首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
17Beta-hydroxysteroid dehydrogenase type 5 (AKR1C3) that is involved in the pre-receptor regulation of androgen and estrogen action in the human is an emerging therapeutic target in the treatment of hormone-dependent forms of cancer, such as prostate cancer, breast cancer and endometrial cancer. To discover novel inhibitors, we tested the effect of a series of cinnamic acids on the reductive activity of the human recombinant AKR1C3. The compounds were evaluated in a spectrophotometric assay using 9,10-phenanthrenequinone as a substrate. The best inhibitor in the series was alpha-methylcinnamic acid (IC50=6.4 microM). Also, unsubstituted cinnamic acid was a good inhibitor of AKR1C3 (IC50=50 microM). Small hydrophobic substituents of the phenyl ring did not alter the activity; however, substitution with polar groups decreased the potency of inhibition. The most active compounds in this series represent promising starting points for further structural modifications in the search for more potent inhibitors of AKR1C3.  相似文献   

2.
3.
17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD3) is expressed at high levels in the testes and seminal vesicles but has also been shown to be present in prostate tissue, suggesting its potential involvement in both gonadal and non-gonadal testosterone biosynthesis. The role of 17beta-HSD3 in testosterone biosynthesis makes this enzyme an attractive molecular target for small molecule inhibitors for the treatment of prostate cancer. Here we report the design of selective inhibitors of 17beta-HSD3 as potential anti-cancer agents. Due to 17beta-HSD3 being a membrane-bound protein a crystal structure is not yet available. A homology model of 17beta-HSD3 has been built to aid structure-based drug design. This model has been used with docking studies to identify a series of lead compounds that may give an insight as to how inhibitors interact with the active site. Compound 1 was identified as a potent selective inhibitor of 17beta-HSD3 with an IC(50)=700nM resulting in the discovery of a novel lead series for further optimisation. Using our homology model as a tool for inhibitor design compound 5 was discovered as a novel potent and selective inhibitor of 17beta-HSD3 with an IC(50) approximately 200nM.  相似文献   

4.
The 17beta-hydroxysteroid dehydrogenase type 5 (17beta-HSD 5) is involved in estrogen and androgen metabolism. In our study we tested the influence of environmental hormones, such as phytoestrogens (flavonoids, coumarins, coumestans), on reductive and oxidative 17beta-HSD activity of the human 17beta-hydroxysteroid dehydrogenase type 5 (17beta-HSD 5). These dietary substances were shown to be potent inhibitors of aromatase, different 17beta-HSDs and seem to play an important role in delay of development of hormone dependent cancers. Our studies show that reductive and oxidative activity of the enzyme are inhibited by many dietary compounds, especially zearalenone, coumestrol, quercetin and biochanin A. Among the group of flavones inhibitor potency is growing with increasing number of hydroxylations. We suggest that these substances are bound to the hydrophilic cofactor-binding pocket of the enzyme. An interesting inhibition pattern is observed for 18beta-glycyrrhetinic acid, which has no influence on the oxidative but only on the reductive reaction. This indicates that this substrate binds to pH- and cofactor-depending sites at the active center of the enzyme.  相似文献   

5.
The estradiol-synthesizing enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1) is mainly responsible for the conversion of estrone (E1) to the potent estrogen estradiol (E2). It is a key player to control tissue levels of E2 and is therefore an attractive target in estradiol-dependent diseases like breast cancer or endometriosis. We selected a unique non-steroidal pyrimidinone core to start a lead optimization program. We optimized this core by modulation of R1-R6. Its binding mode at the substrate-binding site of 17betaHSD1 is complex and difficult to predict. Nevertheless, some basic structure-activity relationships could be identified. In vitro, the most active pyrimidinone derivative showed effective inhibition of recombinant human 17betaHSD1 at nanomolar concentrations. In intact cells overexpressing the human enzyme, IC50 values in the lower micromolar range were determined. Furthermore, the pyrimidinone proved its use in vivo by significantly reducing 17betaHSD1-dependent tumor growth in a new nude mouse model.  相似文献   

6.
The subcellular distribution of steroidogenic enzymes has so far been studied mostly in classical endocrine glands and in the placenta. In the peripheral intracrine organs which synthesize sex steroids there is no indication about the organelles which contain the enzymes involved in steroid biosynthesis. We have thus investigated the subcellular localization of two enzymes involved in the production of sex steroids, namely 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and type 5 17beta-hydroxysteroid dehydrogenase (17beta-HSD). Using specific antibodies to these enzymes, we conducted immunoelectron microscopic studies in two peripheral tissues, namely the human prostate and mammary gland. In the prostate, immunolabelling for both 3beta-HSD and type 5 17beta-HSD was detected in the basal cells of the tube-alveoli as well as in fibroblasts and endothelial cells lining the blood vessels. In all the labelled cell types, the gold particles were distributed throughout the cytoplasm. No obvious association with any specific organelle could be observed, although some concentration of gold particles was occasionally found over bundles of microfilaments. In mammary gland sections immunolabelled for 3beta-HSD or type 5 17beta-HSD localization, labelling was observed in the cytoplasm of the secretory epithelial cells in both the acini and terminal ducts. Immunolabelling was also found in the endothelial cells as well as in fibroblasts in stroma and blood vessels. The gold particles were not detected over any organelles, except with the occasional accumulation of gold particles over microfilaments. The present data on the localization of two steroidogenic enzymes leading to the synthesis of testosterone indicate that these enzymes are located not only in epithelial cells but also in stromal and endothelial cells in both tissues studied. The absence of any association of the enzymes with membrane-bound organelles appears as a common finding in the reactive cell types of two peripheral tissues.  相似文献   

7.
8.
Transient expression in nonsteroidogenic mammalian cells of the rat wild type I and type II 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNAs shows that the encoded proteins, in addition to being able to catalyze the oxidation and isomerization of delta 5-3 beta-hydroxysteroid precursors into the corresponding delta 4-3-ketosteroids, interconvert 5 alpha-dihydrotestosterone (DHT) and 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol). When homogenate from cells transfected with a plasmid vector containing type I 3 beta-HSD is incubated in the presence of DHT using NAD+ as cofactor, a somewhat unexpected metabolite is formed, namely 5 alpha-androstanedione (A-dione), thus indicating an intrinsic androgenic 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity of this 3 beta-HSD isoform. Although the relative Vmax of 17 beta-HSD activity is 14.9-fold lower than that of 3 beta-HSD activity, the Km value for the 17 beta-HSD activity of type I 3 beta-HSD is 7.97 microM, a value which is in the same range as the conversion of DHT into 3 beta-diol which shows a Km value of 4.02 microM. Interestingly, this 17 beta-HSD activity is highly predominant in unbroken cells in culture, thus supporting the physiological relevance of this "secondary" activity. Such 17 beta-HSD activity is inhibited by the classical substrates of 3 beta-HSD, namely pregnenolone (PREG), dehydroepiandrosterone (DHEA), delta 5-androstene-3 beta,17 beta-diol (delta 5-diol), 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol) and DHT, with IC50 values of 2.7, 1.0, 3.2, 6.2, and 6.3 microM, respectively. Although dual enzymatic activities have been previously reported for purified preparations of other steroidogenic enzymes, the present data demonstrate the multifunctional enzymatic activities associated with a recombinant oxidoreductase enzyme. In addition to its well known 3 beta-HSD activity, this enzyme possesses the ability to catalyze DHT into A-dione thus potentially controlling the level of the active androgen DHT in classical steroidogenic as well as peripheral intracrine tissues.  相似文献   

9.
Many breast tumours are hormone-responsive and rely on estrogens for their sustained growth and development. The enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is primarily responsible for the conversion of estrone (E1) into the most potent of the human estrogens 17beta-estradiol (E2). Here we report the syntheses, inhibitory activities and docking studies for a novel series of pyrazole amides which have been discovered with the aim of probing the structure activity relationships (SAR) for such a template and of using this template to mimic the potent inhibitor 1 (Fig. 1). Amides containing an aromatic pyridyl moiety have been found to give the best inhibition, indicating that the pyridyl group interacts beneficially in the active site. This work has shown that extension from this position on the pyrazole template is well tolerated and the optimization of such systems is under investigation.  相似文献   

10.
The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) are involved in the last step of the biosynthesis of sex steroids from cholesterol. This family of steroidogenic enzymes constitutes an interesting target in the control of the concentration of estrogens and androgens. Among the isoforms of 17beta-HSD, type II preferentially catalyzes the oxidation of estradiol (E(2)), testosterone (T), dihydrotestosterone (DHT), and 20alpha-dihydroprogesterone (20alpha-DHP). Based on structure-activity relationship studies, we have developed steroidal spirolactones as inhibitors of type II 17beta-HSD using different steroid nuclei: a C18-steroid (lactones 1 and 10), an antiestrogenic nucleus (lactone 2), and a C19-steroid (lactone 28). We know these inhibitors are selective for type II 17beta-HSD as no or only weak inhibition was observed for types I and III. They also have no proliferative (androgenic) activity on androgen sensitive (AR(+)) Shionogi cells whereas their proliferative (estrogenic) activity on estrogen sensitive (ER(+)) ZR-75-1 cells depends on the nature of the steroid nucleus. Lactones 1 and 10 are weak estrogens, while lactones 2 and 28 do not exert estrogenic activity, in fact lactone 2 is an antiestrogen. Lactones 1, 2, 10 and 28 were also tested in an identical assay with a series of enzyme substrates, C19-steroid diols, and known inhibitors, for the oxidation of testosterone and estradiol into androstenedione and estrone, respectively. From this comparative study, the best inhibitors of type II 17beta-HSD (oxidase activity) were identified, but none of them were clearly more potent than the hydroxylated (reduced) forms of enzyme substrates, E2, T, and DHT. Such inhibitors remain, however, useful tools to, (1) further elucidate the role of type II 17beta-HSD, and (2) regulate the level of active estrogens, androgens and progesterone.  相似文献   

11.
The type 2 isoform of human 17beta-hydroxysteroid dehydrogenase (17betaHSD2) efficiently catalyzes the oxidative metabolism of androgens and estrogens, and it is expressed in a large series of human peripheral tissues. To obtain a better understanding of the regulation of local steroid biosynthesis and metabolism in human tissues, we have established a dual steroidogenic activity of the 17betaHSD2 enzyme after transfection of human 17betaHSD2-transfected human embryonic kidney (293) cells. After transient transfection, the metabolism of testosterone, pregnenolone, and dehydroepiandrosterone (DHEA) in intact transfected 293 cells was evaluated by TLC-based radiometric assays. 17betaHSD2-transfected cells converted 91% of testosterone (1 micromol/L) into androstenedione in a 2-h incubation period. In addition, pregnenolone (1 micromol/L) was converted to progesterone (18.5%), whereas DHEA (1 micromol/L) was metabolized to androstenedione (8.3% conversion) in a 15-h incubation period. The kinetics of the 3beta-hydroxysteroid dehydrogenase (3betaHSD) and 17betaHSD2 activities using cell homogenate protein of stably transfected 293 cells indicated that the catalytic efficiency (apparent catalytic efficiency = maximum velocity/Km) of this 3betaHSD activity is approximately 2000-fold (pregnenolone as substrate) or 3000-fold (DHEA as substrate) weaker than that of 17betaHSD2 activity. It is noteworthy, however, that the apparent catalytic efficiency of the HSD3B2 gene product is only approximately 50-fold higher than that of the 3betaHSD aspect of the 17betaHSD2 gene product. Pregnenolone or DHEA effectively inhibited 17betaHSD2 activity in a noncompetitive fashion. Furthermore, the potent 5alpha-reductase/3betaHSD inhibitor, 17beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5alpha-androstane-3-one , inhibited neither 3betaHSD nor 17betaHSD2 activities. We conclude that human 17betaHSD2 enzyme exhibits 3betaHSD activity. Notwithstanding that this 3betaHSD activity is reduced compared to 17betaHSD oxidative activity, it may account for at least some of the reports of 3betaHSD activity found in human peripheral tissues that express notable amounts of the 17betaHSD2 isozyme as well as in individuals with severe classic 3betaHSD deficiency.  相似文献   

12.
3Beta-hydroxysteroid dehydrogenase (3beta-HSD) activity is essential for the synthesis of all classes of steroid hormones, converting various delta5-3beta-hydroxysteroids into hormonally active delta4-3-ketosteroids in NAD+ -dependent reactions. Certain 3beta-HSD isoforms have been reported to exhibit additional dehydrogenase character (e.g., 17-hydroxysteroid dehydrogenase/reductase). We have investigated whether mouse type I (adrenal/gonadal) and type VI 3beta-HSDs (uterine/embryonic) display significant 17beta-HSD-like activity. Nonsteroidogenic HEK 293T cells were transiently transfected with pCMV-based expression vectors containing mouse type I and type VI 3beta-HSDs. Transfected cells expressing either mouse type I or type VI 3beta-HSD converted testosterone to androstenedione, albeit at rates one-tenth of those of pregnenolone to progesterone in similarly transfected 293T cells. Our findings demonstrate that the mouse 3beta-HSD I and VI isoforms can inactivate testosterone within an intact cell milieu. These findings are important not only in establishment of structure-function relationships, but also whenever murine systems are used for developmental/reproductive paradigms associated with human disorders.  相似文献   

13.
The enzyme 17beta-hydroxysteroid dehydrogenase (17beta-HSD) type 1 catalyzes the conversion of estrone (E1) into 17beta estradiol (E2). To gain information about the cellular localization of 17beta-HSD mRNA type 1 expression, we performed in situ hybridization using a 35S-labeled cRNA probe in several tissues of adult mice of both sexes. In the ovary, high expression was found in granulosa cells of growing follicles. No specific labeling could be observed in corpora lutea or interstitial cells. In the pituitary gland of animals of both sexes, 17beta-HSD type 1 mRNA was expressed in the intermediate lobe melanotrophs while no specific signal could be detected in the anterior or posterior lobes of the pituitary. In the prostate, 17beta-HSD type 1 mRNA was exclusively found in the epithelial cells. In both male and female mouse dorsal skin, a specific hybridization signal was seen in the sebaceous glands while the epidermis, stroma, hair follicles and sweat glands were unlabeled. In the testis, a hybridization signal was detected in germ cells of the seminiferous tubules, Leydig cells being unlabeled. The present data indicate that E2 can be formed through the action of 17beta-HSD type 1 in specific cells of the gonads and peripheral tissues. In the testes and peripheral tissues, the action of E2 is probably limited to the cells involved in its formation in an intracrine fashion.  相似文献   

14.
An important source of androgens in the human prostate are those synthesized locally from the inactive adrenal precursor dehydroepiandrosterone (DHEA) and its sulfated derivative DHEA-S. Three beta-HSD (hydroxysteroid dehydrogenase) converts DHEA into androstenedione (4-dione), whereas type 5 17beta-HSD catalyzes the reduction of 4-dione into testosterone in the human prostate and other peripheral intracrine tissues. In the present study, we have used two complementary approaches, namely in situ hybridization and immunocytochemistry, to identify the cells that contain the type 5 17beta-HSD messenger RNA and enzyme in human benign prostatic hyperplasia (BPH). Localization of 3beta-HSD and of the androgen receptor (AR) was also investigated by immunostaining in the same tissue. To find out whether there are any differences between BPH and normal prostate tissue, the localization of type 5 17beta-HSD was reexamined by immunocytochemistry in the normal human prostate samples and also in normal prostate epithelial cell line (PrEC). The in situ hybridization results obtained with a tritiated uridine triphosphate (3H-UTP)-labeled type 5 17beta-HSD riboprobe are in agreement with the immunostaining data obtained with a specific antibody to the enzyme. The immunostaining results obtained from normal prostate tissue and BPH were found to be similar. Thus, in the glandular epithelium, basal cells highly express the messenger RNA and the enzyme, whereas luminal cells show a much lower and variable level of expression. In the stroma and walls of blood vessels, fibroblasts and the endothelial cells lining the blood vessels show positive staining. Similar results are observed when the cellular distribution of 3beta-HSD is investigated. AR immunoreactivity, however, shows a different distribution because, in the epithelium, most of the nuclei of basal cells are negative, whereas the majority of nuclei of the luminal cells show positive staining. A strong reaction for AR is also found in most stromal cell nuclei and in the nuclei of most endothelial cells, as well as in some other cells of the walls of blood vessels. In conclusion, human type 5 17beta-HSD, as well as 3beta-HSD, are highly expressed, not only in the basal epithelial cells and stromal fibroblasts but also in the endothelial cells and fibroblasts of the blood vessels. AR, on the other hand, is highly expressed in the luminal cells. The present data suggest that DHEA is transformed in the basal cells of the glandular epithelium into 4-dione by 3beta-HSD and then into testosterone by type 5 17beta-HSD, whereas dihydrotestosterone is synthesized in the luminal cells after diffusion of testosterone from the underlying layer of basal cells. The potential role of androgen formation and action in blood vessels is unknown and opens new avenues of investigation for a better understanding of the multiple roles of androgens.  相似文献   

15.
16.
The 17 beta-hydroxysteroid dehydrogenase (HSD) type 3 isozyme catalyzes the conversion of androstenedione to testosterone in the testis. Deleterious mutations in the HSD17B3 gene cause undermasculinization in genetic males attributable to impaired testosterone biosynthesis. Hence, a hallmark of this autosomal recessive disorder is a decreased plasma testosterone-to-androstenedione ratio. Here, a novel C268Y substitution mutation in exon 10 of the HSD17B3 gene, in a subject with 17 beta-HSD 3 deficiency, is reported. Reconstitution experiments with recombinant protein reveal that substitution of tyrosine for cysteine at position 268 of 17 beta-HSD type 3 abrogates the enzymatic activity. This finding brings to 20 the number of mutations in the HSD17B3 gene that cause male undermasculinization.  相似文献   

17.
17beta-hydroxysteroid dehydrogenase type 7 (17beta-HSD7) is a novel estrogenic hydroxysteroid dehydrogenase from mammals. We modeled the three-dimensional structure of human 17beta-HSD7, analyzed the phylogeny of 17beta-HSD7 homologues and determined its expression pattern by in silico Northern blotting. Predominant expression is found not only in reproductive tissues (breast, ovary, placenta) but also in liver and developing brain, principal sites of cholesterol synthesis. The substrate binding pocket is opening towards a conserved membrane-associated helix, which is indicative for a conversion of a membrane component. 17beta-HSD7 shows significant homology to a yeast 3-ketosteroid reductase (ERG27) involved in ergosterol biosynthesis. Our results lead to the conclusion that 17beta-HSD7 is not only involved in estradiol production but plays another (and possibly more important) role as a 3-ketosteroid reductase in cholesterogenesis. This agrees with the striking absence of 17beta-HSD7 homologues in the complete genomes of Drosophila and C. elegans, which are both auxotrophic for cholesterol.  相似文献   

18.
An enzyme-mediated metabolism of androgens and estrogens including 17beta-HSD activity in the brain of vertebrates was discovered approximately 30 years ago. Mainly 5alpha-reductase and aromatase have been studied in detail. Recently we could demonstrate reductive and oxidative 17beta-HSD activity as well as considerable mRNA expression of the 17beta-HSD types 3 and 4 in the human brain. In the present study, we report on 17beta-HSD type 5 mRNA expression in brain tissue of women and men. Data analysis did not reveal sex specific differences, but we determined a significantly higher mRNA concentration in the subcortical white matter (SC) than in the cerebral cortex (CX). Investigation of reductive 17beta-HSD in vitro activity with 2 microM androstenedione as the substrate revealed no sex specific differences. Testosterone formation was significantly higher in SC than in CX. Moreover, enzyme activity was significantly higher in brain tissue of adults compared to that of children.  相似文献   

19.
17beta-Hydroxysteroid dehydrogenase (17beta-HSD) type 1 converts estrone to estradiol, a potent ligand for estrogen receptors. It represents an important target for the development of drugs for treatment of estrogen-dependent diseases. In the present study, we have examined the inhibitory activities of some flavonoids, their biosynthetic precursors (cinnamic acids and coumaric acid), and their derivatives. The proliferative activity of flavonoids on the T-47D estrogen-receptor-positive breast cancer cell line was also evaluated. Among 10 flavonoids, 7,4'-dihydroxyflavone, diosmetin, chrysoeriol, scutellarein, genkwanin and fisetin showed more than 70% inhibition of 17beta-HSD type 1 at 6muM. In a series of 18 derivatives of cinnamic acid, the best inhibitor was 4'-cyanophenyl 3,4-methylenedioxycinnamate, with more than 70% inhibition of 17beta-HSD type 1. None of flavonoids affected the proliferation of T-47D breast cancer cells.  相似文献   

20.
Surfactant synthesis within developing fetal lung type II cells is affected by testosterone and 5alpha-dihydrotestosterone (5alpha-DHT). The pulmonary epithelial cell line A549, isolated from a human lung carcinoma, like normal lung type II cell, produces disaturated phosphatidylcholines and has been widely used for studying the regulation of surfactant production. Androgen receptor has been detected in A549 cells; however, the capacity of these cells for androgen synthesis and metabolism has not been investigated at molecular level. This study was undertaken to identify the steroidogenic enzymes involved in the formation and metabolism of androgens from adrenal C19 steroid precursors in A549 cells. When cultured in the presence of normal FCS, A549 intact cells converted DHEA to androstenediol, androstenedione principally to testosterone, and 5alpha-DHT to 5alpha-androstane 3alpha,17beta-diol. High levels of 17beta-hydroxysteroid dehydrogenase (HSD) and 3alpha-HSD activities were detected in both cytosol and microsomes isolated from homogenates. Analysis of A549 RNA indicated the presence of 17beta-HSD type 4 and type 5, and of 3alpha-HSD type 3 messenger RNAs. Very low levels of 3beta-HSD type 1 and 5alpha-reductase type 1 messenger RNAs and activities were detected. With regard to active androgen formation, there was little or no capacity for the conversion of DHEA to 5alpha-DHT. In contrast, androstenedione was rapidly transformed to testosterone. The pattern of steroid metabolism was not affected by the use of charcoal-stripped FCS or by the synthetic glucocorticoid dexamethasone. Together, our findings show that A549 cells express a pattern of steroid metabolism in which 17beta-HSD type 5 and 3alpha-HSD type 3 are the predominant enzymes. The level of androgens is regulated at the level of catalysis in intact cells such that the intracellular level of testosterone is stabilized, whereas 5alpha-DHT is rapidly inactivated by reduction to 3alpha,17beta-diol. This pattern of androgen metabolism has implications for the relative importance of testosterone and 5alpha-DHT in normal lung development and surfactant production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号