首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rationale Schizophrenia has been associated with dysregulation of dopamine (DA) transmission and impairment in a number of experimental tasks, including sensorimotor gating assessed using prepulse inhibition (PPI) and selective attention assessed using latent inhibition (LI). We have demonstrated in previous studies that after withdrawal from escalating (ESC) dosages of amphetamine (AMPH), animals exhibited disruption of LI but no alteration of PPI. Moreover, these animals always showed behavioural sensitization to an AMPH challenge. Objective In this study, we were interested in testing whether a different administration schedule would elicit disruption of both LI and PPI. Methods Animals were treated with continuous AMPH release (via osmotic mini-pumps at a dosage of 10 mg kg−1 day−1 for 7 days) and tested for their performance in L and PPI during withdrawal in a drug free state. Rats received AMPH treatment during the induction phase in their home cages or in the activity chambers. Following withdrawal, the expression of behavioural sensitization to an AMPH challenge was tested in both cases in the activity chambers. Results Animals pretreated with AMPH from both groups did not exhibit behavioural sensitization. Withdrawal from continuous administration induced LI attenuation with no effect on PPI. Conclusions These findings are similar to what was previously found with respect to an ESC AMPH regime. The only difference between the schedules was that the ESC AMPH schedule led to behavioural sensitization whereas the continuous AMPH did not. It is suggested that the expression of sensitization may not be a prerequisite for observed LI disruption.  相似文献   

2.
Rationale. Psychomotor stimulants can induce psychotic states in humans that closely resemble those observed in patients with idiopathic schizophrenia. Attentional and sensorimotor gating impairments are observed in schizophrenic patients using the latent inhibition (LI) and prepulse inhibition (PPI) behavioral assays, respectively. Our previous studies demonstrated that after 4 days of withdrawal from a period of amphetamine (AMPH) administration, animals exhibited disrupted LI but normal PPI. Objective. The aim of the present study was to test PPI in AMPH-withdrawn rats under experimental conditions similar to those used to best demonstrate locomotor sensitization following AMPH withdrawal. Methods. We examined the effects on PPI of (1) pairing drug injections with PPI test-associated cues, (2) administration of a low-dose dopamine agonist challenge and (3) testing following longer withdrawal periods (23, 30, 60 days). Results. Although none of these conditions revealed a disruption of PPI in AMPH-withdrawn rats, we did observe that the acoustic startle response was reduced during a restricted time period following AMPH withdrawal. Similar to our previous findings, AMPH-withdrawn animals showed disrupted LI on day 16 of withdrawal and locomotor sensitization to a challenge injection of AMPH after 62 days of withdrawal. Conclusion. We conclude that the effects of repeated AMPH on PPI are not modulated by the same experimental parameters known to be important for eliciting locomotor sensitization and that withdrawal from the schedule of AMPH administration used in this study models only specific cognitive dysfunctions linked to schizophrenic symptoms, since LI was disrupted but PPI was not affected.  相似文献   

3.
Roles of age and withdrawal were explored in mechanisms underlying the action of amphetamine (Amph), by monitoring the serotonergic and GABAergic expression in key brain regions of the rat. Postnatal 21 and 60 day-old male rats were intraperitoneally injected with D-Amph, 5 mg/kg, or saline, three times daily for 14 days and then withdrawn from Amph for 0 or 14 days; these animals received single injections on day 15 (W0d) or day 29 (W14d). Following Amph injections, though both age groups exhibited hyperlocomotion, stereotypy and behavioral sensitization, the juvenile showed 100-300% longer latencies to reach and 30%-42% shorter duration of maximal behavioral scores than the adult from day 2-29. Immunocytochemical analysis revealed down-regulation of 42-76% in 5-hydroxytryptamine (HT) immunoreactive processes in motor and somatosensory cortices, and hippocampus of both ages after Amph exposure at W0d. At W14d, the 5-HT resembled saline-control in the Amph-treated juvenile, whereas remained weakened in the adult. By contrast, densities of GAD67 (glutamic acid decarboxylase)-boutons were up-regulated by 35-545% in the neocortical areas, nucleus accumbens, caudate-putamen and hippocampus of all Amph-administered rats. After 14 days withdrawal, the juvenile recovered the decreased 5-HT fibers, but not the increased GABAergic, indicating unique roles of the two systems in response to Amph.  相似文献   

4.
Prepulse inhibition (PPI) of acoustic startle response is impaired in patients with schizophrenia and in animals acutely treated with dopamine agonists and NMDA antagonists. In this study, we investigated the time course of PPI disruption induced by repeated amphetamine, quinpirole, phencyclidine (PCP), and dizocilpine (MK-801) treatment. We focused on how PPI disruption development was influenced by drug administration regimens, comparing a constant versus an escalating dosing regimen. Male Sprague-Dawley rats were repeatedly treated with amphetamine (1.25-5.0 mg/kg, or constant 5.0 mg/kg, sc), PCP (0.50-2.0 mg/kg, or constant 0.5, 1.0 or 2.0 mg/kg, sc), quinpirole (0.03-0.12 mg/kg, or constant 0.12 mg/kg, sc), MK-801 (0.025-0.10 mg/kg, or constant 0.10 mg/kg, sc) or vehicle (saline) and tested for PPI once daily for 6 consecutive days. When amphetamine 5.0 mg/kg or quinpirole 0.12 mg/kg was administrated on a constant dosing schedule, both drugs disrupted PPI upon acute administration, but had no effect after repeated treatment and testing (days 2-5). However, when amphetamine 5.0 mg/kg or quinpirole 0.12 mg/kg was preceded by two lower doses in an escalating dosing regimen, both drugs still disrupted PPI on days 5 and 6 when the constant amphetamine and quinpirole had no effect. For PCP and MK-801, repeated treatment under both regimens produced a stable and persistent disruption of PPI. Startle magnitude increased progressively and dose-dependently under both regimens for all drugs except for quinpirole, which caused a decrease. These results suggest that the drug dosing schedule, rather than the absolute amount of drug that an animal receives, has a greater impact on the development of PPI-disruptive effect of dopamine agonists than NMDA antagonists. Thus, in order to mimic the emerging process of PPI deficit with dopamine agonists, an escalating dosing regimen should be used.  相似文献   

5.
RATIONALE: It is not known whether dopamine agonist-induced disruption of prepulse inhibition (PPI) can be conditioned to the environment, a phenomenon established for dopamine agonist-induced locomotor activation and other behaviors. Furthermore, the literature is contradictory regarding whether PPI disruption, like locomotor activity, can become sensitized after repeated dopamine agonist administration. Differences in methodology (e.g. drug-environment pairing) may have contributed to these contradictory findings. OBJECTIVES: In a series of studies, we investigated whether dopamine agonist-induced disruption of PPI could be conditioned and whether repeated administration of dopamine agonists, in a paradigm favorable to conditioning, would produce sensitization to dopamine agonist-induced disruption of PPI. METHODS: One group of rats were administered subcutaneous apomorphine (0.5 mg/kg) daily for 7 (experiment 1) or 5 (experiment 3) consecutive days contingent with startle testing (in testing rooms, immediately before test sessions). A second group received the same apomorphine dose daily in a manner non-contingent with behavioral testing (in home cages after test sessions). The following day, all rats received vehicle injections contingent with the test environment to assess for environmental conditioning (vehicle challenge day). The next day, all animals received a challenge of apomorphine (0.5 mg/kg) contingent with the test environment to assess the contribution of drug-environment pairing on changes observed in apomorphine-induced disruption of PPI (apmorphine challenge day). PPI was measured immediately after drug injections in the test environment. A separate study (experiment 2) tested amphetamine (3.0 mg/kg) using a similar methodology. In a fourth study, rats were pretreated with haloperidol (1.0 mg/kg) or saline prior to receiving daily apomorphine to see if haloperidol could modify the changes in PPI produced by repeated apomorphine administration. RESULTS: On the vehicle challenge day, PPI exhibited by the rats that received daily apomorphine contingent with the testing environment did not differ from the group that received vehicle contingent with the testing environment. However, animals receiving apomorphine contingent with testing exhibited partial tolerance to its PPI effects during the conditioning period. The PPI exhibited by both groups did not differ significantly on the apomorphine-challenge day. Amphetamine produced a complete tolerance to its PPI effects by day 3. Haloperidol pretreatment blocked the PPI tolerance produced by repeated apomorphine injections. CONCLUSIONS: These results suggest: 1) unlike locomotion, PPI disruption induced by apomorphine cannot be conditioned to the environment; 2) unlike locomotion, repeated adminstration of dopamine agonists produce tolerance, rather than sensitization, to PPI; 3) environmental factors do not seem to be critical for PPI tolerance; and 4) dopamine receptors mediate PPI tolerance to apomorphine.  相似文献   

6.
Different patterns of psychostimulant intake can elicit widely varying behavioral and neurochemical consequences. Accordingly, rats were studied during withdrawal from either of two schedules of amphetamine administration, one consisting of 6 days of low-dose (1.5 mg/kg, i.p.) daily intermittent (INT) amphetamine (AMPH) injections, and the other of 6 days of moderately high-dose (1-5 mg/kg, i.p.) escalating (ESC) AMPH injections, for the effects of these treatments on numbers of FosB-positive nuclei and monoamine utilization in dopaminergic target areas. Withdrawal from AMPH pretreatment according to the ESC schedule markedly increased FosB expression in the nucleus accumbens shell and basolateral amygdala. In contrast, withdrawal from INT-AMPH administration did not increase FosB expression in any of the regions examined. Post-mortem neurochemical analyses of these same brain regions did not reveal effects of withdrawal from either INT or ESC administration of AMPH. These results suggest that withdrawal from a moderately high-dose AMPH regimen modifies patterns of gene expression in mesocorticolimbic dopaminergic target nuclei without significantly affecting basal monoamine levels. The strength of these effects in the nucleus accumbens shell and basolateral nucleus of the amygdala are consistent with behavioral and clinical data indicating the importance of these areas in the neuroadaptive changes which characterize addiction and withdrawal states.  相似文献   

7.
Rationale The nitric oxide (NO)–arginine pathway is intimately connected to the release of dopamine (DA), a neurotransmitter system that may be dysfunctional in schizophrenia. Both schizophrenic patients and rats treated with DA agonists present deficits in sensorimotor gating measured by prepulse inhibition (PPI). Objective Our aim was to investigate the interaction between a NO synthase inhibitor, N G-nitro-l-arginine (l-NOARG), and the DA agonists, amphetamine (Amph), apomorphine (Apo), bromocriptine (BRC), quinpirole (QNP) and SKF38393, on the modulation of the PPI. Methods Male Wistar rats received two injections of either l-NOARG (40 mg/kg, i.p.) or saline, 1 h before the test, and the DA agonists or vehicle. Testing began 5 min after treatment with Amph (2 mg/kg, i.p.), Apo (0.5 mg/kg, s.c.) or QNP (0.3 mg/kg and 1.0 mg/kg, s.c.), 120 min after BRC (1 and 40 mg/kg, i.p.) and 15 min after SKF38393 (10 mg/kg, s.c.). The PPI test consisted of 60 presentations divided into pulse (100 dB), prepulse (65, 70, 75 and/or 80 dB) and prepulse + pulse. Results l-NOARG prevented the PPI disruption caused by Amph (2 mg/kg). Apo, QNP and BRC disrupted PPI, but these effects were not significantly changed by l-NOARG. SKF38393 had no significant effect on PPI whether or not preceded by l-NOARG. Conclusions Our findings show that l-NOARG interacted with Amph, an indirect DA agonist, but not with the direct DA agonists on PPI, suggesting that NO is involved on the dopaminergic modulation of sensorimotor gating, probably by a presynaptic mechanism.  相似文献   

8.
Mechanisms underlying the pathogenesis of psychotic disorders were explored by monitoring the expression of GABAergic neurons in an animal model. Male rats of postnatal days 21 and 60 were intraperitoneally injected with amphetamine (Amph), 5 mgkg, or saline three times daily for 6 d. After 1-d or 14-d withdrawal from Amph, they were challenged on day 8 (W1d) or on day 21 (W14d) with a single same dosage and then perfused. Immunostaining on the brain sections using an anti-glutamic acid decarboxylase (GAD67) antiserum revealed that the Amph treatment increased the densities of the GAD67-immunoreactive boutons by approx. 36 to 79% above controls in the layers of motor and somatosensory cortices of the W1d juvenile, whereas for those of W14d, the densities resembled controls. For the Amph-treated adults of both W1d and W14d, the GAD67 immunoreactivity increased 56-133% in these layers. In the striatum, the GAD67 densities responded to Amph in a similar manner to the neocortices. However, for the nucleus accumbens, the GAD67 terminals were up-regulated by 22-64% in all Amph-injected rats of both ages. In the hippocampal CA1CA3 region of the Amph-administered juvenile, increases of 24-27% of GAD67 terminals occurred for W1d and W14d animals. By contrast, however, in the W1d Amph-injected adult, there were increases of 42-48% in CA1-CA3, at W14d the GAD67 boutons resembled controls or were reduced. An age-dependent correlation was implicated between behavioural and immunostaining observations. The data support the view that inhibitory regulation is involved in neuronal responses to chronic psychostimulant administration and reflect differential neuronal plasticity among the developing and adult brain regions.  相似文献   

9.
Rationale Schizophrenia has been linked to dysregulation of dopamine and glutamate transmitter systems. Attempts to model aspects of schizophrenia in animals have made use of treatments that primarily affect dopaminergic (e.g., amphetamine, Amp) and glutamatergic (e.g., phencyclidine, PCP) function. In addition to exerting short-term acute effects, these agents also induce long-term effects, as seen, for example, in neurochemical and behavioural sensitization.Objectives The goal of this work was to compare Amp- and PCP-sensitized states on two measures of information processing that are impaired in schizophrenia, prepulse inhibition (PPI) of the acoustic startle reflex and latent inhibition (LI).Methods Rats received injections of Amp, PCP or saline 3 days per week for 3 weeks. The Amp dose increased from 1 to 3 mg/kg, at the rate of 1 mg/kg each week. The PCP dose was 3 mg/kg throughout. After various periods of withdrawal rats were tested for PPI and LI.Results Repeated intermittent treatment with Amp or PCP resulted in augmented locomotor responses to challenge with each drug, providing an operational index that sensitization had occurred. Rats sensitized to Amp showed disrupted PPI when tested drug free at 3, 21 and 60 days of withdrawal. Amp-sensitized rats also showed abolition of the LI effect. Rats sensitized to PCP did not show deficits in any of these behaviours when tested drug free.Conclusions Because disrupted PPI and LI have both been reported in schizophrenic patients, these results suggest that the Amp-sensitized state may represent a useful model for investigating the neural bases of information processing deficits in schizophrenia.  相似文献   

10.
Latent inhibition (LI) is a behavioral phenomenon whereby repeated exposure to a non-reinforced stimulus retards subsequent conditioning to that stimulus. Deficits in LI may reflect an inability to ignore irrelevant stimuli and are studied as a model of the cognitive/attentional abnormalities found in schizophrenia. We recently determined that pretreatment with escalating doses of the indirect dopamine agonist amphetamine (AMPH; 3 daily injections ip, 1-5 mg/kg, over 6 days) disrupts LI in rats tested in a 2-way active avoidance paradigm during withdrawal. In the present study, we evaluated the effects of the atypical neuroleptic clozapine and the typical neuroleptic haloperidol on the expression of LI on day 4 of AMPH withdrawal. Neuroleptic injections were given either 45 min prior to each of two tone preexposure sessions and a subsequent tone-shock avoidance test session, or only prior to the test session. As expected, saline-injected control groups showed LI during the test session, as reflected by significantly reduced avoidance in tone preexposed vs. non-preexposed rats. In contrast, animals pretreated with escalating doses of AMPH did not show LI, due to the improved avoidance of the preexposed animals. Both haloperidol (0.03 mg/kg) and clozapine (5 mg/kg) largely reversed the disruptive influence of AMPH on LI regardless of whether these drugs were administered prior to both preexposure and test sessions or only prior to the test session. These results provide pharmacological validation for an AMPH withdrawal model of schizophrenic symptoms.  相似文献   

11.
There is evidence from studies in humans and animals that a vulnerable period for chronic cannabinoid administration exists during certain phases of development. The present study tested the hypothesis that long-lasting interference of cannabinoids with the developing endogenous cannabinoid system during puberty causes persistent behavioral alterations in adult rats. Chronic treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN) (1.2 mg/kg) or vehicle was extended over 25 days either throughout the rats' puberty or for a similar time period in adult rats. The rats received 20 injections intraperitoneally (i.p.), which were not delivered regularly. Adult rats were tested for object recognition memory, performance in a progressive ratio (PR) operant behavior task, locomotor activity, and prepulse inhibition (PPI) of the acoustic startle response (ASR). PPI was significantly disrupted only by chronic peripubertal cannabinoid treatment. This long-lasting PPI deficit was reversed by the acute administration of the dopamine antagonist haloperidol. Furthermore, we found deficits in recognition memory of pubertal-treated rats and these animals showed lower break points in a PR schedule, whereas food preference and locomotion were not affected. Adult chronic cannabinoid treatment had no effect on the behaviors tested. Therefore, we conclude that puberty in rats is a vulnerable period with respect to the adverse effects of cannabinoid treatment. Since PPI deficits, object recognition memory impairments, and anhedonia/avolition are among the endophenotypes of schizophrenia, we propose chronic cannabinoid administration during pubertal development as an animal model for some aspects of the etiology of schizophrenia.  相似文献   

12.
Depression is frequently comorbid with a drug addiction and may seriously complicate its treatment. Currently, there is no routinely used animal model to investigate this comorbidity. In this study the effect of repeated administration of methamphetamine on i.v. drug self-administration in an olfactory bulbectomy model of depression in rats was investigated in order to propose and validate a rat model of comorbid depression and addiction. Male Wistar rats were either olfactory-bulbectomized (OBX) or sham-operated. They subsequently underwent a methamphetamine sensitization regime, which consisted of daily i.p. injections of methamphetamine for a 14-d period; controls received Sal injections at the same frequency. The i.v. self-administration of methamphetamine (0.08 mg/kg in one infusion) paradigm on a fixed ratio schedule of reinforcement was performed using operant chambers. A significant decrease of the drug intake was recorded in sham-operated animals pretreated with methamphetamine when compared to the unpretreated group. This was not apparent in the OBX groups. Both groups of OBX animals exhibited a higher intake of methamphetamine compared to the corresponding sham-operated groups, thus confirming the hypothesis of higher drug intake in depressive conditions in this rodent model. The procedure of behavioural sensitization to methamphetamine decreased the number of self-administered drug doses per session in the sham-operated rats. It is hypothesized that this phenomenon resulted from increasing efficacy of the drug after behavioural sensitization caused by repeated methamphetamine intermittent administration.  相似文献   

13.
Prepulse inhibition (PPI) is a measure of sensorimotor gating that is deficient in schizophrenia. In rats, administration of the serotonin-1A (5-HT1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), causes a disruption of PPI. It is unclear whether this effect is due to the activation of pre- or post-synaptic 5-HT1A receptors, however pre-synaptic receptors located in the dorsal raphe nucleus (DRN) may play a role. Our previous research showed that castrated rats have a reduced sensitivity to 8-OH-DPAT-induced disruptions of PPI. Therefore, in , male Sprague-Dawley rats were sham-operated or castrated and micro-injected with 8-OH-DPAT directly into the DRN. In , male rats were sham-operated or received a selective serotonergic, 5,7-dihydroxytryptamine lesion of the DRN. 8-OH-DPAT was injected subcutaneously in these rats. In both sham-operated and castrated rats, a micro-injection of 8-OH-DPAT into the DRN did not disrupt PPI. Instead, in castrated rats, 8-OH-DPAT treatment tended to increase PPI. A DRN lesion caused a significant reduction in 5-HT content in the frontal cortex (70% reduction), striatum (69%) and ventral hippocampus (76%). In both sham-operated and DRN-lesioned rats, systemic 8-OH-DPAT significantly disrupted PPI. Taken together, these data suggest that the disruption of PPI observed in rats with systemic 8-OH-DPAT treatment is predominantly due to an activation of post-synaptic, rather than pre-synaptic, 5-HT1A receptors.  相似文献   

14.
The effect of three dosage schedules on the expression of a withdrawal syndrome indicative of physical dependence on pentobarbital was determined in male Sprague-Dawley rats. Rats were prepared with an intraperitoneal cannula and were continuously infused with either saline (control) or pentobarbital sodium, using an escalating drug dosage schedule, for either 5 (PB-5), 13 (PB-13) or 20 (PB-20) days. Final doses reached were 500 mg/kg/day (PB-5) and 1000 mg/kg/day (PB-13). PB-20 rats reached 1000 mg/kg/day on day 13 and were maintained at this dose for an additional 7 days. Body weight, water consumption and assessment of CNS depression were obtained daily. Following the last day of pentobarbital infusion all rats were infused with saline for a 72-hour drug-free period. Water consumption, body weight and assessment of overt behavioral signs indicative of a drug withdrawal syndrome were obtained at specific times during the drug-free period. PB-5 rats showed little evidence of withdrawal while PB-20 rats demonstrated the greatest degree of withdrawal. Peak withdrawal scores were observed to be 1, 3.8 and 5 for PB-5, PB-13, and PB-20, respectively. Withdrawal scores for group PB-13 and PB-20 were found to be significantly greater than either control or PB-5 but were not significantly different from each other. Body weight for PB-13 and PB-20 mice declined slightly (nonsignificant) during the drug-free period while a significant decrease (40% decline) in water consumption was demonstrated by 24 hours of this period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Abstinence from high doses of psychostimulant drugs, in both humans and rodents, is linked to adverse psychological effects including anhedonia, a core symptom of major depression, manifested behaviorally as decreased responding for rewarding stimuli. The present study used brain microdialysis in freely moving rats to examine the effect of D-amphetamine (D-amph) withdrawal on changes in extracellular dopamine (DA) levels in the nucleus accumbens (NAc) evoked by D-amph or behavior related to sucrose consumption. D-amph was administered intraperitoneally (i.p.) according to an escalating dose (ED) schedule (from 1 to 10 mg/kg, 3 doses/day). We first confirmed the development of tolerance by monitoring DA efflux in the NAc in response to 5 and 10 mg/kg doses of D-amph administered during the ED schedule of drug administration and again in response to the 5 mg/kg dose of D-amph 72 h following the last 10 mg/kg D-amph injection. In a separate study, DA efflux in the NAc was first shown to be increased significantly during both preparatory and consummatory phases of responding for a 4% sucrose solution. Withdrawal from the ED schedule of D-amph caused a selective attenuation of DA efflux only during the preparatory phase of the sucrose test. These results provided convincing evidence of neurochemical adaptation within the mesocorticolimbic DA pathway during and following the administration of an ED schedule of D-amph as well as suppressed neurochemical responses to a psychostimulant drug and cues associated with a natural reward after withdrawal from drug treatment. Accordingly, these findings support the hypothesis that downregulation of mesocorticolimbic DA function maintained during D-amph withdrawal may account for the selective disruption of motivated behavior reported in studies employing psychostimulant drug withdrawal as a model of depression in rodents.  相似文献   

16.
Administration of amphetamine (AMPH) can induce symptoms of psychosis in humans and locomotor sensitization in rats; in contrast, withdrawal from a period of AMPH intake is most often associated with symptoms of human endogenous depression. The aim of this study was to determine whether AMPH withdrawal produces a depressive-like state in rats. The present study examined the effects of withdrawal from an escalating-dose AMPH schedule (ESC; three daily injections over 6 days, 1-5 mg/kg, i.p.) and an intermittent-dose AMPH schedule (INT; one daily injection over 6 days, 1.5 mg/kg, i.p.) on animals' performance in three behavioral paradigms related to depression: the Porsolt swim test, the learned helplessness assay and operant responding for sucrose on a progressive ratio schedule. ESC and INT AMPH withdrawal had no effect on any of these tests or on stress responsiveness as measured by increased plasma levels of corticosterone (CORT) and adrenocorticotropin following the swim test, although basal CORT levels were higher in AMPH-withdrawn animals compared to controls. Finally, we confirmed the presence of locomotor sensitization for both AMPH schedules after 30 days of withdrawal. Our results suggest that the ability of AMPH withdrawal to produce symptoms of depression may not be evident in all behavioral screens for depressive symptoms in the rat.  相似文献   

17.
The present study sought to determine the effect of withdrawal from an escalating dose schedule of d-amphetamine on sexual behavior in male rats. Tests were conducted every 5 days until stable levels of sexual behavior were obtained. With repeated testing, male rats displayed an increase in their exploration of the testing chambers prior to the introduction of an estrous female. Half of the male rats were then subjected to a 4-day escalating dose schedule of d-amphetamine administration (1-12 mg/kg), while half received vehicle. Twelve hours after the final drug injection, subjects were tested for sexual behavior. Withdrawal from the drug was associated with decrements in several motivational components of sexual behavior, including decreased anticipatory locomotor and increased postejaculatory intervals, while consummatory measures remained largely unaffected. This pattern of sexual deficits resembles those seen in human depressive disorders, and therefore, provides additional support for the use of psychostimulant withdrawal as a rodent model of depression.  相似文献   

18.
Sensitisation (i.e. progressive enhancement) of behavioural abnormalities induced by repeated treatment with non-competitive NMDA receptor antagonists in animals is considered an animal model for schizophrenia. Here, male Wistar rats were treated for 11 days with either dizocilpine (0.1 mg/kg), phencyclidine (PCP, 2 mg/kg), or saline and tested for prepulse inhibition (PPI) of the acoustic startle response (ASR). The aims of this study were twofold: First, we tested whether sensitisation of PPI deficits previously found in Sprague-Dawley rats were also found in Wistar rats, and, second, whether these effects can be ameliorated by the atypical antipsychotic clozapine. PPI is a paradigm for the assessment of sensorimotor gating (and its deficits) and is impaired in schizophrenic patients. After the sub-chronic treatment the rats were tested drug-free (day 12), and on the following days after drug challenge by PCP (2 mg/kg), combinations of PCP (2 mg/kg) and clozapine (5 and 10 mg/kg), or clozapine (5 mg/kg) alone. PPI was significantly reduced by both NMDA receptor antagonists. This effect was not further enhanced by the daily treatment. Startle magnitude was increased after eight days of dizocilpine-treatment only, indicating sensitisation of startle-potentiation by this drug. Testing the rats drug-free on day 12 revealed enhanced PPI and reduced startle (compared to the matching test on day 0) irrespective of previous treatment. Drug challenge with PCP (2 mg/kg) again reduced PPI in all groups. Clozapine (5 and 10 mg/kg) failed to antagonise the PPI-disruptive effects of PCP and even enhanced the PCP-induced PPI-deficits in rats pretreated with PCP or dizocilpine. These findings suggest: (1) that PPI and startle are influenced differently by non-competitive NMDA receptor antagonists, (2) that PCP and dizocilpine reduce PPI in Wistar rats, but do not lead to a sensitisation of this effect; and (3) that under the present schedule of treatments, the antipsychotic compound clozapine does not antagonise but rather enhances PPI-disruptive effects of non-competitive NMDA receptor antagonists, pointing towards a complex interaction of the brain processes underlying the action of psychotomimetic and atypical antipsychotic drugs.  相似文献   

19.

Rationale

A sensitized dopamine system may be linked to the genesis of psychotic symptoms in schizophrenia. Following withdrawal from amphetamine exposures, psychotic-like traits have been robustly demonstrated, but the presence of cognitive/mnemonic deficits remains uncertain.

Methods

Adult male Lewis and Fischer rats, differing in cognitive performance, were exposed intermittently to escalating doses of amphetamine over 5 weeks. This was effective in producing behavioral sensitization to a subsequent amphetamine challenge. Following 27 days of drug withdrawal, the animals were assessed in Pavlovian conditioning, object recognition, and spatial working memory. In addition, prepulse inhibition (PPI), spontaneous motor activity, and anxiety-like behavior were measured.

Results

Amphetamine pretreatment induced behavioral sensitization in both rat strains similarly. Working memory was enhanced in Fischer but not Lewis rats following withdrawal. Spontaneous novel object preference was enhanced in sensitized Fischer rats, but was impaired in sensitized Lewis rats, thus effectively reversing the strain difference in non-sensitized controls. In contrast, Pavlovian fear conditioning remained unaffected and so were anxiety-like behavior, open field activity, and PPI.

Conclusion

The face validity of the amphetamine withdrawal model for cognitive deficits was limited to the object recognition memory impairment observed in sensitized Lewis rats. Yet, the possibility that enhancing dopaminergic neurotransmission may facilitate object recognition and spatial working memory performance was demonstrated in sensitized Fischer rats. Identification of the mechanisms underlying such strain-dependent effects would be instrumental in the further specifications of the construct validity, and therefore the limitations and potential of the amphetamine sensitization model of schizophrenia.  相似文献   

20.
Prepulse inhibition of startle is a model of sensorimotor gating, which is disrupted in alcoholism, as well as mental illnesses such as schizophrenia. The fawn-hooded (FH) rat strain has been used as an animal model of alcoholism. FH rats showed significantly lower startle amplitude than Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Increasing doses of the 5-HT(1A) receptor agonist 8-OH-DPAT caused disruption of PPI, with the effect being significantly greater in FH rats compared to WKY rats. In all strains, treatment with 0.5 mg/kg of 8-OH-DPAT significantly reduced PPI. In contrast, 0.1 mg/kg of 8-OH-DPAT caused disruption only in the FH strain. Treatment with amphetamine, apomorphine and MK-801 also significantly reduced PPI, however, there was no difference between the strains. This study shows increased sensitivity of FH rats to the disruption of PPI caused by 5-HT(1A) receptor stimulation, suggesting a link between 5-HT(1A) receptors, sensorimotor gating and aspects of the FH rat phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号