced over a range (80–180 ms) of baseline cycle lengths (BCLs). Action potential durations (at 90% repolarization, APD90s), transmural conduction times and ventricular effective refractory periods (VERPs) were then determined from monophasic action potential records obtained during a programmed electrical stimulation procedure in which extrasystolic stimuli were interposed following regular stimuli at successively decreasing coupling intervals. A novel graphical analysis of epicardial and endocardial, local and transmural relationships between APD90, corrected for transmural conduction time where appropriate, and VERP yielded predictions in precise agreement with the arrhythmogenic findings obtained over the entire range of BCLs studied. Thus, in normokalaemic (5.2 mM K+) hearts a statistical analysis confirmed that all four relationships were described by straight lines of gradients not significantly (P > 0.05) different from unity that passed through the origin and thus subtended constant critical angles, θ with the abscissa (45.8° ± 0.9°, 46.6° ± 0.5°, 47.6° ± 0.5° and 44.9° ± 0.8°, respectively). Hypokalaemia shifted all points to the left of these reference lines, significantly (P < 0.05) increasing θ at BCLs of 80–120 ms where arrhythmic activity was not observed (∼63°, ∼54°, ∼55° and ∼58°, respectively) and further significantly (P < 0.05) increasing θ at BCLs of 140–180 ms where arrhythmic activity was observed (∼68°, ∼60°, ∼61° and ∼65°, respectively). In contrast, the antiarrhythmic effect of lidocaine treatment was accompanied by a significant (P < 0.05) disruption of this linear relationship and decreases in θ in both normokalaemic (∼40°, ∼33°, ∼39° and ∼41°, respectively) and hypokalaemic (∼40°, ∼44°, ∼50° and ∼48°, respectively) hearts. This extended a previous approach that had correlated alterations in transmural repolarization gradients with arrhythmogenicity in murine models of the congenital long QT syndrome type 3 and hypokalaemia at a single BCL. Thus, the analysis in terms of APD90 and VERP provided a more sensitive indication of the effect of lidocaine than one only considering transmural repolarization gradients and may be particularly applicable in physiological and pharmacological situations in which these parameters diverge.  相似文献   

8.
Aim: To perform an empirical, pharmacological, separation of early afterdepolarizations (EADs) and transmural gradients of repolarization in arrhythmogenesis in a genetically modified mouse heart modelling human long QT syndrome (LQT) 3. Methods: Left ventricular endocardial and epicardial monophasic action potentials and arrhythmogenic tendency were compared in isolated wild type (WT) and Scn5a+/Δ hearts perfused with 0.1 and 1 μm propranolol and paced from the right ventricular epicardium. Results: All spontaneously beating bradycardic Scn5a+/Δ hearts displayed EADs, triggered beats and ventricular tachycardia (VT; n = 7), events never seen in WT hearts (n = 5). Perfusion with 0.1 and 1 μm propranolol suppressed all EADs, triggered beats and episodes of VT. In contrast, triggering of VT persisted following programmed electrical stimulation in 6 of 12 (50%), one of eight (12.5%), but six of eight (75%) Scn5a+/Δ hearts perfused with 0, 0.1 and 1 μm propranolol respectively in parallel with corresponding alterations in repolarization gradients, reflected in action potential duration (ΔAPD90) values. Thus 0.1 μm propranolol reduced epicardial but not endocardial APD90 from 54.7 ± 1.6 to 44.0 ± 2.0 ms, restoring ΔAPD90 from ?3.8 ± 1.6 to 3.5 ± 2.5 ms (all n = 5), close to WT values. However, 1 μm propranolol increased epicardial APD90 to 72.5 ± 1.2 ms and decreased endocardial APD90 from 50.9 ± 1.0 to 24.5 ± 0.3 ms, increasing ΔAPD90 to ?48.0 ± 1.2 ms. Conclusion: These findings empirically implicate EADs in potentially initiating spontaneous arrhythmogenic phenomena and transmural repolarization gradients in the re‐entrant substrate that would sustain such activity when provoked by extrasystolic activity in murine hearts modelling human LQT3 syndrome.  相似文献   

9.
Aim: Hypokalaemia is associated with a lethal form of ventricular tachycardia (VT), torsade de pointes, through pathophysiological mechanisms requiring clarification. Methods: Left ventricular endocardial and epicardial monophasic action potentials were compared in isolated mouse hearts paced from the right ventricular epicardium perfused with hypokalaemic (3 and 4 mm [K+]o) solutions. Corresponding K+ currents were compared in whole‐cell patch‐clamped epicardial and endocardial myocytes. Results: Hypokalaemia prolonged epicardial action potential durations (APD) from mean APD90s of 37.2 ± 1.7 ms (n = 7) to 58.4 ± 4.1 ms (n =7) and 66.7 ± 2.1 ms (n = 11) at 5.2, 4 and 3 mm [K+]o respectively. Endocardial APD90s correspondingly increased from 51.6 ± 1.9 ms (n = 7) to 62.8 ± 2.8 ms (n = 7) and 62.9 ± 5.9 ms (n = 11) giving reductions in endocardial–epicardial differences, ΔAPD90, from 14.4 ± 2.6 to 4.4 ± 5.0 and ?3.4 ± 6.0 ms respectively. Early afterdepolarizations (EADs) occurred in epicardia in three of seven spontaneously beating hearts at 4 mm [K+]o with triggered beats followed by episodes of non‐sustained VT in nine of 11 preparations at 3 mm . Programmed electrical stimulation never induced arrhythmic events in preparations perfused with normokalemic solutions yet induced VT in two of seven and nine of 11 preparations at 4 and 3 mm [K+]o respectively. Early outward K+ current correspondingly fell from 73.46 ± 8.45 to 61.16±6.14 pA/pF in isolated epicardial but not endocardial myocytes (n = 9) (3 mm [K+]o). Conclusions: Hypokalaemic mouse hearts recapitulate the clinical arrhythmogenic phenotype, demonstrating EADs and triggered beats that might initiate VT on the one hand and reduced transmural dispersion of repolarization reflected in ΔAPD90 suggesting arrhythmogenic substrate on the other.  相似文献   

10.
Aims: To identify the causes for the inhomogeneity of ventricular repolarization and increased QT dispersion in hypothyroid mice. Methods: We studied the effects of 5‐propyl‐2‐thiouracil‐induced hypothyroidism on the ECG, action potential (AP) and current density of the repolarizing potassium currents Ito,fast, Ito,slow, IK,slow and Iss in enzymatically isolated myocytes from three different regions of mouse heart: right ventricle (RV), epicardium of the left ventricle (Epi‐LV) and interventricular septum. K+ currents were recorded with the patch‐clamp technique. Membranes from isolated ventricular myocytes were extracted by centrifugation. Kv4.2, Kv4.3, KChIP and Na/Ca exchanger proteins were visualized by Western blot. Results: The frequency or conduction velocity was not changed by hypothyroidism, but QTc was prolonged. Neither resting membrane potential nor AP amplitude was modified. The action potential duration (APD)90 increased in the RV and Epi‐LV, but not in the septum. Hypothyroid status has no effect either on Ito,slow, Ik,slow or Iss in any of the regions analysed. However, Ito,fast was significantly reduced in the Epi‐LV and in the RV, whereas it was not altered in cells from the septum. Western blot analysis reveals a reduction in Kv4.2 and Kv4.3 protein levels in both the Epi‐LV and the RV and an increase in Na/Ca exchanger. Conclusion: From these results we suggest that the regional differences in APD lengthening, and thus in repolarization inhomogeneity, induced by experimental hypothyroidism are at least partially explained by the uneven decrease in Ito,fast and the differences in the relative contribution of the depolarization‐activated outward currents to the repolarization process.  相似文献   

11.
Aim: Mechanically induced early afterdepolarization (EAD) is morphologically similar but different in the mechanisms with drug‐induced EAD, which lead to arrhythmia. Pacing suppresses the drug‐induced EAD and arrhythmia, however the effect of pacing on mechanically induced EAD and arrhythmia is not clear. This study addressed this issue in right ventricle (RV) of anaesthetized lambs. Methods: Six lambs were anaesthetized, and their hearts exposed. Nine monophasic action potential (MAP) electrodes were placed on RV apex, outflow and inflow regions, and recorded before, during, and after a 10 s occlusion of pulmonary artery at a number of pacing rates. Results: Pacing significantly reduced the baseline MAP duration at 90% repolarization (MAPD90), decreased the reduction of MAPD at early repolarization at the peak of occlusion. Nonetheless, the percentage of reduction was not significantly different among them. Pacing was able to reduce the frequencies, size of mechanically induced EADs. MAPD90 at the peak of occlusion was all shortened during pacing rather than some lengthened at intrinsic rate. Therefore, the dispersion of MAPD90 at the peak of occlusion reduced from 86 ± 6 ms at intrinsic rate to 42 ± 4 ms at 120 beats min−1 , 38 ± 3 ms at 150 beats min−1 and 26 ± 3 ms at 170 beats min−1. Ultimately, pacing reduced/suppressed mechanically induced premature ventricular beats. These alterations were inversely related to heart rates. Conclusion: Pacing reduces/suppresses both stretch‐induced EADs and arrhythmia. These modulations are remarkably similar to those on other EADs by the pacing.  相似文献   

12.
QT离散度与心自主神经的关系   总被引:1,自引:0,他引:1  
QT离散度 (QTdispersion ,QTd)定义为同步记录 1 2导联心电图中测量的最大QT间期 (QTmax)与最小QT间期 (QTmin)之差[1 ] ,反映了心室肌复极不同步性和电不稳定性[2 - 4 ] 。这一概念已得到了心内膜和心外膜单相动作电位与体表心电图的对照研究[4,5] 及动物实验[6] 证实 ,大量临床研究也证明了QTd与心室肌复极不同步性的高度相关[7- 9] 。近年来 ,对于QTd的电生理基础及其本质引起广泛关注 ,人们认识到自主神经系统与心性猝死密切相关 ,交感过度激活可导致致命性心律失常发作 ,而迷走激活却有保护和抗…  相似文献   

13.
The aim of the study was to determine the effect of acute pericardial tamponade on left (LV) and right ventricular (RV) intracavitary and transmural pressure-volume (P-V) relations and to assess the effect of changing blood volume during tamponade on LV and RV volumes. The experiments were done in 11 acutely instrumented anaesthetized dogs in which LV and RV volumes were determined by computed tomography (CT) (n = 5) and LV and RV diameters by sonomicrometry (n = 6). Pressures were measured in the pericardium (balloon transducer), in the aorta and in the ventricles. Incremental pericardial infusion (up to 180 ml) caused a progressive left and upward shift of the LV and the RV intracavitary P-V relationship. This shift was entirely due to increased pericardial pressure (PP). The induction of tamponade caused no change in the LV and RV transmural P-V relationship. During tamponade with ventricular filling pressures above 10-15 mmHg, blood volume expansion caused only minimal increase in LV and RV volumes. In conclusion, pericardial tamponade shifted the LV and the RV intracavitary diastolic P-V relation by increasing PP. However, there was no change in the transmural P-V relationship, indicating unchanged myocardial compliance. Volume loading caused only minimal increase in LV and RV volumes during tamponade.  相似文献   

14.
This study was designed to validate the use of small, transmural, left-ventricular biopsies in the dog for investigations of electrophysiological and proarrhythmic properties of the heart. This technique could facilitate pharmacological in vitro testing in remodelled hearts of both man and animal. Small, transmural, semi-cylindrical, left-ventricular biopsies from dogs with normal sinus rhythm (SR) were characterized electrophysiologically and compared with biopsies from electrically remodelled hearts from dogs with chronic, complete AV-block (CAVB). In at least five biopsy segments recordings were made to determine the action potential duration (APD), the transmural gradient of repolarization, the maximal transmural dispersion (tMmax) and presence of early after-depolarizations (EADs) at different pacing cycle lengths (PCLs) in the absence and presence of a class-III agent, ibutilide (10–6 M). The biopsies showed stable and normal AP characteristics, a conduction velocity of 0.22±0.05 m/s and normal frequency dependence of the APD. The location of the longest APD varied, thus creating transmural repolarization gradients with differing morphology. Ibutilide prolonged the APD, accentuated repolarization gradients and induced EADs. CAVB biopsies had significantly longer APDs, a larger dispersion of repolarization and showed more EADs in the presence of ibutilide than SR biopsies. We conclude that this biopsy technique provides coherent and valid transmural electrophysiological data in dogs under various conditions.  相似文献   

15.
Forward stroke volume fell by 26% (23-30%) (median and 95% confidence interval) when simultaneous atrioventricular (AV) pacing was induced at constant heart rate in 10 anaesthetized open-chest pigs. To assess the relative importance of factors which could cause this reduction in right and left ventricular (RV and LV) output, we compared cardiac dynamics when either ventricular filling or forward stroke volume was equally reduced by caval constriction and simultaneous AV pacing. We estimated the degree of ventricular filling by recording segment lengths (SL) in the free walls of both ventricles. Our analysis revealed that abolished active LV filling by the left atrium reduced forward stroke volume by 11% (8-14%). The remaining fall in output could be attributed to mitral regurgitation. In the right side of the heart the response was different. The drop in RV filling during simultaneous AV pacing accounted for approximately one-half of the fall in forward RV stroke volume. Estimates based on SL recordings demonstrated that forward RV stroke volume fell by 7% (2-25%) because of tricuspidal regurgitation. Pulmonary artery pressure was 4.5 (3.4-5.7) mmHg higher during simultaneous AV pacing than during caval constriction, representing a relative rise in afterload that reduced the RV stroke volume by 6-8%. Thus, reduced ventricular filling during simultaneous AV pacing accounted for approximately one-half of the drop in forward output from both ventricles. Slightly more than one-half of the reduction in forward LV stroke volume could be attributed to mitral regurgitation. In the right side of the heart tricuspidal regurgitation and a relative rise in pulmonary artery pressure each accounted for about one-quarter of the fall in forward RV output.  相似文献   

16.
Experimental studies indicate improved ventricular function after treatment with growth hormone (GH) post-myocardial infarction, but its effect on arrhythmogenesis is unknown. Here, we assessed the medium-term electrophysiologic remodeling after intra-myocardial GH administration in (n?=?33) rats. GH was released from an alginate scaffold, injected around the ischemic myocardium after coronary ligation. Two weeks thereafter, ventricular tachyarrhythmias were induced by programmed electrical stimulation. Monophasic action potentials were recorded from the infarct border, coupled with evaluation of electrical conduction and repolarization from a multi-electrode array. The arrhythmia score was lower in GH-treated rats than in alginate-treated rats or controls. The shape and the duration of the action potential at the infarct border were preserved, and repolarization–dispersion was attenuated after GH; moreover, voltage rise was higher and activation delay was shorter. GH normalized also right ventricular parameters. Intra-myocardial GH preserved electrical conduction and repolarization–dispersion at the infarct border and decreased the incidence of induced tachyarrhythmias in rats post-ligation. The long-term antiarrhythmic potential of GH merits further study.  相似文献   

17.
目的:从复极和不应期两个角度,观察不同部位起搏对心力衰竭犬三层心肌跨室壁复极和不应期离散度的影响及其可能的致心律失常机制。方法:正常犬8只和心力衰竭模型犬5只,模拟临床上充血性心力衰竭患者接受心脏再同步治疗的情况,分别从右心室心内膜、左心室心外膜和双心室发放刺激,在体记录和比较犬三层心肌的单相动作电位时程、不应期及其跨室壁离散度。在心力衰竭犬组,给予维拉帕米进行干预并重复上述实验。结果:心力衰竭犬三层心肌的动作电位时程与不应期均有延长,中层心肌动作电位时程延长最明显 [(279.30±54.81) ms vs (270.03±57.58) ms,P<0.01],跨室壁复极离散显著增大 [(29.80±25.67) ms vs (20.60±12.65) ms,P<0.01],不应期离散有所减小 [(29.21±15.83) ms vs (31.25±20.83) ms,P>0.05];左心室心外膜和双心室刺激增加跨室壁复极离散度,但对跨室壁不应期离散度无明显影响;维拉帕米能在一定程度上延长中层和心外膜下心肌的动作电位时程与不应期,减小跨室壁复极和不应期离散 [心力衰竭犬给予维拉帕米后 (24.50±15.18) ms vs 正常犬 (31.25±20.83) ms,P<0.05]。结论:心力衰竭犬跨室壁复极离散增大、不应期离散减小;维拉帕米减小心力衰竭犬跨室壁复极与不应期离散;左心室心外膜参与的起搏方式对心肌不应期无明显影响,但增大跨室壁复极离散,且这一效应不能被维拉帕米矫正。  相似文献   

18.
右心室(RV)衰竭已成为左心室辅助装置(LVAD)治疗的一种致命并发症。由LVAD引起的双心室搏动的不同步是引发RV功能障碍的重要因素。本文采用数值方法研究LVAD的控制模式对左、右心室搏动同步性的影响。数值结果表明:左心室(LV)与RV的收缩持续时间在无泵模式下没有显著差异(分别为48.52%和51.77%)。连续模式下,LV收缩期明显短于RV收缩期(LV vs.RV:24.38%vs.49.16%)和无泵模式的LV收缩期。搏动模式下,LV收缩期明显短于RV收缩期(LV vs.RV:28.38%vs.50.41%)但长于连续模式的LV收缩期。反搏动模式中的LV、RV收缩期差异较小(LV vs.RV:43.13%vs.49.23%),而LV收缩期短于无泵模式,并且长于连续模式。与连续和搏动模式相比,由反搏动模式提供的收缩期转速(RS)降低显著地校正了LV收缩持续时间,连续模式下缩短的收缩持续时间在反搏动模式下被校正为LV和RV之间的重新同步。因此,本文认为LV和RV收缩的再同步有助于预防RV功能障碍。总之,使用在收缩期间降低RS的反搏动模式有望用于由LVAD引起的双心室搏动不同步的临床校正。  相似文献   

19.
心外膜起搏电极更多情况下作为心内膜起搏电极的补充,主要在无法应用心内膜起搏电极或经静脉途径心内膜起搏电极植入失败以及心脏直视术中,成为治疗心脏手术后房室传导阻滞,心动过缓及暂时性节律紊乱的主要措施。本文概述了临时心外膜起搏器的各种适应证,及何时考虑过渡到永久性起搏,起搏器的种类的选择,起搏器导线移除等问题。  相似文献   

20.
Widely used murine models of adrenergic-induced cardiomyopathy offer little insight into electrical derangements seen in human heart failure owing to profound differences in the characteristics of ventricular repolarization in mice and rats compared with humans. We therefore sought to determine whether sustained adrenergic activation may produce a clinically relevant heart failure phenotype in the guinea-pig, an animal species whose ventricular action potential shape and restitution properties resemble those determined in humans. Isoprenaline (ISO), a β-adrenoceptor agonist, was infused at variable dosage and duration using either subcutaneously implanted osmotic minipumps or daily injections, in an attempt to establish the relevant treatment protocol. We found that 3 months of daily ISO injections (final dose of 1 mg kg(-1), i.p.) promote heart failure evidenced by cardiac hypertrophy [increased cardiac weights, left ventricular (LV) posterior wall thickness, myocyte cross-sectional area and LV protein content], cardiac dilatation (increased LV internal diameters), basal systolic dysfunction (reduced LV fractional shortening determined by echocardiography and flattened LV systolic pressure-volume and stress-strain relationships assessed in isolated, perfused heart preparations), reduced contractile reserve in the presence of acute β-adrenoceptor stimulation, and pulmonary oedema (increased lung weights). These changes were associated with prolongation of LV epicardial action potential, effective refractory period and QT interval, an upward shift of the electrical restitution curve determined over a wide range of diastolic intervals, and reduced maximal restitution slope. The physiological right ventricular-to-LV difference in action potential duration was eliminated in ISO-treated hearts, thereby contributing to impaired activation-to-repolarization coupling and reversed right ventricular-to-LV difference in repolarization time. In summary, we establish the guinea-pig model of ISO-induced cardiomyopathy, which enables the correlation of detrimental structural and contractile changes with repolarization abnormalities typically seen in human heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号