首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rostrocaudal distribution of saphenous nerve inputs into the lumbar dorsal horn from L2 to L6 has been investigated in urethane anaesthetized rats whose left sciatic nerve was cut and ligated at birth. In normal cord, electrical stimulation of the saphenous nerve evoked dorsal horn spikes in L2 to caudal L4. Few or no spikes were evoked in L5. After neonatal sciatic nerve section, saphenous nerve stimulation evoked spikes throughout segments L2 to L6. Dorsal horn cell receptive fields were also altered following neonatal sciatic nerve section. A somatotopic map of the lumbar enlargement in normal rats was constructed from the receptive fields (RFs) of adjacent dorsal horn cells. Cells with RFs in the saphenous skin region were concentrated in L3 and rostral L4 and very few were found in L5. After neonatal sciatic nerve section, however, a substantial number of cells with low threshold saphenous skin RFs were also found in caudal L4 and throughout L5. These results show that the central saphenous nerve terminal sprouts that grow into the sciatic terminal region following neonatal sciatic nerve section (Fitzgerald, 1985, J. Comp. Neurol., 240, 414-422; Fitzgerald et al., 1990, J. Comp. Neurol., 300, 370-385) form functional connections. This results in dorsal horn cells that are not normally influenced by saphenous nerve inputs developing substantial low threshold RFs in saphenous nerve skin regions.  相似文献   

2.
J M Laird  G J Bennett 《Brain research》1992,584(1-2):181-190
Compound action potentials (CAPs), dorsal root potentials (DRPs) and cord dorsum potentials evoked by stimulating the sciatic nerves have been measured in 4 control rats and in 19 rats with a constriction injury of one sciatic nerve produced by loose ligation of the nerve at mid-thigh level 5 days (n = 8) or 10 days (n = 11) before the acute experiments. The contralateral nerve was exposed but not ligated in a sham procedure. In all cases, the nerve was stimulated proximal to the lesion. At 5 days post-operative (PO) the maximal A-fibre CAPs on the nerve-injured side were not significantly different from those on the sham-operated side. At 10 days PO all animals showed a decrease in the CAP on the nerve-injured side. The mean CAP area on the nerve-injured side was 74.0% +/- 4.2 of the sham-operated side, which was significantly different (P less than 0.005). The sciatic nerves and L5 dorsal roots from 4 of the 10 day PO animals were examined histologically and showed no signs of demyelination or degeneration. The amplitude and area of the maximal DRPs were significantly smaller on the nerve-injured side than on the sham-operated side in all of the nerve-injured animals (P less than 0.01 at 5 days PO; P less than 0.05 at 10 days PO). The mean area of DRPs from the nerve-injured side was 61.7% +/- 10.1 and 46.8% +/- 7.5 of the DRPs from the sham-operated side in the 5 and 10 day PO animals, respectively. The DRPs evoked by sub-maximal afferent volleys were also measured. In all of the nerve-injured animals the CAP-DRP curve on the nerve-injured side was shifted to the right compared to that of the sham-operated side, such that a given size of CAP evoked a smaller DRP on the nerve-injured side than on the sham-operated side. We conclude that the constriction injury produces a decrease in the DRP generated by a volley in the injured nerve and that this change is independent of the decrease in the CAP seen in the injured nerve. We propose that the constriction injury affects the central mechanism responsible for generating primary afferent depolarization (PAD), and thus the pre-synaptic inhibitory control of the afferent input from the injured nerve is impaired.  相似文献   

3.
The left sciatic nerve was cut and ligated in adult rats (chronic denervation). Twenty-one days later the right sciatic nerve was cut and ligated (acute denervation). The somatotopic maps of the surviving intact saphenous nerves (left and right) were compared on day 21 by recording from single interneurons in the dorsal horn of the spinal cord. On the acute side saphenous mediated natural responses were observed only as far caudally as L3, while no natural responses were found in L4 and 5 (this silent zone in L4 and 5 had previously been sciatic territory). In contrast, after chronic sciatic denervation, L4 and L5 were not silent to natural stimulation as the saphenous natural responses had spread into the sciatic territory. Saphenous inputs always won the sciatic territory in L4 and L5 over competing thigh afferents after chronic sciatic denervation. Electrical stimulation of the saphenous nerve on the acute side produced unit responses all the way down to S1 (with no silent areas in L4 and 5). These electrically evoked unit responses in L4 to S1 of the acute side were called ‘long range’ pathways. There were no differences in ‘long range’ electrical responses in the acutely and chronically denervated cord. The caudal boundary for electrically evoked saphenous responses was S1 on both sides of the cord, and post stimulus histograms of unit responses were not statistically different on the two sides. Thus after chronic sciatic denervation natural responses mediated by saphenous spread caudally into sciatic territory, but electrically evoked responses did not change.Behaviorally, there was the expected spread of saphenous mediated responses from the medial toe and foot to more lateral regions after chronic sciatic denervation. Unexpectedly, there was an increase in sensitivity (hyperalgesia) of the medial toe and foot. We postulate that this increased sensitivity might be mediated by the spread of saphenous projections into L4 and L5 of the cord after chronic sciatic denervation. Perhaps post traumatic neuralgia in humans could be due to increased number of spinal cord cells responding to stimulation of the receptive field of the surviving nerve.  相似文献   

4.
The sciatic nerve was sectioned unilaterally in rats and nerve growth factor (NGF) applied locally to the nerve stump for the following 10-14 days using an indwelling osmotic pump. The aim of the experiment was to test whether NGF had any effect on the previously reported neurophysiological and neurochemical events that occur central to a peripheral nerve lesion. The method of application allowed the sciatic nerve on the other side to be used as a control. Primary afferent depolarization fell, as expected, to 13% of its control value after chronic nerve section but if NGF was administered it fell to only 43.5% of control. Chronic nerve section is also known to result in expansion of the receptive fields of deafferented dorsal horn cells. NGF treatment reduced the number of such large receptive fields by 50%. The normal depletion of fluoride resistant acid phosphatase from the cut nerve terminals in the dorsal horn did not occur following NGF treatment. Radioimmunoassay of substance P revealed that the 30% reduction in dorsal horn levels that follows chronic sciatic nerve section did not occur when NGF was applied and that the accompanying 60% decrease in dorsal root ganglion levels was changed to a 64% increase by NGF. The results show that chronic NGF treatment of a cut sciatic nerve does partially reverse the central changes that normally follow deafferentation.  相似文献   

5.
Dorsal horn cells in the lumbar spinal cord of decerebrate spinal rats were examined 7-21 days following local application of capsaicin to the sciatic nerve. Such local capsaicin treatment is known not to influence the size of the incoming A and C fibre afferent volley. The receptive field properties and primary afferent input of cells on both sides of the cord, that is ipsi and contralateral to the treated nerve, were examined. On the treated side, the percentage of cells excited by C fibres from the capsaicin treated nerve was 30% of normal and the number of cells responding to noxious heating of the cutaneous receptive field was reduced by 50%. A fibre input and low and high threshold mechanical input were normal. The receptive field size was larger in many cells innervated by the treated nerve. On the side opposite to the treated nerve, responses to noxious and non-noxious stimulation of the untreated limb were unaffected as was the input from the untreated sciatic nerve. Receptive fields were somewhat larger than normal. Effects were also observed from contralateral stimuli. Cells on both sides of the cord were found with excitatory contralateral receptive fields and excitatory responses to trains of high intensity stimulation to the contralateral sciatic nerve. In untreated animals the effect of such contralateral stimulation is inhibitory. The results show that peripheral nerve capsaicin treatment causes long lasting reduction of the C fibre input to dorsal horn cells on the treated side. However, it also results in changes in the inhibitory and excitatory receptive fields of cells on both sides of the cord.  相似文献   

6.
K+ and veratridine released 2-3 times more ATP from dorsal than from ventral spinal cord synaptosomes (P2). K+-induced release of ATP was Ca2+-dependent whereas veratridine-induced release was augmented in a Ca2+-free medium. Twenty-one to 24 days after section of the right sciatic nerve of the rat the evoked release of ATP from right dorsal synaptosomes was indistinguishable from release from left dorsal synaptosomes. Although these latter results suggest that ATP may not be a transmitter at primary afferent synapses in the spinal cord, it is possible that sciatic nerve section does not deplete the releasable pool of ATP in primary afferent terminals the releasable pool of ATP in primary afferent terminals or that ATP is also released from interneurons in the dorsal spinal cord.  相似文献   

7.
Peripheral nerve section results in depletion of fluoride-resistant acid phosphatase (FRAP) from the nerve terminals in the dorsal horn of the spinal cord (Schoenen et al., '68) and this has been used in the past to map the termination field of individual nerves (Rustioni et al., '71; Devor and Claman, '80). In the present study we show that a similar central depletion occurs following sciatic nerve section or crush in neonatal rats. Unlike adults, however, the area of depletion is rapidly filled by sprouting of FRAP-containing afferent terminals from nearby intact peripheral nerves. The sprouting is extensive but never completely fills the depleted area. After nerve crush there is some recovery of FRAP from the sciatic nerve terminals themselves as well as from nearby nerve terminals. The source of recovered FRAP is demonstrated by resectioning or recrushing the nerves. The sprouting occurred when the sciatic was injured on day 1 but failed to take place when the injury was applied on or after day 10. Sciatic nerve section on day 1 also produces marked growth retardation of the ipsilateral dorsal horn gray matter that becomes more apparent as the rat matures. Nerve crush produces a less marked shrinkage that is slower in onset. If the nerve is crushed repeatedly, however, so that regeneration is prevented, the shrinkage is analogous to that following nerve section. No shrinkage occurs if the nerve is cut or crushed on day 10. The results show that separation of the spinal cord from its peripheral input at a critical stage in development results in disruption of the somatotopic organization of the C fibre afferent input to the dorsal horn and in slowing of growth of the dorsal horn gray matter.  相似文献   

8.
Glass microelectrodes were used to record the activity of neurones in the left dorsal horn of the L6 segment of the spinal cord of normal cats and cats in which the left sciatic and saphenous nerves had been cut 1 or 9 months previously. In the normal animals the receptive fields of L6 dorsal horn neurones excited by tactile stimulation of the leg were somatotopically organized, with neurones in the medial and central dorsal horn having receptive fields on the distal parts of the leg, particularly the toes, and neurones in the lateral dorsal horn having receptive fields on the proximal parts of the leg, buttock and lower back. This somatotopy has been shown before. One month after nerve section no cells responded to tactile stimulation of the distal leg and cells in the medial and central parts of the dorsal horn now had receptive fields on the proximal leg, buttock and back. There did not appear to be any somatotopic organization of these new receptive fields. Lateral dorsal horn neurones had normal receptive fields. Nine months after nerve section neurones in the medial and central parts of the lumbar dorsal horn had receptive fields on the distal leg but they showed several abnormal features and there was no evidence of a return of the somatotopic organization seen in normal animals. Lateral dorsal horn cells still had normal receptive fields.  相似文献   

9.
Following sciatic nerve axotomy, vasoactive intestinal polypeptide (VIP) immunoreactivity increases dramatically in the central terminal areas of the nerve whereas other primary afferent neuropeptides are depleted. The contribution of the peripheral nerve to VIP increases in the spinal cord was investigated by performing sciatic nerve section alone, dorsal rhizotomy of the lumbar roots, axotomy and rhizotomy in combination or section of other peripheral nerves terminating in the same segments as the sciatic nerve. VIP, and for comparison, substance P (SP), cholecystokinin (CCK), somatostatin (SOM), were localized in the lumbar spinal cord and corresponding sensory ganglia using unlabeled antibody immunohistochemistry. After sciatic nerve section, SP, CCK and SOM were depleted in the lumbar dorsal horn whereas VIP increased. After rhizotomy alone all neuropeptide staining including VIP was depleted; axotomy followed by rhizotomy prodiced the same result. Axotomy of other peripheral nerves terminating in the lumbar cord increased the area of neuropeptide depletion but correspondingly increased the area of VIP staining. A large proportion of small and medium diameter dorsal root ganglion cells were stained for VIP after nerve section or axotomy but not after rhizotomy alone. A radical change in neuropeptide metabolism of dorsal root ganglion cells occurs after peripheral axotomy, in the form of a maked increase in VIP synthesis. An intact dorsal root is necessary for increases in VIP in the spinal cord indicating the primary afferent origin of the response.  相似文献   

10.
Sectioning the sciatic nerve of experimental animals at the neonatal stage triggers growth of afferent fibers in the ventral root. The present study examined the possibility that the regenerating fiber terminals grow into the spinal cord. The sciatic nerve on one side was cut in neonatal rats. After the rats were fully grown, either an electrophysiological or a histochemical study was performed. The results of electrophysiological experiments showed that stimulation of certain loci in the L5 spinal cord evoked antidromic potentials in the L5 ventral root with a long latency. Various evidence suggests that the long latency potentials are due to activation of C fibers. These C-fiber potentials were on average bigger and were elicited from more numerous loci on the side ipsilateral to the sciatic nerve lesion than on the contralateral side. Furthermore, stimulation of the spinal cord of unoperated normal rats rarely evoked such potentials. For the histochemical study, horseradish peroxidase (HRP) was injected into the L5 spinal cord after cutting the L4-L6 dorsal roots. A lot more cells in the L5 dorsal root ganglion (DRG) on the side ipsilateral to the sciatic nerve lesion were labeled with HRP transported retrogradely through the L5 ventral root than on the contralateral side. Control experiments showed that few DRG cells are labeled with HRP in normal unoperated rats. The combined results of the electrophysiological and histochemical studies suggest invasion of ventral root afferents into the spinal cord, given enough postoperative time. It is not known whether or not these terminals make functional synaptic contacts in the spinal cord.  相似文献   

11.
In order to determine the contribution made by primary sensory afferents and supraspinal projections to the immunoreactive somatostatin (IRS) content of the spinal cord, measurements were made of the concentration of IRS in the dorsal and ventral halves of the cord in cats subjected to unilateral lumbosacral dorsal rhizotomy (L1-S3) alone or combined with spinal cord transection. The molecular forms of IRS (characterized by gel chromatography) in L7 lumbar spinal cord, L6-S1 dorsal roots, ventral roots and dorsal root ganglia, and sciatic nerve were also determined. S14 was the predominant form in all tissues examined, but two additional molecular forms corresponding to S28 and S11.5 kdalton were present in dorsal root ganglia and spinal cord; S28 but not S11.5 kdalton was detected in both dorsal roots and sciatic nerves. These results indicate that S14 and S28 and S28 are transported along the central and peripheral processes of dorsal root ganglia, but that spinal cord S11.5 kdalton originates in the central nervous system. IRS in the dorsal horn was reduced by ca. 40% following dorsal root section. Neither disruption of descending pathways by spinal transection nor surgical isolation of the lumbar segements lowered cord somatostatin content below that produced by dorsal root section, indicating that most of the somatostatin within the cord arises from the dorsal root and from neurons in local spinal segments. Although the total content of IRS in the dorsal horn was reduced by ca. 40% following dorsal rhizotomy, the pattern of molecular forms was not changed accordingly. Since S14 and S28 but not S11.5 kdalton are transported via the dorsal root, the dorsal root section would be predicted to produce a relatively greater decrease in S14 and S28 than in S11.5 kdalton. Therefore, failure to find a selective loss of S14 and S28 suggests that dorsal rhizotomy affects dorsal horn IRS content not only by removing afferent input but possibly also by modifyinh the processing of IRS by the remaining somatostatinergic neurons.  相似文献   

12.
The relative contribution of intrinsic growth capacity versus extrinsic growth-promoting factors in determining the capacity of transected dorsal root axons to regenerate long distances was studied. L4 dorsal root axons regenerating into 4-cm peripheral nerve grafts on transected dorsal roots were counted. Few dorsal root myelinated axons regenerated to the distal end of the grafts by 10 weeks unless the sciatic nerve was also crushed. Regeneration of unmyelinated axons was also increased by peripheral lesions. Crush or transection of the dorsal roots without grafting did not alter GAP-43 mRNA expression in L4 dorsal root ganglion (DRG) cells. Grafting a peripheral nerve onto the cut end of an L4 dorsal root doubled the number of DRG cells expressing high levels of GAP-43 mRNA after a delay of several weeks. Peripheral nerve crush at the time of nerve grafting resulted in a very rapid rise in GAP-43 mRNA expression, which then declined to a steady level, twice that of controls, by 7 weeks. Thus, the rapid increase in the number of DRG neurons expressing high levels of GAP-43 mRNA after peripheral but not central axotomy correlates with the regeneration of central axons through nerve grafts. Because GAP-43 mRNA is slowly upregulated in a subpopulation of sensory neurons in response to exposure of their central axons to a peripheral nerve environment, environments favourable for axonal growth may act by increasing the intrinsic growth response of neurons. Lack of intrinsic growth capacity may contribute to the failure of dorsal root axons to regenerate into the spinal cord. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The activity of lumbar spinal dorsal horn lamina I neurons with afferent drive from the sciatic nerve was studied in intact cats and in cats with acute sciactic nerve transection or chronic sciatic nerve transection with neuroma formation. The majority (51 of 75) of neurons recorded in lamina I ipsilateral to a neuroma had no receptive field and could only be identified by their responses to electrical stimulation of the sciatic nerve. The remainder could be activated by the sciatic nerve, but their responses to mechanical stimulation were irregular in comparison to the stable responses of cells recorded in control animals and to the responses of cells contralateral to chronic nerve lesions. Animals with acute nerve transections demonstrated as loss sciatic nerve-innvervated cells with receptive fields except for those cells located on the lateral edge of the dorsal horn, which had normal, proximal receptive fields and response characteristics. In addition, the characteristic somatotopy of lamina I cells was not observed in some cats with chronic neuromata. The mediolateral distribution of cell types indicated that some cells had altered receptive fields following chronic nerve transection. The data presented for lamina I neurons agrees with the observation of spinal cord plasticity first presented for cat dorsal horn cells. Since there is no evidence for a redistribution of intact afferent fibers following chronic nerve transection in adult mammals, the mechanism of altered somatotopy may involved alterations in synaptic efficacy at existing synapses.  相似文献   

14.
Electrical stimulation of the frog sciatic nerve was found to produce rapid, transient swelling of the 8th and 9th dorsal root ganglia followed by prolonged swelling of the spinal cord. Swelling of the ganglion is analogous to the rapid mechanical change observed in invertebrate axons during excitation. The mechanical change observed in the spinal cord is probably related to prolonged depolarization of the primary afferent fibers near their terminals.  相似文献   

15.
Postdeafferentation reorganization in the central terminal fields of spared dorsal root axons was evaluated by examining the intraspinal distribution of horseradish peroxidase-labeled sciatic nerve afferent fibers at various intervals following the removal of several lumbar dorsal root ganglia. The sciatic projection to the spinal cord, as determined by the pattern and density of intraspinal reaction product, was remarkably stable following the ganglionectomies. For as long as 3 months later, there was no evidence that sciatic afferent fibers had formed anomalous connections either with new spinal segments or in denervated areas within normal segments of entry. These findings cast doubt upon the existence of anatomic reorganization within the spinal cord following its partial deafferentation and suggest that physiological processes other than new axonal growth underlie observations such as postdenervation alterations in the response properties of dorsal horn neurons and the recovery of behavioral function.  相似文献   

16.
The capacity of the central terminals of primary afferents to sprout into denervated areas of neonatal spinal cord and the morphology of any novel terminals has been investigated. In rats which had undergone sciatic nerve section on the day of birth, 12 of 18 physiologically characterized intact saphenous hair follicle afferents (HFAs) were labelled intra-axonally with horseradish peroxidase (HRP) were shown to sprout up to 2,000 microns into the deafferented sciatic terminal field. The morphology of these sprouts depended on which area of the sciatic nerve territory was invaded by the afferent sprouts. Six HFAs sprouted into areas normally innervated by glabrous skin afferents and the morphology of the collateral sprouts in this region resembled that of rapidly adapting (RA) afferents. The other six saphenous HFAs had sprouted into sciatic "hairy" skin areas and the morphology of these sprouts, although abnormal, was flame shaped. In rats whose sural, saphenous, and superficial peroneal nerves were cut at birth, 4 of 7 single HRP labelled RA afferents had central terminals that had sprouted into regions of cord normally devoted to "hairy" input. These showed clear signs of HFA morphology despite their peripheral receptive fields remaining in the glabrous skin. The results show collateral sprouting of single cutaneous sensory afferent axons into adjacent inappropriate central target regions following neonatal deafferentation. Such plasticity may provide some compensation following neonatal injury. The morphology of the sprouted terminals is appropriate to the new target area rather than to its functional class and is also independent of the peripheral receptive field location providing an example of central rather than peripheral control over afferent growth patterns.  相似文献   

17.
Substance P was located in the spinal cord of rats by immunocytochemistry.Section and ligation of the sciatic nerve produced a depleted area low in substance P in the medial two-thirds of laminae 1 and 2 of segments L4 and 5.The time of depletion began about 5 days after the nerve had been cut and substance P reached a steady minimum by about 9 days and remained depleted for the entire period examined, 31 days.Crush lesions of the sciatic nerve failed to produce the marked and rapid changes of spinal cord substance P observed after section and ligation.  相似文献   

18.
Intra-axonal recordings were obtained in the dorsal columns of the rat lumbosacral spinal cord. Dorsal root or dorsal column stimulation at levels subthreshold for the impaled axon elicited a prolonged depolarization corresponding to the primary afferent depolarization (PAD). The depolarization was preceded by a brief hyperpolarizing potential during which excitability was decreased. The hyperpolarization corresponds temporally to the extracellularly recorded DRP IV component of the dorsal root potential described by Lloyd and McIntyre, and may represent the intracellular correlate of this potential. Possible mechanisms for this hyperpolarization include electrical interactions between neuronal elements, a biphasic GABA response, or attenuation of background afferent axonal depolarization.  相似文献   

19.
Plasticity in the nucleus gracilis of the rat   总被引:1,自引:0,他引:1  
The nucleus gracilis of the rat contains a somatotopic map of the hindquarter similar to that in other mammals. Acute deafferentation of this dorsal column nucleus (DCN) either by dorsal root transection (roots L4, 5, and 6), by transection of the spinal cord at L3, or by peripheral nerve transection (the sciatic and saphenous nerves) creates as expected a clearly demarcated region in which cells have no receptive fields (RFs). Plasticity in the nucleus gracilis after four types of chronic deafferentiation was investigated: Experiment 1—15 to 20 days after transection of L4, 5, and 6 dorsal roots, cells in the acutely unresponsive region were found to be excited from nearby intact afferent fibers. This expansion of the effective input of intact afferent fibers is known to occur in the spinal cord. Experiment 2—Chronic transection of the sciatic and saphenous nerves was not followed by expansion of the intact input although this does occur in the spinal cord. Experiment 3—Neonatal treatment with capsaicin which destroys unmyelinated afferent fibers produced adult animals with somatotopically organized nucleus gracilis but with cells which exhibited very large RFs. This enlargement is also known to occur in the spinal cord. Experiment 4—Local application of capsaicin to a sciatic nerve of an adult enlarged the RFs of spinal cord cells after some days but had no effect on the functional organization of nucleus gracilis. Expansion of the RF of nucleus gracilis cells was, therefore, seen after dorsal root transection and after neonatal application of capsaicin but not after peripheral nerve transection or application of capsaicin to the adult single nerve. All four maneuvers produced RF expansion in the spinal cord. We conclude that the DCN has a more limited ability to respond to deafferentation than the spinal cord, and suggested that the former lacks a mechanism of connectivity control. The results are consistent with the hypothesis that primary afferent C fibers which innervate the spinal cord but not the DCN, play a role in the formation and stability of RFs formed by A fibers in adult animals.  相似文献   

20.
Regeneration of crushed axons in rat dorsal spinal roots was measured to investigate the transganglionic influence of an additional peripheral axonal injury. The right sciatic nerve was cut at the hip and the left sciatic nerve was left intact. One week later, both fifth lumbar dorsal roots were crushed and subsequently, regeneration in the two roots was assessed with one of two anatomical techniques. By anterograde tracing with horseradish peroxidase, the maximal rate of axonal regrowth towards the spinal cord was estimated to be 1.0 mm/day on the left and 3.1 mm/day on the right. Eighteen days after crush injury, new, thinly myelinated fibers in the root between crush site and spinal cord were 5-10 times more abundant ipsilateral to the sciatic nerve transection. The central axons of primary sensory neurons regenerate more quickly if the corresponding peripheral axons are also injured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号