首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Image registration is a powerful tool for correlating functional images with images of anatomical structure. This facilitates more accurate quantitation of regional radiopharmaceutical uptake. Similarly, registration of images of radiolabelled antibody distribution, in tissue sections, with the equivalent histological images allows the comparison and measurement of radiopharmaceutical distribution with morphological structure. The images used were obtained by storage phosphor plate technology, for the radiopharmaceutical distribution, and by digitization of the stained histological sections. Here we compare four fully automatic registration techniques and one manual technique in terms of their spatial accuracy. We have found that there was no difference in accuracy between cross-correlation, minimization of variance and mutual information. These techniques were more accurate than principal axes and the manual technique. However, minimization of variance and mutual information were more time-consuming than the other methods. Consequently, cross-correlation is the method of choice for automatic registration of large numbers of these image pairs.  相似文献   

2.
Morphometric analysis of anatomical landmarks allows researchers to identify specific morphological differences between natural populations or experimental groups, but manually identifying landmarks is time‐consuming. We compare manually and automatically generated adult mouse skull landmarks and subsequent morphometric analyses to elucidate how switching from manual to automated landmarking will impact morphometric analysis results for large mouse (Mus musculus) samples (n = 1205) that represent a wide range of ‘normal’ phenotypic variation (62 genotypes). Other studies have suggested that the use of automated landmarking methods is feasible, but this study is the first to compare the utility of current automated approaches to manual landmarking for a large dataset that allows the quantification of intra‐ and inter‐strain variation. With this unique sample, we investigated how switching to a non‐linear image registration‐based automated landmarking method impacts estimated differences in genotype mean shape and shape variance‐covariance structure. In addition, we tested whether an initial registration of specimen images to genotype‐specific averages improves automatic landmark identification accuracy. Our results indicated that automated landmark placement was significantly different than manual landmark placement but that estimated skull shape covariation was correlated across methods. The addition of a preliminary genotype‐specific registration step as part of a two‐level procedure did not substantially improve on the accuracy of one‐level automatic landmark placement. The landmarks with the lowest automatic landmark accuracy are found in locations with poor image registration alignment. The most serious outliers within morphometric analysis of automated landmarks displayed instances of stochastic image registration error that are likely representative of errors common when applying image registration methods to micro‐computed tomography datasets that were initially collected with manual landmarking in mind. Additional efforts during specimen preparation and image acquisition can help reduce the number of registration errors and improve registration results. A reduction in skull shape variance estimates were noted for automated landmarking methods compared with manual landmarking. This partially reflects an underestimation of more extreme genotype shapes and loss of biological signal, but largely represents the fact that automated methods do not suffer from intra‐observer landmarking error. For appropriate samples and research questions, our image registration‐based automated landmarking method can eliminate the time required for manual landmarking and have a similar power to identify shape differences between inbred mouse genotypes.  相似文献   

3.
目的分析CTVision进行鼻咽癌图像引导时采用不同的配准方式对摆位误差的影响。方法采用两种不同的图像配准方式,对同一个进行调强放射治疗的鼻咽癌患者采集得到的治疗CT图像与计划CT图像进行配准分析。自动配准:系统自动调节窗宽、窗位,进行图像灰度配准。骨性配准:手动调节基于第一颈椎体为骨性标志进行配准。配准得到的摆位误差大小以均数和标准差的形式表示。结果分别计算得到两种方法在X、Y、Z三个方向上的摆位误差数据.自动配准和骨性配准结果分别是X轴为(0.2286±0.1496)cm和(0.0571±0.0976)cm,Y轴为(-0.1000±0.1000)cm和(-0.0714±0.1254)cm.Z轴为(0.1000±0.0816)cm和(0.1000±0.0577)cm。两种配准方法比较,靶区在X轴上的摆位误差差异有统计学意义(P〈0.05),而在Y轴和Z轴上差异均无统计学意义(P〉0.05)。结论鼻咽癌进行图像引导时.基于骨性标志的手动配准和基于灰度的自动配准.在X轴方向的摆位误差校正差异明显.在Y轴和Z轴方向的无明显差异。采用骨性标志的配准是一种更为准确和有效的配准方式。  相似文献   

4.
Several variants of the cross-correlation technique of automatic digital image registration are tested and compared on a set of multispectral images of lymphoblastic bone marrow cells. Factors investigated are normalization, application of a gradient and subtraction of the average image density from each image point. Several of the variants are shown to have low error rates. A gradient method requiring a small degree of manual intervention is concluded to be the most sensitive approach.  相似文献   

5.
The performance of the ANIMAL (Automated Nonlinear Image Matching and Anatomical Labeling) nonlinear registration algorithm for registration of thoracic 4D CT images was investigated. The algorithm was modified to minimize the incidence of deformation vector discontinuities that occur during the registration of lung images. Registrations were performed between the inhale and exhale phases for five patients. The registration accuracy was quantified by the cross-correlation of transformed and target images and distance to agreement (DTA) measured based on anatomical landmarks and triangulated surfaces constructed from manual contours. On average, the vector DTA between transformed and target landmarks was 1.6 mm. Comparing transformed and target 3D triangulated surfaces derived from planning contours, the average target volume (GTV) center-of-mass shift was 2.0 mm and the 3D DTA was 1.6 mm. An average DTA of 1.8 mm was obtained for all planning structures. All DTA metrics were comparable to inter observer uncertainties established for landmark identification and manual contouring.  相似文献   

6.
PURPOSE: To measure the sensitivity of deformable image registration to image noise. Deformable image registration can be used to map organ contours and other treatment planning data from one CT to another. These CT studies can be acquired with either conventional fan-beam CT systems or more novel cone-beam CT techniques. However, cone-beam CT images can have higher noise levels than fan-beam CT, which might reduce registration accuracy. We have investigated the effect of image quality differences on the deformable registration of fan-beam CTs and CTs with simulated cone-beam noise. METHOD: Our study used three CT studies for each of five prostate patients. Each CT was contoured by three experienced radiation oncologists. For each patient, one CT was designated the source image and the other two were target images. A deformable image registration process was used to register each source CT to each target CT and then transfer the manually drawn treatment planning contours from the source CT to the target CTs. The accuracy of the automatically transferred contours (and thus of the deformable registration process) was assessed by comparing them to the manual contours on the target CTs, with the differences evaluated with respect to interobserver variability in the manual contours. Then each of the target CTs was modified to include increased noise characteristic of cone-beam CT and the tests were repeated. Changes in registration accuracy due to increased noise were detected by monitoring changes in the automatically transferred contours. RESULTS: We found that the additional noise caused no significant loss of registration accuracy at magnitudes that exceeded what would normally be found in an actual cone-beam CT. SUMMARY: We conclude that noise levels in cone-beam CTs that might reduce manual contouring accuracy do not reduce image registration and automatic contouring accuracy.  相似文献   

7.
Image registration has many medical applications in diagnosis, therapy planning and therapy. Especially for time-adaptive radiotherapy, an efficient and accurate elastic registration of images acquired for treatment planning, and at the time of the actual treatment, is highly desirable. Therefore, we developed a fully automatic and fast block matching algorithm which identifies a set of anatomical landmarks in a 3D CT dataset and relocates them in another CT dataset by maximization of local correlation coefficients in the frequency domain. To transform the complete dataset, a smooth interpolation between the landmarks is calculated by modified thin-plate splines with local impact. The concept of the algorithm allows separate processing of image discontinuities like temporally changing air cavities in the intestinal track or rectum. The result is a fully transformed 3D planning dataset (planning CT as well as delineations of tumour and organs at risk) to a verification CT, allowing evaluation and, if necessary, changes of the treatment plan based on the current patient anatomy without time-consuming manual re-contouring. Typically the total calculation time is less than 5 min, which allows the use of the registration tool between acquiring the verification images and delivering the dose fraction for online corrections. We present verifications of the algorithm for five different patient datasets with different tumour locations (prostate, paraspinal and head-and-neck) by comparing the results with manually selected landmarks, visual assessment and consistency testing. It turns out that the mean error of the registration is better than the voxel resolution (2 x 2 x 3 mm(3)). In conclusion, we present an algorithm for fully automatic elastic image registration that is precise and fast enough for online corrections in an adaptive fractionated radiation treatment course.  相似文献   

8.
This study investigated the feasibility of automatic image registration of MR high-spatial resolution proximal femur trabecular bone images as well as the effects of gray-level interpolation and volume of interest (VOI) misalignment on MR-derived trabecular bone structure parameters. For six subjects in a short-term study, a baseline scan and a follow-up scan of the proximal femur were acquired on the same day. For ten subjects in a long-term study, a follow-up scan of the proximal femur was acquired 1 year after the baseline. An automatic image registration technique, based on mutual information, utilized a baseline and a follow-up scan to compute transform parameters that aligned the two images. In the short-term study, these parameters were subsequently used to transform the follow-up image with three different gray-level interpolators. Nearest-neighbor interpolation and B-spline approximation did not significantly alter bone parameters, while linear interpolation significantly modified bone parameters (p<0.01). Improvement in image alignment due to the automatic registration for the long-term and short-term study was determined by inspecting difference images and 3D renderings. This work demonstrates the first application of automatic registration, without prior segmentation, of high-spatial resolution trabecular bone MR images of the proximal femur. Additionally, inherent heterogeneity in trabecular bone structure and imprecise positioning of the VOI along the slice (anterior-posterior) direction resulted in significant changes in bone parameters (p<0.01). Results suggest that automatic mutual information registration using B-spline approximation or nearest neighbor gray-level interpolation to transform the final image ensures VOI alignment between baseline and follow-up images and does not compromise the integrity of MR-derived trabecular bone parameters used in this study.  相似文献   

9.
Medical image registration is commonly required in order to combine the complementary information provided by different medical imaging modalities. In this paper, a new automatic registration scheme is proposed to register 3-D CT-MR head images and is currently tested on a clinical environment. The proposed scheme, after the preprocessing and the outer surface extraction of the data, is based on the use the rigid transformation method, in conjunction with a combination of global and local optimization techniques. Analytically, the paper exploits the optimization efficiency of three widely used optimization techniques, in obtaining the parameters of the rigid transformation model: the Downhill Simplex Method, the Genetic Algorithms and the Simulated Annealing. These optimization techniques are further combined by the sequential application of the Powell optimization method in order to refine the registration and increase its accuracy. A comparative study involving these optimization techniques in conjunction with the rigid transformation, and two other methods, the ICP and the manual methods, is also presented, for a sufficient number of clinical CT-MR brain images. Finally, quantitative and qualitative results are also presented to validate the performance of these automatic surface-based registration schemes, in terms of consistency and accuracy. Throughout of this study, the automatic registration scheme comprising of the rigid transformation in conjunction with the Simulated Annealing method sequentially combined with the Powell method has been performed superior regarding all the other compared registration schemes.  相似文献   

10.
Intervertebral kinematics closely relates to the functionality of the spinal segments. Direct measurement of the intervertebral kinematics in vivo is very problematic. The use of a fluoroscopic device can provide continuous screening of the lumbar tract during patient spontaneous motion, with an acceptable, low X-ray dose. The kinematic analysis is intended to be limited to planar motion. Kinematic parameters are computed from vertebral landmarks on each frame of the image sequence. Landmarks are normally selected manually in spite of the fact that this is subjective, tedious to perform and regarded as one of the major contributors to errors in the computed kinematic parameters. The aim of this work is to present an innovative method for the automatic recognition of vertebral landmarks throughout a fluoroscopic image sequence to provide an objective and more precise quantification of intervertebral kinematics. The recognition procedure is based upon comparing vertebral features in two adjacent frames by means of a cross-correlation index, which is also robust despite the low signal-to-noise ratio of the lumbar fluoroscopic images. To provide a quantitative assessment of this method a calibration model was used which consisted of two lumbar vertebrae linked by a universal joint. The reliability and accuracy of the kinematic measurements have been investigated. The errors are of the order of a millimetre for the localisation of the intervertebral centre of rotation and tenths of a degree for the intervertebral angle. Error analysis suggests that this method improves the accuracy of the intervertebral kinematic calculations and has the potential to automate the selection of anatomical landmarks.  相似文献   

11.
Images acquired from an electronic portal imaging device are aligned with digitally reconstructed radiographs (DRRs) or other portal images to verify patient positioning during radiation therapy. Most of the currently available computer aided registration methods are based on the manual placement of corresponding landmarks. The purpose of the paper is twofold: (a) the establishment of a methodology for patient set-up verification during radiotherapy based on the registration of electronic portal images, and (b) the evaluation of the proposed methodology in a clinical environment. The estimation of set-up errors, using the proposed methodology, can be accomplished by matching the portal image of the current fraction of the treatment with the portal image of the baseline treatment (reference portal image) using a nearly automated technique. The proposed registration method is tested on a number of phantom data as well as on data from four patients. The phantom data included portal images that corresponded to various positions of the phantom on the treatment couch. For each patient, a set of 30 portal images was used. For the phantom data (for both transverse and lateral portal images), the maximum absolute deviations of the translational shifts were within 1.5 mm, whereas the in-plane rotation angle error was less than 0.5 degrees. The two-way Anova revealed no statistical significant variability both within observer and between-observer measurements (P > 0.05). For the patient data, the mean values obtained with manual and the proposed registration methods were within 0.5 mm. In conclusion, the proposed registration method has been incorporated within a system, called ESTERR-PRO. Its image registration capability achieves high accuracy and both intra- and inter-user reproducibility. The system is fully operational within the Radiotherapy Department of 'HYGEIA' Hospital in Athens and it could be easily installed in any other clinical environment since it requires standardized hardware specifications and minimal human intervention.  相似文献   

12.
PURPOSE: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. MATERIALS AND METHODS: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. RESULTS: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. CONCLUSION: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is feasible. This can lower the dose needed for 4-D CT acquisitions or can help to correct 4-D acquisition artifacts. The 4-D CT model can be used to propagate contours, to compute a 4-D dose map, or to simulate CT acquisitions with an irregular breathing signal. It could serve as a basis for 4-D radiation therapy planning. Further work is needed to make the simulation more realistic by taking into account hysteresis and more complex voxel trajectories.  相似文献   

13.
Precise daily target localization is necessary to achieve highly conformal radiation delivery. In helical tomotherapy, setup verification may be accomplished just prior to delivering each fraction by acquiring a megavoltage CT scan of the patient in the treatment position. This daily image set may be manually or automatically registered to the image set on which the treatment plan was calculated, in order to determine any needed adjustments. The system was tested by acquiring 104 MVCT scans of an anthropomorphic head phantom to which translational displacements had been introduced with respect to the planning image set. Registration results were compared against an independent, optically guided positioning system. The total experimental uncertainty was within approximately 1 mm. Although the registration of phantom images is not fully analogous to the registration of patient images, this study confirms that the system is capable of phantom localization with sub-voxel accuracy. In seven registration problems considered, expert human observers were able to perform manual registrations with comparable or inferior accuracy to automatic registration by mutual information. The time to compute an automatic registration is considerably shorter than the time required for manual registration. However, human evaluation of automatic results is necessary in order to identify occasional outliers, and to ensure that the registration is clinically acceptable, especially in the case of deformable patient anatomy.  相似文献   

14.
Temporal subtraction and dual-energy imaging are two enhanced radiography techniques that are receiving increased attention in chest radiography. Temporal subtraction is an image processing technique that facilitates the visualization of pathologic change across serial chest radiographic images acquired from the same patient; dual-energy imaging exploits the differential relative attenuation of x-ray photons exhibited by soft-tissue and bony structures at different x-ray energies to generate a pair of images that accentuate those structures. Although temporal subtraction images provide a powerful mechanism for enhancing visualization of subtle change, misregistration artifacts in these images can mimic or obscure abnormalities. The purpose of this study was to evaluate whether dual-energy imaging could improve the quality of temporal subtraction images. Temporal subtraction images were generated from 100 pairs of temporally sequential standard radiographic chest images and from the corresponding 100 pairs of dual-energy, soft-tissue radiographic images. The registration accuracy demonstrated in the resulting temporal subtraction images was evaluated subjectively by two radiologists. The registration accuracy of the soft-tissue-based temporal subtraction images was rated superior to that of the conventional temporal subtraction images. Registration accuracy also was evaluated objectively through an automated method, which achieved an area-under-the-ROC-curve value of 0.92 in the distinction between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. By combining dual-energy soft-tissue images with temporal subtraction, misregistration artifacts can be reduced and superior image quality can be obtained.  相似文献   

15.
Magnetic Resonance Imaging (MRI) longitudinal studies conducted to assess changes in tibia bone quality impose strict requirements on the reproducibility of the prescribed region acquired. Registration, the process of aligning two images, is commonly performed on the images after acquisition. However, techniques to improve image registration precision by adjusting scanning parameters prospectively, prior to image acquisition, would be preferred. We have adapted an automatic prospective mutual information based registration algorithm to a MRI longitudinal study of trabecular bone of the tibia and compared it to a post-scan manual registration. Qualitatively, image alignment due to the prospective registration is shown in 2D subtraction images and 3D surface renderings. Quantitatively, the registration performance is demonstrated by calculating the sum of the squares of the subtraction images. Results show that the sum of the squares is lower for the follow up images with prospective registration by an average of 19.37% ± 0.07 compared to follow up images with post-scan manual registration. Our study found no significant difference between the trabecular bone structure parameters calculated from the post-scan manual registration and the prospective registration images (p > 0.05). All coefficient of variation values for all trabecular bone structure parameters were within a 2–4.5% range which are within values previously reported in the literature. Results suggest that this algorithm is robust enough to be used in different musculoskeletal imaging applications including the hip as well as the tibia.  相似文献   

16.
A method has been developed to match a standard digitised brain atlas onto MR images for identification of cerebral structures in anatomical images. This method uses, first, a three-dimensional crude registration based on the proportional system of Talairach. Then, a two-dimensional refined registration is performed using a deformation function based on a set of homologous landmarks on both images (MR and atlas). Displacements vectors are computed between each corresponding landmark. These vectors are interpolated by thin-plate splines, generating an unwarping function defined on the whole image. This function can then be applied on any structure of the atlas. An evaluation of the matching procedure has been performed. First, the influence of the choice of the landmarks has been evaluated for the fine registration method. The latter has been then compared to the crude registration method considered as a classical reference method. These results show the advantages of the fine registration approach.  相似文献   

17.
Schreibmann E  Xing L 《Medical physics》2006,33(4):1165-1179
Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction, in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of inhale and exhale phases of a lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a large number of initial transformation parameters. An accuracy of approximately 2 mm was achieved for both deformable and rigid registration. The proposed image registration method greatly reduces the complexity involved in the determination of homologous control points and allows us to minimize the subjectivity and uncertainty associated with the current manual interactive approach. Patient studies have indicated that the two-step registration technique is fast, reliable, and provides a valuable tool to facilitate both rigid and nonrigid image registrations.  相似文献   

18.
目的提出一种基于Contourlet变换,用于放射治疗定位的CT与锥形束CT(cone beam CT,CBCT)图像配准的方法。方法利用Contourlet变换多尺度多方向的分辨特性,将待配准图像进行Contourlet变换分解,分解后的高频方向子带合成梯度图像,采用归一化互信息作为相似性测度,把梯度图像与低频方向子带以加权函数结合,进行临床医学图像的刚性配准,有效弥补了互信息配准中缺少空间信息的不足。结果通过已知空间变换参数图像的配准结果验证了算法的准确性。配准后lO幅图像变换参数的误差极小,且均方根误差接近于0。结论该图像配准算法精确度高,并具有很好的鲁棒性,有助于提高图像引导放射治疗(image guid edradiation therapy,IGRT)中解剖组织结构和靶区的定位精度。  相似文献   

19.
Rigid body registration of 3D CT scans, based on manual identification of homologous landmarks, is useful for the visual analysis of skull dysmorphology. In this paper, a robust and simple alignment method was proposed to allow for the comparison of skull morphologies, within and between individuals with craniofacial anomalies, based on 3D CT scans, and the minimum number of anatomical landmarks, under rigidity and uniqueness constraints. Three perpendicular axes, extracted from anatomical landmarks, define the absolute coordinate system, through a rigid body transformation, to align multiple CT images for different patients and acquisition times. The accuracy of the alignment method depends on the accuracy of the localized landmarks and target points. The numerical simulation generalizes the accuracy requirements of the alignment method. Experiments using a human dried skull specimen, and ten sets of skull CT images (the pre- and post-operative CT scans of four plagiocephaly, and one fibrous dysplasia patients), demonstrated the feasibility of the technique in clinical practice.  相似文献   

20.
Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an “inertia force” derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号