首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the benefit of motor programming analysis for distinguishing patients with parkinsonism, we compared the spatiotemporal pattern of event-related desynchronization (ERD) preceding a self-paced voluntary wrist flexion between two groups of 10 patients with progressive supranuclear palsy (PSP) and Parkinson's disease (PD) and 10 control subjects. ERD of the mu rhythm was computed from 11 source derivations covering the medial frontocentral, central, and parietocentral areas during two successive left and right experimental conditions (80 self-paced wrist flexions). ERD began in the control group 1750 ms before movement onset over the contralateral central area and then appeared bilaterally on movement execution. In both patient groups, spatiotemporal distribution differed from that in the control group. In the PSP group, ERD had a shorter latency over the contralateral primary sensorimotor area compared with the PD group (PSP: 375 ms before movement onset for both conditions; PD: right flexion 1125 ms before movement onset, left flexion 1000 ms). ERD was observed over the parietocentral area in both groups but also with a clear reduction of latency before movement onset in the PSP group. In both groups, a bilateral central pattern appeared 250 ms before movement execution. In conclusion, our study indicates that ERD analysis is a useful method for observing the changes in cortical activation and for measuring motor programming impairment in parkinsonism, which was more affected in PSP than in PD.  相似文献   

2.
Cortical electroencephalographic rhythms reactivity may be quantified using event-related desynchronization (ERD) and synchronization (ERS) methods. We therefore studied cortical activation occurring during programming and performance of voluntary movement in healthy subjects. EEG power evolution within the reactive frequency bands (mu and beta central rhythms) was averaged before, during and after a minimum of 50 self-paced flexions of the thumb. Recordings in 18 normal adults showed that ERD (decrease in power) of mu rhythm started 2,000 ms before movement onset, while ERD of beta rhythm started 1,500 ms before movement onset. Early ERD of mu and beta rhythms were located over the contralateral central region covering primary motor cortex. They were followed by bilateral ERD occurring over ipsilateral and contralateral central regions during performance of the movement. At the end of the movement, an ERS (increase in power) of beta rhythm occurred. These results suggest that programming of voluntary movement induces early activation in contralateral sensorimotor areas, while performance of the movement induces bilateral activation in sensorimotor areas. ERS of beta rhythm occurring at the end of the movement could correspond to inactivation of motor areas activated by movement. Based on EEG activity, ERD and ERS prove to be useful methods to analyze cortical activation during programming and performance of voluntary movements with good spatial and temporal resolution.  相似文献   

3.
In Parkinson's disease, poor motor performance (resulting primarily from abnormal cortical activation during movement preparation and execution) may also be due to impaired sensorimotor integration and defective cortical activity termination of the ongoing movement, thus delaying preparation of the following one. Reduced movement-related synchronization of the beta rhythm in Parkinson's disease compared to controls has been put forward as evidence for impaired postmovement cortical deactivation. We assessed the effects of subthalamic deep brain stimulation and l-dopa on beta rhythm synchronization over the premotor and primary sensorimotor cortex. Ten advanced patients performed self-paced wrist flexion in four conditions according to the presence or not of stimulation and l-dopa. Compared to without treatment, the motor score improved by approximately 60%; the beta synchronization was present over the contralateral frontocentral region and increased significantly over the contralateral central region under stimulation and under l-dopa, with a maximal effect when both treatments were associated. Our advanced patients displayed very focused and attenuated beta rhythm synchronization which, under stimulation, increased over the contralateral premotor and primary sensorimotor cortex. Stimulation and l-dopa both partly restored postmovement cortical deactivation in advanced Parkinson's disease, although the respective mechanisms probably differ. They may improve bradykinesia and cortical deactivation by reestablishing movement-related somatosensory processing at the end of the movement through the basal ganglia into the cortex.  相似文献   

4.
We tested whether dispersible L-dopa has acute effects on event-related desynchronization (ERD) of the mu rhythm in patients with idiopathic Parkinson's disease (IPD). ERD to voluntary movement is delayed in akinetic IPD patients and improves after chronic L-dopa treatment. We evaluated ERD to self-paced finger movement in 14 IPD patients (before and 30–40 min after oral administration of dispersible L-dopa) and in 10 normal subjects. Sensorimotor ERD onset contralateral to movement was significantly delayed in IPD patients compared to normal subjects. This abnormality was no longer significant after L-dopa treatment. We conclude that a single dose of dispersible L-dopa can improve not only motor performance in IPD patients but also the timing of cortical activation of sensorimotor areas during motor programming. Received: 22 November 2001 / Accepted in revised form: 11 June 2002 Correspondence to G. Magnani  相似文献   

5.
Objective: This study aimed to investigate changes in spatio-temporal, event-related (de)synchronization (ERD/ERS) patterns recorded with respect to the more akinetic versus the less akinetic side during performance of a visuo-guided targeting movement when compared to an index finger extension.Methods: Twelve de novo parkinsonian patients were recorded. ERD/ERS in mu and beta frequency bands was computed from 21 source derivations.Results: When the index finger extension was performed with the less akinetic limb, mu ERD focused over contralateral central region appeared 2 s before movement. With the targeting movement, additional pre-movement mu ERD was observed over the parietal region, as well as earlier ipsilateral mu ERD. When the same movements were performed with the more akinetic limb, we observed delayed mu ERD over contralateral regions, earlier ipsilateral mu ERD and a lack of contralateral parietal mu ERD before the targeting movement. Following index finger extension for the less akinetic limb, a focused contralateral central beta ERS was recorded, increasing and spreading after the targeting movement. In contrast, for the more akinetic limb, beta ERS was dramatically attenuated and remained unchanged after the targeting movement.Conclusions: These results confirm the fact that motor programming is delayed, and provide some insight into what may well be impaired sensorimotor integration in Parkinson's disease.  相似文献   

6.
In the early stages of Parkinson's disease (PD), impaired motor preparation has been related to a delay of mu rhythm movement-related desynchronisation, suggesting hypoactivation of the contralateral, primary sensorimotor (PSM) cortex. Following movement, a decrease in the amplitude of beta rhythm movement-related synchronisation was observed over the same region. This decrease--not seen in control subjects--was thus thought to be related to an impairment in cortical deactivation. By monitoring movement-related (de)synchronisation, we aimed (i) to extend to advanced PD the observations made in less-advanced situations and (ii) to test the effect of acute L-Dopa on these abnormalities. The United Parkinson's Disease Rating Scale (UPDRS) III score decreased by about 60% following acute L-Dopa administration, and we observed the following concurrent changes: a marked increase in mu desynchronisation pre-movement latency (thus reduced delay) during movement preparation over contralateral, central regions; an increase in mu desynchronisation during movement execution over bilateral central regions; a decrease in mu desynchronisation latency over bilateral frontocentral regions, and a significant increase in beta synchronisation over contralateral, central regions after movement. Changes of mu and beta rhythm parameters seemed to be inversely correlated with bradykinesia. Mu rhythm desynchronisation latency and beta synchronisation amplitude further decreased in advanced PD compared to earlier stages of the disease, suggesting greater impairment of cortical activation/deactivation as the disease progresses. L-Dopa partially restored the abnormal mu and beta rhythm cortical (de)synchronisation patterns over the PSM cortex.  相似文献   

7.
OBJECTIVE: In this study we aimed to investigate if there are age-related differences in cortical oscillatory activity induced by self-paced muscular pure relaxation in comparison with muscle contraction as reference movement. METHODS: Event-related (de)synchronization (ERD/ERS) have been recorded related to voluntary muscle contraction and relaxation in 10 young and 10 elderly right-handed healthy subjects. The muscle relaxation task consisted in a voluntary relaxation of maintained wrist extension without any overt, associated muscle contraction. The muscle contraction task corresponded to a self-initiated brief wrist extension. RESULTS: In elderly subjects compared to young ones, mu and beta ERD preceding muscular relaxation was more widespread, beginning significantly earlier over contralateral frontocentral and parietocentral regions (p<0.05) as well as over ipsilateral regions (p<0.05). The beta synchronization was significantly attenuated (p<0.05). CONCLUSIONS: These results suggest an alteration of inhibitory motor systems and an altered post-movement somesthetic inputs processing with normal aging. These alterations were accompanied by compensatory mechanisms. SIGNIFICANCE: These age-related alterations during different phases of muscle relaxation could participate to explain global sensorimotor slowing observed with normal aging.  相似文献   

8.
Summary: Purpose: The spatiotemporal distribution of EEG mu rhythm desynchronization was analyzed in patients with partial epilepsy to determine whether frequent focal motor seizures could induce a change of cortical activation during the planning of a voluntary movement.
Methods: The event-related desynchronization (ERD) of the mu rhythm was quantified during a self-paced voluntary movement of the thumb. The results were compared betyeen two groups of patients with epilepsy: in one group (n = 12), the patients had frontal lobe epilepsy with frequent focal motor seizures (FMS); in the second group (n = 12), they had temporal lobe epilepsy (TLE) with complex partial seizures but no ictal movement disorder. The results were also compared with those of control subjects of same age (n = 10).
Results: In the control group, desynchronization of murhythm began over the contralateral central region 2,000 ms before the movement onset. In the FMS group, the desynchronization of mu rhythm was delayed, appearing only 500 ms before the movement onset, and the amplitude of ERD was increased over the frontocentral region. In the TLE group, the spatiotemporal pattern of ERD was the same as in normal subjects, but the amplitude of ERD was increased.
Conclusions: These results indicate that there is a change of reactivity of mu rhythm in patients with partial epilepsy. The change in spatiotemporal pattern of ERD in patients with frequent focal motor seizures suggests that there is an abnormal cortical activation during the planning of a voluntary movement.  相似文献   

9.
OBJECTIVE--To study planning of movement in Parkinson's disease. METHODS--The spatiotemporal pattern of movement related desynchronisation (MRD) preceding a self paced voluntary wrist flexion was compared between two groups of 10 untreated right and left hemiparkinsonian patients receiving no treatment and 10 control subjects. The MRD was computed in the 9 to 11 Hz frequency band from 11 source derivations covering the frontocentral, central, and parietocentral areas, during two successive left and right experimental conditions. RESULTS--In the two patient groups the desynchronisation appeared over the primary sensorimotor area contralateral to the affected side with a shorter latency (750 ms before movement onset for the right hemiparkinsonian group and 875 ms for the left hemiparkinsonian group) than in the control group (1750 ms), only when the movements were performed with the akinetic hand. For the non-affected hand, the same latency as in the control group was noted (1750 ms). CONCLUSION--The delay of appearance of MRD in Parkinson's disease confirmed that the programming of movement is affected, thus partially explaining akinesia.  相似文献   

10.
OBJECTIVES: Indications of the functional neurosurgical treatments become more and more numerous, however, few methods were used to study the mechanism of action and some discrepancies came to light. We assessed the influence of internal globus pallidus (GPI) stimulation and L-Dopa on cortical activation during the preparation and execution phases of the movement compared to clinical improvement of Parkinson's disease.METHODS: We recorded the movement-related cortical potential and movement-related desynchronization.RESULTS: The Unified Parkinson's Disease Rating Scale was improved by 46% under stimulation and 64% under stimulation with L-Dopa. Premovement desynchronization was significantly increased on central contralateral derivation under stimulation with L-Dopa and decreased on frontocentral ipsilateral derivation under stimulation with and without L-Dopa. Movement desynchronization was improved on the contralateral motor cortex under stimulation with and without L-Dopa (benefit correlated with bradykinesia improvement). The movement-related postmotor potential was significantly increased under stimulation with L-Dopa.CONCLUSIONS: GPI stimulation alone influenced the premotor cortex activation during the planning and induced a selective and focal effect on the organisation of motor cortical activity during the movement execution which may explain bradykinesia improvement. The motor cortex activation improvement under stimulation with L-Dopa concerned both the movement preparation and execution but remained very localised to the contralateral motor cortex.  相似文献   

11.
Patterns of cortical activation during planning of voluntary movement   总被引:4,自引:0,他引:4  
The influence of planning of self-paced voluntary finger movements on alpha band components was studied in 6 volunteers. Brain potentials from 29 electrodes, referred to the right ear, were recorded 4 sec before and 2 sec after movement onset. These data were transformed to obtain the laplacian operator, which was done by computing the local average reference. The event-related desynchronization (ERD) of upper alpha components was then calculated in each record at intervals of 250 msec and topographically displayed in the form of serial ERD maps. A first significant ERD (P less than 0.01, sign test) was found 1.75 sec +/- 0.61 before the movement, most prominent over the contralateral sensorimotor area and over midfrontal areas (the latter can probably be interpreted as an activation of the supplementary motor area). From these data we can conclude that the side of movement is predetermined more than 1 sec before movement onset.  相似文献   

12.
OBJECTIVE: Abnormal low- and high-frequency oscillatory activities have been linked to abnormal movement control in Parkinson's disease. We aimed to study how low- and high-frequency oscillatory activities are modulated by movement in the contralateral and ipsilateral subcorticocortical loops. METHODS: We studied mu, beta and gamma rhythm event-related desynchronisation (ERD) and synchronisation (ERS) recorded from electrode contacts in the subthalamic nucleus (STN) areas and over the primary sensorimotor (PSM) cortex. RESULTS: Mu and beta ERD/ERS patterns were very similar when comparing PSM cortex and STN areas and very different when comparing contralateral and ipsilateral structures. Beta rhythm ERS was more predominant over contralateral structures than over ipsilateral ones. Gamma rhythm ERS was only recorded from the contralateral STN area (particularly following administration of L-Dopa). For all patients, the best bipolar derivations - as defined by the earliest mu and beta ERD and the strongest beta and gamma ERS - always included the STN electrode contacts that produced the best clinical results. CONCLUSIONS: Movement-related activity is involved in the movement preparation in the contralateral subthalamo-cortical loop and in the movement execution in the bilateral subthalamo-cortical loops. SIGNIFICANCE: Contralateral beta rhythm ERD seemed to be related to bradykinesia of the limb performing the movement.  相似文献   

13.
Movement-related cortical potentials in response to simple, self-paced, brisk index finger abduction movements were recorded in patients with simple and complex writer's cramp and compared with those of age-matched control subjects. Analysis of the movement-related cortical potential waveforms showed that the Bereitschaftspotential, the peak of the negative slope, and the frontal peak of the motor potential did not differ in the two groups, except for the average amplitude of the early part of the negative-slope peak, which was decreased in the patient group during the interval of 300 to 200 msec prior to electromyographic onset. This finding was restricted to the electrodes overlying the contralateral and midline central electrodes. Movement-related cortical potentials from patients and control subjects could be equally accounted for by a four-dipole source model with sources located in the contralateral and ipsilateral sensorimotor regions and the supplementary motor area. There was a trend for a reduction in the strength of the sensorimotor sources active during the premotor period in the patient group, but the difference did not reach a significant level for any individual source. No differences were found between the movement-related cortical potentials elicited by movements of the affected and unaffected hand, or between those of patients with simple or complex hand cramps. This result suggests a deficiency of contralateral motor cortex activation just prior to the initiation of voluntary movements in patients with focal dystonia.  相似文献   

14.
Regional cerebral blood flow (rCBF) changes in cortical motor areas were measured during a movement of the dominant right hand in 15 patients with Parkinson's disease deprived of their usual levodopa treatment, in 11 patients with Parkinson's disease undergoing long-term treatment with levodopa, and in 15 normal volunteers. The supplementary motor areas were significantly activated in the normal subjects and in the patients receiving levodopa but not in the patients deprived of levodopa. The contralateral primary sensory motor area was significantly activated in all three groups. The ipsilateral primary sensory motor cortex was not activated in the normal subjects and the non-treated patients but was in the patients treated with levodopa. It is concluded that the supplementary motor area hypoactivation which is observed in akinetic non-treated patients with Parkinson's disease is not present in patients undergoing long-term treatment with levodopa. This result suggests that (a) levodopa improves the functional activity of supplementary motor areas in Parkinson's disease and (b) there is no pharmacological tolerance to this effect. The ipsilateral primary motor cortex activation observed in the patients treated with levodopa could be related to levodopa-induced abnormal involuntary movements.  相似文献   

15.
OBJECTIVE: Application of spatially filtered magnetoencephalography (MEG) to investigate changes in the mechanism of cerebral motor control in patients with tumours around the central sulcus. METHODS: MEG records were made during a repetitive hand grasping task in six patients with gliomas around the central sulcus and in four control subjects. Power decreases in the alpha (8-13 Hz), beta (13-30 Hz), and low gamma bands (30-50 Hz) during the motor tasks (event related desynchronisation, ERD) were analysed statistically with synthetic aperture magnetometry. The tomography of ERD was superimposed on the individual's magnetic resonance image. RESULTS: beta ERD was consistently localised to the contralateral primary sensorimotor cortex (MI/SI) in control subjects, whereas the alpha and low gamma ERD showed considerable intersubject variability. beta ERD in patients during non-affected side hand movement was also localised to the contralateral MI/SI, but exclusively to the ipsilateral hemisphere during affected side hand movement. CONCLUSIONS: The altered pattern of ERD in the patient group during affected side hand movement suggests recruitment of diverse motor areas, especially the ipsilateral MI/SI, which may be required for the effective movement of the affected hand.  相似文献   

16.
Using repeated measurements of regional cerebral blood flow with positron emission tomography, we investigated the regional cortical activations induced in 10 normal subjects, by two different finger motor tasks, i.e., a repeated flexion–extension of all fingers and a repeated flexion–extension of the middle finger. The all-finger movement only activated the primary sensorimotor cortex (SM) and the supplementary motor area (SMA) contralateral to the movement. However, the activation of the SMA was clearly task related during this motor task, because it was only observed when the movement was triggered by an auditory cue but not when it was self-paced. The middle finger movement was performed during self-paced conditions. It induced a much more complex pattern of activation than the all-finger movement, characterized by a high degree of SM and SMA activation contralateral to the side of the movement, as well as a slight ipsilateral activation of these areas. We suggest that this pattern of cortical activation may reflect the process of individuating finger movement or the early stages of motor learning of this unusual and technically difficult movement. Our data also confirm that the SM activation is closely linked to the intrinsic parameters of the movement; while the SMA may be activated by different aspects of the movement realization and preparation.  相似文献   

17.
Two premovement potentials, the bereitschaftspotential (BP) and negative slope (NS'), can be recorded prior to the execution of self-paced hand movements using back-averaging of scalp electrical recordings. The contributions of the contralateral and ipsilateral primary motor cortex (M1) and the mesial dorsal frontal cortex (MFC) to the generation of the potentials were examined by simultaneously collecting positron emission tomography (PET) scans and scalp recorded electrical activity for dipole source analysis in eight right-handed normal subjects. Subjects performed simple unilateral thumb-finger opposition movements intermittently with an average inter-movement interval of 7.4 s. PET was also collected for the same movement performed repetitively with inter-movement intervals of 0.5 s such that finger movements were nearly continuous. PET studies of the intermittent movement revealed marked activation of the MFC in the region of the rostral supplementary motor area (SMA) and cingulate motor area, contralateral sensorimotor cortex and no activation of the ipsilateral sensorimotor cortex. When the same movements were performed in a continuous repetitive manner, PET revealed strong contralateral sensorimotor and caudal MFC activation, and no ipsilateral sensorimotor or rostral MFC activation. Dipole source solutions of the back-averaged potentials for the intermittent movements were analyzed by testing dipole vectors placed into the regions of PET activation. The premovement potentials were dominated by dipoles in the region of the MFC, with minimal contribution from either the contralateral or ipsilateral M1. Activation in the region of the contralateral M1 began near the onset of muscle activity. The orientation and timing of the MFC dipoles were consistent with both the BP and NS' potentials originating from neurons in the rostral SMA and dorsal tier of the cingulate sulcus and were appropriate for MFC activity to contribute to both the preparation for movement and the descending activation of spinal motor networks. © 1996 Wiley-Liss, Inc.  相似文献   

18.
In patients with Gilles de la Tourette syndrome (GTS) alterations of motor cortex (M1) excitability at rest have been evidenced. In contrast, there has so far been little research into changes of motor cortical reactivity during the time course of voluntary movements in GTS patients. The present study investigates neuromagnetic event‐related desynchronization (ERD) and event‐related synchronization (ERS) of bilateral M1 in 11 GTS patients and 11 healthy control subjects. ERD represents motor cortical activation, whereas ERS most likely indicates its inhibition. Subjects performed a self‐paced finger movement task while magnetoencephalography was used to record neuromagnetic activity. In GTS patients, ERD at beta frequency was significantly increased in the contralateral hemisphere before and during movements, whereas ERS following movement termination was increased in M1 ipsilateral. Ipsilateral ERS was inversely correlated with tic severity as determined by the Yale Global Tic Severity Rating Scale. The data of the present study support the hypothesis that during voluntary movements, motor cortical reactivity is pathologically altered in GTS patients. The observed pattern of increased activation (ERD) prior to and during movement execution followed by increased inhibition (ERS) after movement termination at beta frequency suggests abnormally increased motor cortical activation, possibly driving stronger inhibition. The stronger this inhibition is, the better symptoms appear to be controlled. © 2010 Movement Disorder Society  相似文献   

19.
OBJECTIVE: To study the time course of oscillatory EEG activity and corticospinal excitability of the ipsilateral primary motor cortex (iM1) during self-paced phasic extension movements of fingers II-V. METHODS: We designed an experiment in which cortical activation, measured by spectral-power analysis of 28-channel EEG, and cortical excitability, measured by transcranial magnetic stimulation (TMS), were assessed during phasic self-paced extensions of the right fingers II-V in 28 right-handed subjects. TMS was delivered to iM1 0-1500 ms after movement onset. RESULTS: Ipsilateral event-related desynchronization (ERD) during finger movement was paralleled by increased cortical excitability of iM1 from 0-200 ms after movement onset and by increased intracortical facilitation (ICF) without changes in intracortical inhibition (ICI) or peripheral measures (F waves). TMS during periods of post-movement event-related synchronization (ERS) revealed no significant changes in cortical excitability in iM1. CONCLUSIONS: Our findings indicate that motor cortical ERD ipsilateral to the movement is associated with increased corticospinal excitability, while ERS is coupled with its removal. These data are compatible with the concept that iM1 contributes actively to motor control. No evidence for inhibitory modulation of iM1 was detected in association with self-paced phasic finger movements. SIGNIFICANCE: Understanding the physiological role of iM1 in motor control.  相似文献   

20.
OBJECTIVE: To investigate the impact of brain tissue damage in Multiple Sclerosis (MS) on the efficiency of programming of voluntary movement, assessed using event-related desynchronization of the EEG. METHODS: The onset latency of mu ERD (percent desyncronization of the mu rhythm preceding movement onset) to hand movement was studied in 34 MS patients. ERD onset was compared with normative data and correlated with T1 and T2 total lesion volume (TLV) at magnetic resonance imaging (MRI). RESULTS: ERD onset latency was significantly correlated with T1-TLV (r = 0.53, P = 0.001) and T2 lesion load (r = 0.5, P = 0.003), even after correcting for disability. Patients with higher T1-TLV had significantly delayed ERD onset compared with normal subjects and with patients with lower T1-TLV; patients with higher T2-TLV had significantly delayed ERD compared with normal subjects only. ERD onset latency was not correlated to clinical disability. CONCLUSIONS: Our finding of delayed ERD onset in patients with more severe measures of brain damage, independently from clinical disability, suggests that functional cortico-cortical and cortico-subcortical connections underlying the expression of ERD during programming of voluntary movement are disrupted by the MS related pathological process. Further, studies are needed to evaluate the role of specific anatomical cortico-subcortical circuits in determining this abnormality. SIGNIFICANCE: The extent of brain lesion load in multiple sclerosis affects cortical changes related to motor preparation, detected by analysis of onset latency of event-related desynchronization (ERD) of the mu rhythm to self-paced movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号