首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbamazepine (CBZ), an anticonvulsant with psychotropic and anti-pain properties, has been reported to displace ligands at adenosine binding sites. This paper describes biochemical and behavioural studies in rodents comparing CBZ to the adenosine agonistsl-phenylisopropyl-adenosine (l-PIA) and N-ethylcarboxamido-adenosine (NECA), the new antagonists PD116,948 and PD115,199 which are also relatively A1 and A2 specific respectively, and the mixed antagonists theophylline and caffeine, attempting to determine functional correlates of the binding studies. Changes in cAMP synthesis and behavioural syndromes produced by the drugs, alone and in combination, were monitored. Classification of the observed effects in terms of A1 and A2 activity was complex, probably due to functional interactions between A1 and A2 subtypes. Nevertheless, it was found that chronic CBZ administration (0.25% in food for 3 days, followed by 0.5% for 11 days) produced a pattern of interaction identical to that of PD115,199 (10–100 mg/kg IP). Thus, both treatments attenuated the behavioural syndrome produced byl-PIA (0.1 or 0.5 mg/kg SC), but did not affect that produced by NECA (0.03 mg/kg SC). CBZ mildly increased hypoactivity after clonidine (0.2 mg/kg IP) which was used as a control. By contrast, the A1 antagonist PD116,948 (0.1–10 mg/kg IP) antagonised both behavioural syndromes. Similarly in the biochemical experiments both chronic CBZ and PD115,199 (10–100 µM) reduced stimulation of cAMP synthesis byl-PIA (confirming that this is mediated by A2 receptors), while only basal cAMP synthesis was affected by PD116,948 (10 µM) and theophylline (60 µM). Acute CBZ did not alterl-PIA stimulated cAMP synthesis at concentrations up to 100 µM (i.e. within the therapeutic plasma concentration). Chronic CBZ did not alter motor activity stimulated by caffeine (5 mg/kg IP). These results suggest that PD155,199 and PD116,948 may be useful in defining the functions of adenosine receptor subtypes, and that chronic CBZ appears to functionally down-regulate A2 receptors.  相似文献   

2.
Summary Adenosine analogs such as 5-N-ethylcarboxamide adenosine and N6-cyclohexyladenosine stimulate or inhibit adenosine cyclase activity in preparations of rat striatum depending on the assay conditions. N6-cyclohexyladenosine inhibits but does not stimulate adenosine cyclase activity in preparations of hippocampus. These findings suggest that the striatum contains both R a (stimulatory) and R i (inhibitory) adenosine receptors while the hippocampus contains only R i receptors. We have previously shown that [3H]N6-cyclohexyladenosine binds to R i receptors in rat hippocampus (Yeung and Green 1983). Comparisons of the characteristics of [3H]5-N-ethylcarboxamide adenosine and [3H]N6-cyclohexyladenosine binding to hippocampus show that [3H]5-N-ethylcarboxamide adenosine also binds to R i receptors with high affinity. [3H]5-N-ethylcarboxamide adenosine binds to R i receptors in the striatum and to a second site that is present in striatum but not hippocampus. High affinity binding of both ligands to R i receptors can be blocked by treatments with N-ethylmaleimide that do not markedly affect [3H]5-N-ethylcarboxamide adenosine binding to the second site in the striatum. The pharmacological characteristics of the second site indicate that it is the R a adenosine receptor.The abbreviations used are NEM N-ethylmaleimide - Gpp(NH)p 5-guanylylimidodiphosphate - NECA 5-N-ethylcarboxamide adenosine - l-PIA N6-(l-phenylisopropyl)adenosine - d-PIA N6-(d-phenylisopropyl) adenosine - DPX 1,3-diethyl-8-phenylxanthine  相似文献   

3.
  1. The present study describes the direct labelling of A2A adenosine receptors in human neutrophil membranes with the potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4 triazolo[1,5-c]pyrimidine, ([3H]-SCH 58261). In addition, both receptor affinity and potency of a number of adenosine receptor agonists and antagonists were determined in binding, adenylyl cyclase and superoxide anion production assays.
  2. Saturation experiments revealed a single class of binding sites with Kd and Bmax values of 1.34 nM and 75 fmol mg−1 protein, respectively. Adenosine receptor ligands competed for the binding of 1 nM [3H]-SCH 58261 to human neutrophil membranes, with a rank order of potency consistent with that typically found for interactions with the A2A adenosine receptors. In the adenylyl cyclase and in the superoxide anion production assays the same compounds exhibited a rank order of potency identical to that observed in binding experiments.
  3. Thermodynamic data indicated that [3H]-SCH 58261 binding to human neutrophils is entropy and enthalpy-driven. This finding is in agreement with the thermodynamic behaviour of antagonists binding to rat striatal A2A adenosine receptors.
  4. It was concluded that in human neutrophil membranes, [3H]-SCH 58261 directly labels binding sites with pharmacological properties similar to those of A2A adenosine receptors of other tissues. The receptors labelled by [3H]-SCH 58261 mediated the effects of adenosine and adenosine receptor agonists to stimulate cyclic AMP accumulation and inhibition of superoxide anion production in human neutrophils.
  相似文献   

4.
In studies using standard radioligands, unlabeled MDL 100,907 (R-(+)--(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol) has been shown to have a high degree of selectivity for the 5-HT2A receptor. The present study was undertaken to investigate the receptor binding characteristics of [3H]MDL 100,907 in rat cortical homogenates. [3H]MDL 100,907 was found to reach equilibrium at 37°C after 15 min. Saturation experiments indicated binding to a single site with a KD of 0.56 nM, Hill slope of 1.15, and a Bmax of 512 fmol/mg protein. In parallel experiments with the standard 5-HT2A receptor radioligand, [3H]ketanserin, with prazosin added to block 1 receptors, a similar Hill slope and Bmax was noted but a two-fold higher KD was found. In competition binding studies using 0.5 nM [3H]MDL 100,907, some 19 standard ligands to various receptors including the 5HT1A, D2, 1, and receptors resulted in estimated KI values that were consistent with [3H]MDL 100,907 selectively binding to the 5-HT2A receptor. A comparison of the KI values for 17 standard 5-HT2A receptor agonists and antagonists displacing [3H]MDL 100,907 versus [3H]ketanserin resulted in a highly significant linear correlation (R2 = 0.96, P<0.001). Taken together these results suggest that [3H]MDL 100,907 is binding to the 5-HT2A receptor with a sub-nanomolar affinity without the use of secondary blocking agents.  相似文献   

5.
Summary N6-p-Hydroxyphenylisopropyladenosine (HPIA) has been labelled with carrier-free Na[125I] to very high specific activity (2,175 Ci/mmol) and used as an agonist ligand to characterize Ri adenosine receptors in rat cerebral cortex membranes. The binding is saturable, reversible, stereospecific and dependent on protein concentration. The specific binding at 37°C was of high affinity with an equilibrium dissociation constant KD of 0.48 nmol/l and was saturable with 0.23 pmol of [125I]HPIA per mg of protein. The rate constant of association, k1, was 3.25×108 l mol–1 min–1 and that of dissociation, k2, 0.0110 min–1 yielding a t1/2 of 63 min. In competition experiments the (–)isomer of N6-phenylisopropyladenosine (PIA) was 16-fold more potent than the (+)isomer in competing for the binding sites. Specific binding was most effectively displaced by N6-cyclohexyladenosine (CHA, ki=0.26 nmol/l), (–)PIA (ki=0.33 nmol/l) and HPIA (ki=0.52 nmol/l), whereas 5-N-ethylcarboxamidoadenosine (NECA, ki-1.42 nmol/l) was less effective. The methylxanthines 3-isobutyl-1-methylxanthine (IBMX), theophylline and caffeine which have been classified as adenosine antagonists had ki values between 5–34 mol/l. Binding of [125I]HPIA was regulated by guanine nucleotides and divalent cations. The results indicate that [125I]HPIA labels Ri adenosine receptors in rat brain membranes.  相似文献   

6.
  1. The present study describes for the first time the characterization of the adenosine A2A receptor in human lymphocyte membranes with the new potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4 triazolo [1,5-c] pyrimidine, ([3H]-SCH 58261). In addition, both receptor affinity and potency of reference adenosine receptor agonists and antagonists were determined in binding and adenylyl cyclase studies.
  2. Saturation experiments revealed a single class of binding sites with Kd and Bmax values of 0.85 nM and 35 fmol mg−1 protein, respectively. A series of adenosine receptor ligands were found to compete for the binding of 0.8 nM [3H]-SCH 58261 to human lymphocyte membranes with a rank order of potency consistent with that typically found for interactions with the A2A-adenosine receptor. In the adenylyl cyclase assay the same compounds exhibited a rank order of potency similar to that observed in binding experiments.
  3. Thermodynamic data indicate that [3H]-SCH 58261 binding to human lymphocytes is entropy and enthalpy-driven, a finding in agreement with the thermodynamic behaviour of antagonists for rat striatal A2A-adenosine receptors.
  4. It is concluded that in human lymphocyte membranes [3H]-SCH 58261 directly labels binding sites showing the characteristic properties of the adenosine A2A-receptor. The presence of A2A-receptors in peripheral tissue such as human lymphocytes strongly suggests an important role for adenosine in modulating immune and inflammatory responses.
  相似文献   

7.

Aim:

Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABAA receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABAA receptors following short and long-term exposure to zolpidem in vitro.

Methods:

Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABAA receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [3H]flunitrazepam binding sites.

Results:

A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [3H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L–1 mmol/L) enhanced [3H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [3H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [3H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [3H]flunitrazepam binding.

Conclusion:

The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABAA receptors that could be related to the development of tolerance and dependence.  相似文献   

8.
Summary The antiserotonin properties of a series of neuroleptics, 5-HT-receptor blockers and some adrenoceptor antagonists were investigated in several in vivo test systems (l-5-HTP syndrome and 5-HT-paw edema in the rat) and in an in vitro test (isolated rat uterus preparation). The results were compared to the results obtained with these drugs in an in vivo 3H-spiperone binding assay in the rat. The computations of the relative ED50 (or IC50) values obtained in different test procedures showed that the ability of drugs to bind to 5-HT receptors labelled by 3H-spiperone in the rat frontal cortex correlates fairly well with their potencies to inhibit the l-5-HTP syndrome or 5-HT-induced rat pawedema (Spearman rank correlation coefficient, r=0.80 and 0.79 respectively, n=22). In an in vitro test (rat uterus) the estimated 5-HT-receptor blocking potency of the tested drugs did not, however, correlate with any of the in vivo measures used for this purpose. The results suggest, therefore, that for the determination of central antiserotonin effects of drugs in the rat, functional in vivo tests (l-5-HTP syndrome or 5-HT-induced rat paw-edema) could yield about the same information as the specific, in vivo 3H-spiperone binding assay. The 5-HT-receptor type mediating the behavioral responses to l-5-HTP is tentatively defined as a 5-HT2 receptor.  相似文献   

9.
Summary Modulation of acetylcholine release via adenosine receptors was studied in rabbit hippocampal slices, which were preincubated with 3H-choline and then continuously superfused. Electrical field stimulation of the slices elicited a release of acetylcholine, which was inhibited in a concentration-dependent manner by various adenosine receptor agonists. The effects of the agonists were antagonized by the methylxanthines. From the order of potency: cyclohexyladenosine > (–)phenylisopropyl-adenosine ((–)PIA) > 5-N-ethylcarboxamideadenosine (NECA) > 2-chloradenosine > (+)phenylisopropyladenosine > adenosine, the inhibitory adenosine receptor may be classified as A1-(R1-)receptor. In experiments on rabbit caudate nucleus slices, adenosine receptor agonists only slightly decreased the evoked acetylcholine release.The presence of an inhibitory tone of endogenous adenosine on hippocampal acetylcholine release is supported by the following findings: 1) the methylxanthines theophylline, 8-phenyltheophylline and 3-isobutylmethyl-xanthine (IBMX) increased the evoked acetylcholine release in concentrations below those required for phosphodiesterase inhibition. 2) Adenosine uptake inhibitors, in contrast, decreased the evoked transmitter release. 3) Deamination of endogenous adenosine by addition of adenosine deaminase to the medium enhanced the acetylcholine release.In conclusion, acetylcholine release in the hippocampus is depressed at the level of the cholinergic nerve terminals by endogenous adenosine via A1-(Ri-)receptors.  相似文献   

10.
Summary Recently [3H]-CGS 21680 (2-[p-(2-carbonylethyl)-phenylethylamino]-5-N-ethylcarboxamidoadeno-sine) has been identified as a selective adenosine A2-receptor agonist. In this study the binding of [3H]-CGS 21680 to 10 m sections of rat neostriatum was investigated with quantitative autoradiography. Specific, saturable binding was detectable, and Scatchard analysis of saturation experiments gave estimates for K D and B max of 1.7 nM and 322 fmol/mg protein, respectively. The rank order of potency for inhibition of [3H]-CGS 21680 binding was 5-N-ethylcarboxamidoadenosine (1.9 nM) > 2-chloroadenosine (18 nM) > R-N6-phenylisoprop-yladenosine (59 nM) > S-N6-phenylisoprophyladeno sine (460 nM) > 1,3-dipropyl-8-cyclopentylxanthine (700 nM). The binding of [3H]-CGS 21680 was sensitive to GTP, since 1 M GTP reduced binding to 4.7% of control. These data support the identity of CGS 21680 as an agonist at high affinity adenosine A2-receptors and indicate these receptors in rat striatum are coupled to guanine nucleotide binding proteins. Send offprint requests to F. E. Parkinson at the above address  相似文献   

11.
Summary Using [3H]8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a 3H-labeled A1-selective adenosine antagonist with high affinity and extremely low non-specific binding, it was possible to quantitatively evaluate the effect of GTP on agonist binding. Competition experiments on [3H]DPCPX binding to guinea-pig cerebral cortical membranes in the absence of GTP showed a high- and a low-affinity state for adenosine receptor agonists (82/18% for N6-cyclopentyladenosine). Addition of 1 mmol/l GTP only partially converted the high-affinity state of the A1-adenosine receptor into a low-affinity state. This failure of complete conversion from high- to low-affinity state was also seen in membranes from rat testes under the same experimental conditions and, moreover, in guinea-pig brain membranes under different experimental conditions, such as in the presence of Na+ or when free Mg2+ has been reduced by EDTA. The only difference was that in the absence of Mg2+ the high-affinity state of the A1-receptor was markedly smaller than in the presence of Mg2+ (36% vs. 82%). By contrast, in the solubilized state of the receptor total conversion of all receptors into the low-affinity state was obtained upon addition of 1 mmol/l GTP. Reduction of binding of the agonist radioligand [125]iodo-N6-(4-hydroxyphenylisopropyl)-adenosine with increasing concentrations of GTP and Gpp(NH)p demonstrated that the guanine nucleotide affinity to the solubilized A1-receptor was more than 100-fold higher than to the membrane-bound receptor. Hence, the incomplete transition of the high-affinity into the low-affinity state of the membrane-bound A1-receptor upon addition of GTP may be attributable to the low affinity of the membrane-bound receptor-G-protein complex for GTP.Abbreviations CHAPS 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate - CPA N6-cyclopentyl-adenosine - dATP deoxy-ATP - DPCPX 8-cyclopentyl-1,3-dipropylxanthine - DPX 1,3-diethyl-8-phenylxanthine - Gpp(NH)p guanylylimidodiphosphate - HEPES 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid - [125I]HPIA (–)-N6-3-([125I]-iodo-4-hydroxyphenylisoprop-yl)-adenosine - NECA 5-(N-ethylcarboxamido)adenosine - PEI polyethylenimine - R-PIA (–)-N6-(R-phenylisopropyl)-adenosine - [3H]XAC [3H]xanthine amine congener Send offprint requests to Dr. Wolfgang Schütz at the above address  相似文献   

12.
Summary We investigated the negative chronotropic and vasodilating properties of new selective A1 and A2 adenosine agonists such as 2-chloro-N6-cyclopentyladenosine (CCPA) and 2-hexynyl-5-N-ethyl-carboxamidoadenosine (2-hexynyl-NECA) as compared with reference adenosine analogues. The potency of these compounds on heart rate was assessed in the rat atrial preparation and their activity on the vascular tone was determined in both rat aorta and bovine coronary artery. CCPA was found to be the most potent At agonist of those currently available in producing negative chronotropic effects (EC50 = 8.2 nM). The A1 antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX) blocked CCPA activity in a dose-dependent manner. There was also a significant correlation between its biological effect and the affinity for A1 receptors as measured in the rat brain by [3H]-N6-cyclohexyladenosine (3[H]-CHA) binding. The A2 selective agonist 2-hexynyl-NECA showed vasodilating properties comparable with those observed with the reference compounds, CGS 21680 and NECA. EC50 values were 596 and 569 nM in rat aorta and bovine coronary artery, respectively. Moreover, the rank order of potency was similar in the two vascular districts examined, suggesting that the rat aorta is a useful model for studying the effects of adenosine derivatives on vascular tone. In addition, the potency of the compounds in inducing vasodilation was found to be correlated with their affinity for A2 receptors as measured in the rat striatum by 3[H]-CGS 21680 binding.These data further support that A1 receptors are involved in depressing cardiac activity and A2 receptors in inducing vasorelaxation.Correspondence to A. Conti at the above address  相似文献   

13.
Summary In the present work we studied the pharmacological profile of adenosine receptors in guinea pig atria by investigating the effect of different adenosine analogues on86Rb+-efflux from isolated left atria and on binding of the antagonist radioligand 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX) to atrial membrane preparations. The rate of86Rb+-efflux was increased twofold by the maximally effective concentrations of adenosine receptor agonists. The EC50-values for 2-chloro-N6-cyclopentyladenosine (CCPA), R-N6-phenylisopropyladenosine (R-PIA), 5-N-ethylcarboxamidoadenosine (NECA), and S-N6-phenylisopropyladenosine (S-PIA) were 0.10, 0.14, 0.24 and 12.9 M, respectively. DPCPX shifted the R-PIA concentration-response curve to the right in a concentration-dependent manner with a KB-value of 8.1 nM, indicating competitive antagonism. [3H]DPCPX showed a saturable binding to atrial membranes with a Bmax-value of 227 fmol/mg protein and a KD-value of 1.3 nM. Competition experiments showed a similar potency for the three agonists CCPA, R-PIA and NECA. S-PIA is 200 times less potent than R-PIA. Our results suggest that the K+ channel-coupled adenosine receptor in guinea pig atria is of an A1 subtype.Abbreviations CCPA 2-chloro-N6-cyclopentyladenosine - DPCPX 8-cyclopentyl-1,3-dipropylxanthine - NECA 5-N-ethylcarboxami-doadenosine - PIA N6-phenylisopropyladenosine Send offprint requests to H. Tawfik-Schlieper at the above address  相似文献   

14.
Summary The binding of 3H-adenosine to rat brain membranes was studied by a microcentrifugation technique. Specific binding of 3H-adenosine was rapid, reversible, saturable and dependent on pH and temperature. Scatchard plots of equilibrium binding data were nonlinear suggesting the existence of two different binding sites for adenosine. The dissociation constants (K d) were 1.7 M and 13.6 M and the maximal number of binding sites (B max) 31 and 165 pmol adenosine bound per mg of membrane protein. Ten adenosine derivatives were studied for their ability to compete with 3H-adenosine binding. The phosphorylated adenosine compounds 5-AMP, cyclic AMP and ATP were most potent in displacing 3H-adenosine from its binding sites and the IC50-values ranged from 11–25 M. N6-Phenylisopropyladenosine produced only partial inhibition (30%) of 3H-adenosine binding and no stereospecific difference between the (–)-and (+)isomer was observed. Several methylxanthines known as adenosine antagonists competed for the 3H-adenosine binding sites parallel with their pharmacological potency. The results offer a first approach for the study of adenosine binding sites in brain membranes.  相似文献   

15.
Summary (–)N6-Phenylisopropyladenosine, a potent agonist in adenosine-responsive cellular systems, has been labeled with tritium to high specific activity (26 Ci/mmol) and used to identify adenosine binding sites in rat brain membranes. (–)[H3]N6-Phenylisopropyladenosine binding was studied by a vacuum filtration technique. The binding was rapid, rapidly reversible, dependent on pH and temperature and stereospecific since the (–)isomer of N6-phenylisopropyladenosine was 40-fold more potent than the (+)isomer in competition experiments. The stereospecific binding sites were saturable and bound 0.8 pmol of (–)N6-phenylisopropyladenosine per mg of membrane protein. The dissociation constant (KD) of (–)N6-phenylisopropyladenosine for these sites was 5–12 nM as determined independently by saturation and kinetic binding studies. Endogeneous ligands seem to occupy the binding sites since pretreatment with adenosine deaminase increased the specific binding.Adenosine and several adenosine derivatives were studied for their ability to compete with (–)[3H]N6-phenylisopropyladenosine binding. (–)N6-Phenylisopropyladenosine-5-monophosphate, N6-phenyladenosine, N6-benzyladenosine, 2-chloroadenosine and adenosine were most potent in displacing the radioligand from its binding sites and the IC50-values ranged from 0.3–7 M. Physiologically inactive compounds such as inosine, hypoxanthine, adenine and the ribose-modified analogues 2-deoxyadenosine and 2,5-dideoxyadenosine did not substantially inhibit binding at concentrations up to 100 M. The adenosine antagonists isobutylmethylxanthine (IC50 3.2 M), theophylline (IC50 7.6 M) and caffeine (IC50 99 M) competed for the binding sites of (–)[3H]N6-phenylisopropyladenosine in a manner which parallels their known pharmacological activity whereas other phosphodiesterase inhibitors were ineffective.The (–)[3H]N6-phenylisopropyladenosine binding sites in rat brain membranes appear to be equivalent to adenosine receptor sites on the cell surface which have recently been classified as R-site adenosine receptors.This work is dedicated in memory of Erik Westermann (1923–1978) and Klaus Stock (1931–1978) who first described the potent pharmacological effects of N6-phenylisopropyladenosine and stimulated much of the recent interest in adenosine receptor research  相似文献   

16.
Summary To characterize the properties of nicotinic acetylcholine receptors (nAChRs) in autonomic ganglia, we examined l-[3H]nicotine binding to membrane fraction prepared from cultured bovine adrenal chromaffin cells, using a modified filtration method. Binding of l-[3H]nicotine to non-treated glass fiber filters interfered with the detection of specific binding to the membrane fraction. Presoaking glass fiber filters in 3% or higher concentrations of polyethyleneimine (PEI) solution (sixty times higher than earlier used concentration) for at least 5 h could reduce the binding of l-[3H]nicotine to the filters to the background level. Specific l-[3H]nicotine binding to the membrane fraction was detected only when the membrane fraction was prepared in Ca2+- and Mg2+ (EDTA, EGTA and protease inhibitors were added)-free buffer. Specific binding of l-[3H]nicotine was saturable and reversible. Both computer program and Scatchard analysis revealed a single class of high affinity binding sites with an average Kd of 8.9 nM and a Bmax of 42.5 fmol/mg protein. The Hill coefficient was 0.98. In inhibition studies, both cholinergic agonists (carbachol and l-nicotine) and ganglionic agonists (lobeline and 1,1-dimethyl-4-phenylpiperazinium iodide) were much effective in inhibiting l-[3H]nicotine binding, whereas both neuromuscular blocking (-bungarotoxin and d-tubocurarine) and ganglionic blocking agents were less effective. These results suggest that high affinity nicotinic binding sites on adrenal chromaffin cells are nAChRs of the ganglion-type, which have properties different from nAChRs on the neuromuscular junction but similar to nAChRs in the brain. Send offprint requests to K. Lee at his present address  相似文献   

17.
The role of the different opioid receptors was studied in rats trained to discriminate SC injections of 3.0 mg/kg morphine from saline by tests for generalization to graded doses of morphine and receptor-selective peptides administered into the lateral cerebral ventricle. Dose-dependent morphine-like stimulus effects were produced over a wide range of doses (0.001–30 g), depending upon ligand and animal, by morphine, by themu-selective peptides DAGO[d-Ala2-NMePhe4-Gly(ol)-enkephalin] and FK33824[d-Ala2,NMePhe4-Met(O)5-(ol)-enkephalin], and by thedelta-selective peptide, DADL[d-Ala2,d-Leu5enkephalin]. The order of relative potency of these substances was: FK33824>DAGO>morphine>DADL. In contrast, DPLPE[d-Pen2,l-Pen5)enkephalin], which has much greaterdelta receptor selectivity than does DADL, and dynorphin A(1-13) (0.1–10 g), akappa-receptor agonist, engendered choice responding appropriate for saline. When 1.0 g DADL, a dose lacking morphine-like discriminative effects, was administered concurrently with SC morphine, the stimulus effects of morphine were potentiated. Concurrent administration of 10 g dynorphin A(1-13) and morphine attenuated the stimulus effects of morphine inconsistently. These results support previous findings thatmu-opioid receptors are of primary importance in mediating the morphine-like discriminative effects of opioid peptides. They also suggest that morphine-like discriminative effects can be modulated by other types of opioid receptors.  相似文献   

18.
19.

Rationale

Caffeine and other methylxanthines induce behavioral activation and anxiety responses in mice via antagonist action at A2A adenosine receptors. When combined with the opioid antagonist naloxone, methylxanthines produce a characteristic quasi-morphine withdrawal syndrome (QMWS) in opiate-naive animals.

Objectives

The aim of this study was to establish the role of A2A receptors in the quasi-morphine withdrawal syndrome induced by co-administration of caffeine and naloxone and in the behavioral effects of caffeine.

Methods

We have used A2A receptor knockout (A2AR?/?) mice in comparison with their wild-type and heterozygous littermates to measure locomotor activity in the open field and withdrawal symptoms induced by caffeine and naloxone. Naïve wild-type and knockout mice were also examined for enkephalin and dynorphin mRNA expression by in situ hybridization and for μ-opiate receptor by ligand binding autoradiography to check for possible opiate receptor changes induced by A2A receptor inactivation.

Results

Caffeine increases locomotion and anxiety in wild-type animals, but it has no psychomotor effects in A2AR?/? mice. Co-administration of caffeine (20 mg/kg) and naloxone (2 mg/kg) resulted in a severe quasi-morphine withdrawal syndrome in wild-type mice that was almost completely abolished in A2AR?/? mice. Heterozygous animals exhibited a 40% reduction in withdrawal symptoms, suggesting that there is no genetic/developmental compensation for the inactivation of one of the A2AR alleles. A2AR?/? and wild-type mice have similar levels of striatal μ-opioid receptors, thus the effect is not due to altered opioid receptor expression.

Conclusions

Our results demonstrate that A2A receptors are required for the induction of quasi-morphine withdrawal syndrome by co-administration of caffeine and naloxone and implicate striatal A2A receptors and μ-opiate receptors in tonic inhibition of motor activity in the striatum.  相似文献   

20.
Summary 3H-Domperidone, a potent antagonist of dopamine but less lipophilic than neuroleptic drugs, was studied as a potential ligand for cerebral dopamine receptors. It labeled with high affinity an apparently homogeneous population of non-interacting sites in a particulate fraction of mouse striatum. Association occurred rapidly and dissociation was relatively slow (t1/24min); this allowed extensive washing of membranes which reduced the non-specific binding to values as low as 5% of the total binding. Consistent Kd values of 0.7 nM were obtained by analysing by various methods either the kinetics of binding or the saturation of binding sites at equilibrium.The relative potencies of various dopamine receptor agonists or antagonists to inhibit 3H-domperidone binding, paralleled their pharmacological activity. On the other hand, a variety of non-dopaminergic agents failed to inhibit 3H-domperidone binding. The findings indicate that striatal dopamine receptors are selectively labeled by this 3H-ligand.In various non-striatal regions of mouse brain the saturable binding of 3H-domperidone was almost entirely inhibited by apomorphine indicating its selectivity for dopamine receptors in spite of the low density of the latter. This was not the case for the binding of 3H-spiperone, evaluated on the same preparations, indicating that 3H-domperidone probably represents the most selective ligand presently available.A portion of this work has been already presented in abstract form at the Symposium on Receptors of Dopamine Antagonists (Beerse), Belgique 1978; Martres et al., 1978  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号