首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Extreme learning machine (ELM) has been extensively studied, due to its fast training and good generalization. Unfortunately, the existing ELM-based feature representation methods are uncompetitive with state-of-the-art deep neural networks (DNNs) when conducting some complex visual recognition tasks. This weakness is mainly caused by two critical defects: (1) random feature mappings (RFM) by ad hoc probability distribution is unable to well project various input data into discriminative feature spaces; (2) in the ELM-based hierarchical architectures, features from previous layer are scattered via RFM in the current layer, which leads to abstracting higher level features ineffectively. To address these issues, we aim to take advantage of label information for optimizing random mapping in the ELM, utilizing an efficient label alignment metric to learn a conditional random feature mapping (CRFM) in a supervised manner. Moreover, we proposed a new CRFM-based single-layer ELM (CELM) and then extended CELM to the supervised multi-layer learning architecture (ML-CELM). Extensive experiments on various widely used datasets demonstrate our approach is more effective than original ELM-based and other existing DNN feature representation methods with rapid training/testing speed. The proposed CELM and ML-CELM are able to achieve discriminative and robust feature representation, and have shown superiority in various simulations in terms of generalization and speed.  相似文献   

2.
This paper proposes an efficient finger vein recognition system, in which a variant of the original ensemble extreme learning machine (ELM) called the feature component-based ELMs (FC-ELMs) designed to utilize the characteristics of the features, is introduced to improve the recognition accuracy and stability and to substantially reduce the number of hidden nodes. For feature extraction, an explicit guided filter is proposed to extract the eight block-based directional features from the high-quality finger vein contours obtained from noisy, non-uniform, low-contrast finger vein images without introducing any segmentation process. An FC-ELMs consist of eight single ELMs, each trained with a block feature with a pre-defined direction to enhance the robustness against variation of the finger vein images, and an output layer to combine the outputs of the eight ELMs. For the structured training of the vein patterns, the FC-ELMs are designed to first train small differences between patterns with the same angle and then to aggregate the differences at the output layer. Each ELM can easily learn lower-complexity patterns with a smaller network and the matching accuracy can also be improved, due to the less complex boundaries required for each ELM. We also designed the ensemble FC-ELMs to provide the matching system with stability. For the dataset considered, the experimental results show that the proposed system is able to generate clearer vein contours and has good matching performance with an accuracy of 99.53 % and speed of 0.87 ms per image.  相似文献   

3.
Snoring is the most direct symptom of obstructive sleep apnea hypopnea syndrome (OSAHS) and implies a lot of information about OSAHS symptoms. This paper aimed to identify OSAHS patients by analyzing acoustic features derived from overnight snoring sounds. Mel-frequency cepstral coefficients, 800 Hz power ratio, spectral entropy and other 10 acoustic features were extracted from snores, and Top-6 features were selected from the extracted 10 acoustic features by a feature selection algorithm based on random forest, then 5 kinds of machine learning models were applied to validate the effectiveness of Top-6 features on identifying OSAHS patients. The results showed that when the classification performance and computing efficiency were taken into account, the combination of logistic regression model and Top-6 features performed best and could successfully distinguish OSAHS patients from simple snorers. The proposed method provides a higher accuracy for evaluating OSAHS with lower computational complexity. The method has great potential prospect for the development of a portable sleep snore monitoring device.  相似文献   

4.
Increased availability of large repositories of chemical compounds is creating new challenges and opportunities for the application of machine learning methods to problems in computational chemistry and chemical informatics. Because chemical compounds are often represented by the graph of their covalent bonds, machine learning methods in this domain must be capable of processing graphical structures with variable size. Here, we first briefly review the literature on graph kernels and then introduce three new kernels (Tanimoto, MinMax, Hybrid) based on the idea of molecular fingerprints and counting labeled paths of depth up to d using depth-first search from each possible vertex. The kernels are applied to three classification problems to predict mutagenicity, toxicity, and anti-cancer activity on three publicly available data sets. The kernels achieve performances at least comparable, and most often superior, to those previously reported in the literature reaching accuracies of 91.5% on the Mutag dataset, 65-67% on the PTC (Predictive Toxicology Challenge) dataset, and 72% on the NCI (National Cancer Institute) dataset. Properties and tradeoffs of these kernels, as well as other proposed kernels that leverage 1D or 3D representations of molecules, are briefly discussed.  相似文献   

5.
New technologies such as artificial intelligence, the internet of things, big data, and cloud computing have changed the overall society and economy, and the medical field particularly has tried to combine traditional examination methods and new technologies. The most remarkable field in medical research is the technology of predicting high dementia risk group using big data and artificial intelligence. This review introduces: (1) the definition, main concepts, and classification of machine learning and overall distinction of it from traditional statistical analysis models; and (2) the latest studies in mental science to detect dementia and predict high-risk groups in order to help competent researchers who are challenging medical artificial intelligence in the field of psychiatry. As a result of reviewing 4 studies that used machine learning to discriminate high-risk groups of dementia, various machine learning algorithms such as boosting model, artificial neural network, and random forest were used for predicting dementia. The development of machine learning algorithms will change primary care by applying advanced machine learning algorithms to detect high dementia risk groups in the future.  相似文献   

6.
Objective: The manual adjudication of disease classification is time-consuming, error-prone, and limits scaling to large datasets. In ischemic stroke (IS), subtype classification is critical for management and outcome prediction. This study sought to use natural language processing of electronic health records (EHR) combined with machine learning methods to automate IS subtyping. Methods: Among IS patients from an observational registry with TOAST subtyping adjudicated by board-certified vascular neurologists, we analyzed unstructured text-based EHR data including neurology progress notes and neuroradiology reports using natural language processing. We performed several feature selection methods to reduce the high dimensionality of the features and 5-fold cross validation to test generalizability of our methods and minimize overfitting. We used several machine learning methods and calculated the kappa values for agreement between each machine learning approach to manual adjudication. We then performed a blinded testing of the best algorithm against a held-out subset of 50 cases. Results: Compared to manual classification, the best machine-based classification achieved a kappa of .25 using radiology reports alone, .57 using progress notes alone, and .57 using combined data. Kappa values varied by subtype being highest for cardioembolic (.64) and lowest for cryptogenic cases (.47). In the held-out test subset, machine-based classification agreed with rater classification in 40 of 50 cases (kappa .72). Conclusions: Automated machine learning approaches using textual data from the EHR shows agreement with manual TOAST classification. The automated pipeline, if externally validated, could enable large-scale stroke epidemiology research.  相似文献   

7.
Feature selection is an important problem in machine learning and data mining. We consider the problem of selecting features under the budget constraint on the feature subset size. Traditional feature selection methods suffer from the “monotonic” property. That is, if a feature is selected when the number of specified features is set, it will always be chosen when the number of specified feature is larger than the previous setting. This sacrifices the effectiveness of the non-monotonic feature selection methods. Hence, in this paper, we develop an algorithm for non-monotonic feature selection that approximates the related combinatorial optimization problem by a Multiple Kernel Learning (MKL) problem. We justify the performance guarantee for the derived solution when compared to the global optimal solution for the related combinatorial optimization problem. Finally, we conduct a series of empirical evaluation on both synthetic and real-world benchmark datasets for the classification and regression tasks to demonstrate the promising performance of the proposed framework compared with the baseline feature selection approaches.  相似文献   

8.
We propose a unified machine learning model (UMLM) for two-class classification, regression and outlier (or novelty) detection via a robust optimization approach. The model embraces various machine learning models such as support vector machine-based and minimax probability machine-based classification and regression models. The unified framework makes it possible to compare and contrast existing learning models and to explain their differences and similarities.In this paper, after relating existing learning models to UMLM, we show some theoretical properties for UMLM. Concretely, we show an interpretation of UMLM as minimizing a well-known financial risk measure (worst-case value-at risk (VaR) or conditional VaR), derive generalization bounds for UMLM using such a risk measure, and prove that solving problems of UMLM leads to estimators with the minimized generalization bounds. Those theoretical properties are applicable to related existing learning models.  相似文献   

9.
Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318–324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In International conference on artificial intelligence and statistics (pp. 580–587). San Juan, Puerto Rico: MIT Press]. This paper is concerned with learning kernels under the LASSO formulation via adopting a generative Bayesian learning and inference approach. A new robust learning algorithm is proposed which produces a sparse kernel model with the capability of learning regularized parameters and kernel hyperparameters. A comparison with state-of-the-art methods for constructing sparse regression models such as the relevance vector machine (RVM) and the local regularization assisted orthogonal least squares regression (LROLS) is given. The new algorithm is also demonstrated to possess considerable computational advantages.  相似文献   

10.
Support vector machine (SVM) is considered to be one of the most powerful learning algorithms and is used for a wide range of real-world applications. The efficiency of SVM algorithm and its performance mainly depends on the kernel type and its parameters. Furthermore, the feature subset selection that is used to train the SVM model is another important factor that has a major influence on it classification accuracy. The feature subset selection is a very important step in machine learning, specially when dealing with high-dimensional data sets. Most of the previous researches handled these important factors separately. In this paper, we propose a hybrid approach based on the Grasshopper optimisation algorithm (GOA), which is a recent algorithm inspired by the biological behavior shown in swarms of grasshoppers. The goal of the proposed approach is to optimize the parameters of the SVM model, and locate the best features subset simultaneously. Eighteen low- and high-dimensional benchmark data sets are used to evaluate the accuracy of the proposed approach. For verification, the proposed approach is compared with seven well-regarded algorithms. Furthermore, the proposed approach is compared with grid search, which is the most popular technique for tuning SVM parameters. The experimental results show that the proposed approach outperforms all of the other techniques in most of the data sets in terms of classification accuracy, while minimizing the number of selected features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号