首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Background: Cloning and heterologous expression of ion channels allow biophysical and molecular studies of the mechanisms of volatile anesthetic interactions with human heart sodium channels. Volatile anesthetics may influence the development of arrhythmias arising from cardiac sodium channel dysfunction. For that reason, understanding the mechanisms of interactions between these anesthetics and cardiac sodium channels is important. This study evaluated the mechanisms of volatile anesthetic actions on the cloned human cardiac sodium channel (hH1a) [Greek small letter alpha] subunit.

Methods: Inward sodium currents were recorded from human embryonic kidney (HEK293) cells stably expressing hH1a channels. There effects of halothane and isoflurane on current and channel properties were evaluated using the whole cell voltage-clamp technique.

Results: Halothane at 0.47 and 1.1 mM and isoflurane at 0.54 and 1.13 mM suppressed the sodium current in a dose- and voltage-dependent manner. Steady state activation was not affected, but current decay was accelerated. The voltage dependence of steady state fast and slow inactivations was shifted toward more hyperpolarized potentials. The slope factor of slow but not fast inactivation curves was reduced significantly. Halothane increased the time constant of recovery from fast inactivation. The recovery from slow inactivation was not affected significantly by either anesthetic.  相似文献   


2.
Background: alpha1 -adrenoceptor stimulation is known to produce electrophysiologic changes in cardiac tissues, which may involve modulations of the fast inward Na sup + current (INa). A direct prodysrhythmic alpha1 -mediated interaction between catecholamines and halothane has been demonstrated, supporting the hypothesis that generation of halothane-epinephrine dysrhythmias may involve slowed conduction, leading to reentry. In this study, we examined the effects of a selective alpha1 -adrenergic receptor agonist, methoxamine, on cardiac INa in the absence and presence of equianesthetic concentrations of halothane and isoflurane in single ventricular myocytes from adult guinea pig hearts.

Methods: INa was recorded using the standard whole-cell configuration of the patch-clamp technique. Voltage clamp protocols initiated from two different holding potentials (VH) were applied to examine state-dependent effects of methoxamine in the presence of anesthetics. Steady state activation and inactivation and recovery from inactivation were characterized using standard protocols.

Results: Methoxamine decreased INa in a concentration- and voltage-dependent manner, being more potent at the depolarized VH. Halothane and isoflurane interacted synergistically with methoxamine to suppress INa near the physiologic cardiac resting potential of -80 mV. The effect of methoxamine with anesthetics appeared to be additive when using a VH of -110 mV, a potential where no Na sup + channels are in the inactivated state. Methoxamine in the absence and presence of anesthetics significantly shifted the half maximal inactivation voltage in the hyperpolarizing direction but had no effect on steady-state activation.  相似文献   


3.
Background: Halothane, isoflurane, and enflurane cause coronary vasodilation and cardiac depression. This study was performed to assess the role of adenosine triphosphate (ATP)-sensitive potassium channels (K (ATP) channels) in these effects.

Methods: Twenty-five thoracotomized dogs were anesthetized with fentanyl and midazolam. The left anterior descending coronary artery was perfused via either of two pressurized (80 mmHg) reservoirs. One reservoir was supplied with arterial blood free of a volatile anesthetic, and the second reservoir was supplied with arterial blood equilibrated in an oxygenator with a 1 minimum alveolar concentration of either halothane (0.9%, n = 10), isoflurane (1.4%, n = 28), or enflurane (2.2%, n = 7). Coronary blood flow (CBF) was measured using a Doppler flow transducer, and segmental shortening (SS) was measured with ultrasonic crystals. Responses to the volatile anesthetics were assessed under control conditions, during intracoronary infusion of the KATP channel inhibitor glibenclamide (100 micro gram/min), and after cessation of glibenclamide (recovery). The effectiveness of glibenclamide was verified from inhibition of coronary vasodilator responses to the KATP channel opener cromakalim without effect on those to the KATP channel-independent vasodilators, sodium nitroprusside and acetylcholine.

Results: Under control conditions, the volatile anesthetics caused pronounced increases in CBF (isoflurane > halothane = enflurane), and decreases in SS (enflurane > halothane = isoflurane). Glibenclamide blunted significantly (and reversibly) the increases in CBF, but it had no effect on the decreases in SS.  相似文献   


4.
Background: The mechanism by which volatile anesthetics act on neuronal tissue to produce reversible depression is unknown. Previous studies have identified a potassium current in invertebrate neurons that is activated by volatile anesthetics. The molecular components generating this current are characterized here in greater detail.

Methods: The cellular and biophysical effects of halothane and isoflurane on neurons of Aplysia californica were studied. Isolated abdominal ganglia were perfused with anesthetic-containing solutions while membrane voltage changes were recorded. These effects were also studied at the single-channel level by patch clamping cultured neurons from the abdominal and pleural ganglia.

Results: Clinically relevant concentrations of halothane and isoflurane produced a slow hyperpolarization in abdominal ganglion neurons that was sufficient to block spontaneous spike firings. Single-channel studies revealed specific activation by volatile anesthetics of a previously described potassium channel. In pleural sensory neurons, halothane and isoflurane increased the open probability of the outwardly rectifying serotonin-sensitive channel (S channel). Halothane also inhibited a smaller noninactivating channel with a linear slope conductance of approximately 40 pS. S channels were activated by halothane with a median effective concentration of approximately 500 micro Meter (0.013 atm), which increased channel activity about four times. The mechanism of channel activation involved shortening the closed-time durations between bursts and apparent recruitment of previously silent channels.  相似文献   


5.
Effects of volatile anesthetics on cardiac calcium channels   总被引:1,自引:0,他引:1  
In order to investigate how volatile anesthetics affect cardiac calcium channels, the effects of halothane, enflurane, and isoflurane on the specific binding of [3H]-nitrendipine to bovine heart sarcolemmal membranes were studied. All three anesthetics added in liquid form inhibited [3H]-nitrendipine binding in a dose-dependent manner, and more interestingly, the order of inhibition by these volatile anesthetics roughly followed that of their anesthetic potencies. The partial pressures, calculated using the gas/water partition coefficients of halothane, enflurane, and isoflurane which inhibited [3H]-nitrendipine binding by 30% at 37 degrees C were about 1.48 x 10(-2) atm. (1.48%), 4.89 x 10(-2) atm. (4.89%) and 2.76 x 10(-2) atm. (2.76%), respectively. One mmol/l halothane altered not only the maximal binding (Bmax) from 189 f mol/mg protein to 136 f mol/mg protein, but also the dissociation constant (Kd) from 0.074 nmol/l to 0.18 nmol/l. Halothane was also added to the reaction mixture in the gaseous form with air. The partial pressure of halothane needed to bring about 30% inhibition was 0.82 x 10(-2) (0.82%), a value almost similar to that for halothane added in the liquid form. These results indicate that all three volatile anesthetics have direct effects on cardiac calcium channels, and that the magnitude of the effects depends on their anesthetic potencies.  相似文献   

6.
The cellular mechanisms that underlie general anesthetic actions on the inward rectifier K(+) current (IKir), a determinant of the resting potential in myocardium, are not fully understood. Using the whole-cell patch clamp technique, therefore, we investigated the effects of halothane and isoflurane on IKir in guinea pig ventricular myocytes. At membrane potentials negative to the equilibrium potential for potassium both anesthetics decreased amplitude of the steady-state inward IKir in a concentration- and voltage-dependent manner. The slope conductance was reduced, but the activation kinetics of the inward current were not altered. At potentials positive to the equilibrium potential for potassium, the outward current was increased by both anesthetics, which also caused small depolarizing shifts in the activation curve. With high internal magnesium concentration, the outward current increase by isoflurane was abolished, and the inward current block by halothane was attenuated. Spermine prevented the effects of both anesthetics on IKir at all membrane potentials tested. The results show voltage-dependent modulation of cardiac IKir channel by volatile anesthetics. Distinct modification of anesthetic effects by inward rectification gating agents, magnesium and spermine, suggests anesthetic interactions with the IKir channel protein. IMPLICATIONS: Differential modulation of myocardial inward rectifier potassium current by volatile anesthetics under normal and altered rectification may contribute to the mechanism of dysrhythmic actions by these anesthetics.  相似文献   

7.
BACKGROUND: Voltage-gated Na channels modulate membrane excitability in excitable tissues. Inhibition of Na channels has been implicated in the effects of volatile anesthetics on both nervous and peripheral excitable tissues. The authors investigated isoform-selective effects of isoflurane on the major Na channel isoforms expressed in excitable tissues. METHODS: Rat Nav1.2, Nav1.4, or Nav1.5 alpha subunits heterologously expressed in Chinese hamster ovary cells were analyzed by whole cell voltage clamp recording. The effects of isoflurane on Na current activation, inactivation, and recovery from inactivation were analyzed. RESULTS: The cardiac isoform Nav1.5 activated at more negative potentials (peak INa at -30 mV) than the neuronal Nav1.2 (0 mV) or skeletal muscle Nav1.4 (-10 mV) isoforms. Isoflurane reversibly inhibited all three isoforms in a concentration- and voltage-dependent manner at clinical concentrations (IC50 = 0.70, 0.61, and 0.45 mm, respectively, for Nav1.2, Nav1.4, and Nav1.5 from a physiologic holding potential of -70 mV). Inhibition was greater from a holding potential of -70 mV than from -100 mV, especially for Nav1.4 and Nav1.5. Isoflurane enhanced inactivation of all three isoforms due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation. Inhibition of Nav1.4 and Nav1.5 by isoflurane was attributed primarily to enhanced inactivation, whereas inhibition of Nav1.2, which had a more positive V1/2 of inactivation, was due primarily to tonic block. CONCLUSIONS: Two principal mechanisms contribute to Na channel inhibition by isoflurane: enhanced inactivation due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation (Nav1.5 approximately Nav1.4 > Nav1.2) and tonic block (Nav1.2 > Nav1.4 approximately Nav1.5). These novel mechanistic differences observed between isoforms suggest a potential pharmacologic basis for discrimination between Na channel isoforms to enhance anesthetic specificity.  相似文献   

8.
Background: The cardiac adenosine triphosphate-sensitive potassium (KATP) channel is activated during pathophysiological episodes such as ischemia and hypoxia and may lead to beneficial effects on cardiac function. Studies of volatile anesthetic interactions with the cardiac KATP channel have been limited. The goal of this study was to investigate the ability of volatile anesthetics halothane and isoflurane to modulate the cardiac sarcolemmal KATP channel.

Methods: The KATP channel current (IKATP) was monitored using the whole cell configuration of the patch clamp technique from single ventricular cardiac myocytes enzymatically isolated from guinea pig hearts. IKATP was elicited by extracellular application of the potassium channel openers 2,4-dinitrophenol or pinacidil.

Results: Volatile anesthetics modulated IKATP in an anesthetic-dependent manner. Isoflurane facilitated the opening of the KATP channel. Following initial activation of IKATP by 2,4-dinitrophenol, isoflurane at 0.5 and 1.3 mm further increased current amplitude by 40.4 +/- 11.1% and 58.4 +/- 20.6%, respectively. Similar results of isoflurane were obtained when pinacidil was used to activate IKATP. However, isoflurane alone was unable to elicit KATP channel opening. In contrast, halothane inhibited IKATP elicited by 2,4-dinitrophenol by 50.6 +/- 5.8% and 72.1 +/- 11.6% at 0.4 and 1.0 mm, respectively. When IKATP was activated by pinacidil, halothane had no significant effect on the current.  相似文献   


9.
Li J  Correa AM 《Anesthesiology》2002,97(4):921-930
BACKGROUND: (human ether-a-gogo related gene) encodes the cardiac rapidly activating delayed rectifier potassium currents (I(kr)), which play an important role in cardiac action potential repolarization. General anesthetics, like halothane, can prolong Q-T interval, suggesting that they act on myocellular repolarization, possibly involving HERG channels. Evidence for direct modulation of HERG channels by halothane is still lacking. To gain insight on HERG channel modulation by halothane the authors recorded macroscopic currents expressed in Xenopus oocytes and conducted non-stationary noise analysis to evaluate single channel parameters modified by the anesthetic. METHODS: Macroscopic currents were recorded in 120 mM K(+) internal-5 mM K(+) external solutions with the cut open oocyte technique. Macropatch recordings for non-stationary noise analysis of HERG tail currents were made in symmetrical 120 mM K(+) solutions. Pulse protocols designed for HERG current recording were elicited from a holding potential of -80 mV. Halothane was delivered via gravity-fed perfusion. RESULTS: Halothane (0.7%, 1.5%, and 3%) decreased macroscopic currents in a concentration-dependent manner (average reduction by 14%, 22%, and 35% in the range of -40 mV to 40 mV) irrespective of potential. HERG currents had slower activation and accelerated deactivation and inactivation. Non-stationary noise analysis revealed that halothane, 1.5%, decreased channel P(o) by 27%, whereas single-channel current amplitudes and number of channels in the patch remained unchanged. CONCLUSIONS: Halothane inhibits HERG currents expressed in oocytes in a concentration-dependent manner. It slowed down activation and accelerated deactivation and inactivation of HERG channels. The authors' results demonstrate that halothane decreased HERG currents by modulating kinetic properties of HERG channels, decreasing their open probability. Partial block of I(kr) currents could contribute to delayed myocellular repolarization and altered cardiac electrophysiology.  相似文献   

10.
BACKGROUND: The cardiac adenosine triphosphate-sensitive potassium (K(ATP)) channel is activated during pathophysiological episodes such as ischemia and hypoxia and may lead to beneficial effects on cardiac function. Studies of volatile anesthetic interactions with the cardiac K(ATP) channel have been limited. The goal of this study was to investigate the ability of volatile anesthetics halothane and isoflurane to modulate the cardiac sarcolemmal K(ATP) channel. METHODS: The K(ATP) channel current (I(KATP)) was monitored using the whole cell configuration of the patch clamp technique from single ventricular cardiac myocytes enzymatically isolated from guinea pig hearts. I(KATP) was elicited by extracellular application of the potassium channel openers 2,4-dinitrophenol or pinacidil. RESULTS: Volatile anesthetics modulated I(KATP) in an anesthetic-dependent manner. Isoflurane facilitated the opening of the K(ATP) channel. Following initial activation of I(KATP) by 2,4-dinitrophenol, isoflurane at 0.5 and 1.3 mm further increased current amplitude by 40.4 +/- 11.1% and 58.4 +/- 20.6%, respectively. Similar results of isoflurane were obtained when pinacidil was used to activate I(KATP). However, isoflurane alone was unable to elicit K(ATP) channel opening. In contrast, halothane inhibited I(KATP) elicited by 2,4-dinitrophenol by 50.6 +/- 5.8% and 72.1 +/- 11.6% at 0.4 and 1.0 mm, respectively. When I(KATP) was activated by pinacidil, halothane had no significant effect on the current. CONCLUSIONS: The cardiac sarcolemmal K(ATP) channel is differentially modulated by volatile anesthetics. Isoflurane can facilitate the further opening of the K(ATP) channel following initial channel activation by 2,4-dinitrophenol or pinacidil. The effect of halothane was dependent on the method of channel activation, inhibiting I(KATP) activated by 2,4-dinitrophenol but not by pinacidil.  相似文献   

11.
The mechanisms responsible for the direct negative inotropic effects of the three currently used volatile anesthetics (halothane, enflurane and isoflurane) are reviewed. These agents interfere at each step of excitation-contraction coupling, i.e. sarcolemmal membrane, sarcoplasmic reticulum and contractile proteins. At the myofilament level, they decrease both calcium sensitivity and maximal developed force of cardiac skinned fibers of various species, a preparation in which all functional membranes are destroyed and thus allowing to study the direct effects of volatile anesthetics on myocardial contractile proteins. The effects of the three volatile anesthetics are similar at equipotent concentrations. The site of action seems to involve the regulatory proteins of the thin myofilament, especially troponin-tropomyosin complex. At the sarcolemmal level, all three anesthetics decrease Ca++ entry through the voltage-dependent calcium channels, an effect that seems slightly more important for both halothane and enflurane than for isoflurane. However, these two sites of action (contractile proteins and sarcolemmal membrane) are not sufficient to explain their overall negative inotropic effect. The third site of action involves the sarcoplasmic reticulum. Halothane and enflurane produce an initial liberation of Ca++ from internal stores, while isoflurane does not. All three agents decrease the net uptake of Ca++ and increase the permeability of sarcoplasmic reticulum to Ca++, similar to the effect of caffeine. However, the resulting effect, i.e. a reduction of sarcoplasmic reticulum Ca++ content occurs at clinical concentrations of halothane or enflurane, while much higher concentrations of isoflurane are required to produce a similar reduction. This differential effect on the sarcoplasmic reticulum function (which is quantitative but not qualitative) seems to be mainly responsible for the lesser negative inotropic effect of isoflurane as observed in intact cardiac muscles of various species including humans. The knowledge of the mechanisms of action of volatile anesthetics is important for understanding the potential consequences associated with their use in patients receiving cardiac drugs, especially calcium blockers and phosphodiesterase inhibitors.  相似文献   

12.
Background: HERG (human ether-a-gogo related gene) encodes the cardiac rapidly activating delayed rectifier potassium currents (Ikr), which play an important role in cardiac action potential repolarization. General anesthetics, like halothane, can prolong Q-T interval, suggesting that they act on myocellular repolarization, possibly involving HERG channels. Evidence for direct modulation of HERG channels by halothane is still lacking. To gain insight on HERG channel modulation by halothane the authors recorded macroscopic currents expressed in Xenopus oocytes and conducted non-stationary noise analysis to evaluate single channel parameters modified by the anesthetic.

Methods: Macroscopic currents were recorded in 120 mm K+ internal-5 mm K+ external solutions with the cut open oocyte technique. Macropatch recordings for non-stationary noise analysis of HERG tail currents were made in symmetrical 120 mm K+ solutions. Pulse protocols designed for HERG current recording were elicited from a holding potential of -80 mV. Halothane was delivered via gravity-fed perfusion.

Results: Halothane (0.7%, 1.5%, and 3%) decreased macroscopic HERG currents in a concentration-dependent manner (average reduction by 14%, 22%, and 35% in the range of -40 mV to 40 mV) irrespective of potential. HERG currents had slower activation and accelerated deactivation and inactivation. Non-stationary noise analysis revealed that halothane, 1.5%, decreased channel Po by 27%, whereas single-channel current amplitudes and number of channels in the patch remained unchanged.  相似文献   


13.
Background: Both halothane and isoflurane evoke cerebral vasodilation. One of the potential mechanisms for arterial vasodilation is enhanced Potassium sup + efflux resulting from an increased opening frequency of membrane Potassium sup + channels. The current study was designed to determine the effects of volatile anesthetics on Potassium sup + channel current in single vascular smooth muscle cells isolated from dog cerebral arteries.

Methods: Patch clamp recording techniques were used to investigate the effects of volatile anesthetics on macroscopic and microscopic Potassium sup + channel currents.

Results: In the whole-cell patch-clamp mode, in cells dialyzed with pipette solution containing 2.5 mM EGTA and 1.8 mM CaCl2, depolarizing pulses from 60 to +60 mV elicited an outward Potassium sup + current that was blocked 65 plus/minus 5% by 3 mM tetraethylammonium (TEA). Halothane (0.4 and 0.9 mM) depressed the amplitude of this current by 18 plus/minus 4% and 34 plus/minus 6%, respectively. When 10 mM EGTA was used in the pipette solution to strongly buffer intracellular free Calcium2+, an outward Potassium sup + current insensitive to 3 mM TEA was elicited. This Potassium sup + current, which was reduced 51 plus/minus 4% by 1 mM 4-aminopyridine, was also depressed by 17 plus/minus 5 and 29 plus/minus 7% with application of 0.4 and 0.9 mM halothane, respectively. In cell-attached patches using 145 mM KCl in the pipette solution and 5.2 mM KCl in the bath, the unitary conductance of the predominant channel type detected was 99 pS. External application of TEA (0.1 to 3 mM) reduced the unitary current amplitude of the 99 pS Potassium sup + channel in a concentration-dependent manner. The open state probability of this 99 pS Potassium sup + channel was increased by 1 micro Meter Calcium2+ ionophore (A23187). These findings indicate that the 99 pS channel measured in cell-attached patches was a TEA-sensitive, Calcium2+ -activated Potassium sup + channel. Halothane and isoflurane reversibly decreased the open state probability (NPo), mean open time, and frequency of opening of this 99 pS Potassium sup + channel without affecting single channel amplitude or the slope of the current-voltage relationship.  相似文献   


14.
BACKGROUND: T-type calcium channels regulate neuronal membrane excitability and participate in a number of physiologic and pathologic processes in the central nervous system, including sleep and epileptic activity. Volatile anesthetics inhibit native and recombinant T-type calcium channels at concentrations comparable to those required to produce anesthesia. To determine whether T-type calcium channels are involved in the mechanisms of anesthetic action, the authors examined the effects of general anesthetics in mutant mice lacking alpha1G T-type calcium channels. METHODS: The hypnotic effects of volatile and intravenous anesthetics administered to mutant and C57BL/6 control mice were evaluated using the behavioral endpoint of loss of righting reflex. To investigate the immobilizing effects of volatile anesthetics in mice, the minimum alveolar concentration (MAC) values were determined using the tail-clamp method. RESULTS: The 50% effective concentration for loss of righting reflex and MAC values for volatile anesthetics were not altered after alpha1G channel knockout. However, mutant mice required significantly more time to develop anesthesia/hypnosis after exposure to isoflurane, halothane, and sevoflurane and after intraperitoneal administration of pentobarbital. CONCLUSIONS: The 50% effective concentration for loss of righting reflex and MAC values for the volatile anesthetics were not altered after alpha1G calcium channel knockout, indicating that normal functioning of alpha1G calcium channels is not required for the maintenance of anesthetic hypnosis and immobility. However, the timely induction of anesthesia/hypnosis by volatile anesthetic agents and some intravenous anesthetic agents may require the normal functioning of these channel subunits.  相似文献   

15.
Background: There is increasing evidence that direct interactions between volatile anesthetics and channel proteins may result in general anesthesia. Using voltage-clamp techniques, the authors examined the effect of two general anesthetics (ketamine and halothane) on a rat brain potassium channel of known amino acid sequence, and further assessed whether the inhibition of the channel is altered by a partial deletion of the C-terminal sequence of this channel.

Methods: Xenopus laevis oocytes were microinjected with either Kv2.1 or delta C318 (a mutated channel in which the last 318 amino acids of the C-terminus have been deleted) cRNA, and channel function in translated channels was observed before, during, and after exposure to graded concentrations of ketamine (25, 50, and 75 micro Meter) and halothane (1%, 2%, and 4%).

Results: Ketamine and halothane reduced Kv2.1 and delta C318 peak current amplitude in a dose-dependent and reversible fashion. The inhibition of current was voltage dependent for halothane but not for ketamine. Halothane accelerated the time constant of current inactivation, whereas ketamine affected this parameter minimally in both channel types. Use dependence of ketamine and halothane action was observed in both Kv2.1 and the mutant channel, attributable to augmentation of C-type inactivation.  相似文献   


16.
BACKGROUND: Volatile anesthetics produce differing degrees of myocardial protection in animal models of ischemia. The purpose of the current investigation was to determine the influence of isoflurane and halothane on myocardial protection in a human model of simulated ischemia and the role of adenosine A1 receptors and adenosine triphosphate-sensitive potassium (KATP) channels in the anesthetic pathway. METHODS: Human atrial trabecular muscles were superfused with oxygenated Krebs-Henseleit buffer and stimulated at 1 Hz, with recording of maximum contractile force. Fifteen minutes before a 30-min anoxic insult, muscles were pretreated for 5 min with either anoxia, the A1 agonist N6-cyclohexyladenosine, 1% halothane or 1.2% isoflurane. These treatments were also performed in the presence of either the KATP channel antagonist glibenclamide or the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Anesthetic effects were also determined on KATP currents in isolated whole cell voltage-clamped human atrial myocytes. RESULTS: Recovery of force (recorded 60 min after anoxia) in isoflurane-pretreated muscles was reduced from 76.6 +/- 7.5% of baseline to 43.7 +/- 7.1% by pretreatment with glibenclamide, and to 52.5 +/- 6.2% by pretreatment with DPCPX. Halothane treatment provided no cardioprotection and seemed to inhibit protection by anoxic preconditioning. Halothane decreased whole cell KATP currents in atrial myocytes, whereas isoflurane had no effects. CONCLUSIONS: This study demonstrates the cardioprotective effects of isoflurane in contrast to the effects of halothane. Furthermore, A1 receptors and KATP channels seem to mediate the beneficial effects of anoxia and isoflurane in human myocardium.  相似文献   

17.
Background: Genetics provides a way to evaluate anesthetic action simultaneously at the molecular and behavioral levels. Results from strains that differ in anesthetic sensitivity have been mixed in their support of unitary theories of anesthesia. Here the authors use the previously demonstrated large variation of halothane sensitivities in Caenorhabditis elegans recombinant inbred strains to assess the similarities of the determinants of halothane action with those of another volatile anesthetic, isoflurane.

Methods: The recombinant inbred strains, constructed from two evolutionarily distinct C. elegans lineages, were phenotyped. A coordination assay on agar quantified the sensitivity to the volatile anesthetics; median effective concentrations (EC50 s) were calculated by nonlinear regression of concentration-response data and were correlated between the drugs for those strains tested in common. Genetic loci were identified by statistical association between EC50 s and chromosomal markers.

Results: The recombinant inbred strains varied dramatically in sensitivity to halothane and isoflurane, with a 10-fold range in EC50 s. Heritability estimates for each drug were imprecise but altogether high (49-80%). Halothane and isoflurane EC50 s were significantly correlated (r = 0.71, P < 10-9). Genetic loci controlling sensitivity were found for both volatile anesthetics; the most significant determinant colocalized on chromosome V. A smaller recombinant inbred strain study of ethanol-induced immobility segregated different genetic effects that did not correlate with sensitivity to either halothane or isoflurane.  相似文献   


18.
Rajaram S  Nash HA 《Anesthesia and analgesia》2004,98(6):1705-11, table of contents
In higher organisms, physiological investigations have provided a valuable complement to assays of anesthetic effects on whole-animal behavior. However, although complex motor programs of Drosophila melanogaster have been used to identify genes that influence anesthesia, electrophysiological studies of anesthetic effects in this invertebrate have been limited. Here we show that the electroretinogram (ERG), the extracellular recording of light-evoked mass potentials from the surface of the eye, reveals a distinct effect of halothane, enflurane, isoflurane, and desflurane. Behaviorally relevant concentrations of these volatile anesthetics severely reduced the transient component of the ERG at lights-off. Other prominent ERG components, such as the photoreceptor potential and the lights-on transient, were not consistently affected by these drugs. Surprisingly, for most anesthetics, a diminished off-transient was obtained only with short light pulses. An identical effect was observed in the absence of anesthetic by depressing the function of Shaker potassium channels. The possibility that halothane acts in the visual circuit by closing potassium channels was examined with a simple genetic test; the results were consistent with the hypothesis but fell short of providing definitive support. Nevertheless, our studies establish the ERG as a useful tool both for examining the influence of volatile anesthetics on a simple circuit and for identifying genes that contribute to anesthetic sensitivity. IMPLICATIONS: Electroretinography (ERG) provides a useful monitor of anesthetic effects on the fruit fly. The effects of volatile anesthetics on the ERG are recapitulated by inactivation of potassium channels.  相似文献   

19.
The effects of halothane, enflurane, and isoflurane on voltage-dependent Ca2+ channel current (ICa) were compared in canine ventricular cells by the whole-cell voltage-clamp technique. ICa was elicited in each cell by progressively depolarizing pulses, from -80 or -40 mV to more positive membrane potentials. The peak amplitude and inactivation rate of the inward current were analyzed before, during, and after the external application of equianesthetic concentrations (0.5, 1.0, and 2.0 MAC) of halothane, enflurane, or isoflurane. The concentrations of these agents in the Krebs' solution were as follows (percentage in the gas phase): halothane 0.36, 0.68, and 1.50%; isoflurane 0.50, 1.00, and 1.90%; and enflurane 0.66, 1.36, and 2.39%. Halothane, enflurane, and isoflurane rapidly reduced peak ICa amplitude at all voltages studied, resulting in a depression of the entire current-voltage relationship for ICa activation. This depression was concentration-dependent and completely reversible upon wash-out of the anesthetic agents. Quantitatively, the three anesthetic agents produced a similar inhibition of peak ICa at approximately equianesthetic concentrations. Inactivation of ICa during 200-ms depolarizing pulses was not affected by two lower concentrations of the anesthetic agents, but was accelerated by the highest concentration of enflurane used. These findings suggest that the negative inotropic and chronotropic actions of halothane, enflurane, and isoflurane on the ventricular myocardium are related, at least in part, to their inhibition of ICa at the sarcolemma. However, since all three anesthetic agents depressed ICa amplitude similarly, their quantitatively different effects on cardiac performance are due most likely to differences in actions at other cellular sites.  相似文献   

20.
H N Luk  C I Lin  J Wei  C L Chang 《Anesthesiology》1988,69(5):667-676
The present experiments were designed to study the cellular mechanism responsible for the depressant effects of halothane and isoflurane on human atrial tissues obtained at cardiac surgery. The fibers were superfused in Tyrode's solution, and transmembrane potentials were recorded with a microelectrode technique. In atrial fibers showing fast response action potential (maximum velocity of depolarization [Vmax] greater than 100 V/s), halothane (0.75 vol%, 0.44 mM) and isoflurane (1.25 vol%, 0.53 mM) decreased slightly the upstroke velocity but depressed the plateau and twitch force significantly. In atrial fibers showing slow rate of phase-0 depolarization or when atrial fibers were depolarized in high [K]0, both halothane and isoflurane decreased the upstroke of slow response and the force. The depressant effects of anesthetics partially mimicked the actions of 1 microM tetrodotoxin and diltiazem and could be reversed by epinephrine or high [Ca]0. The delayed afterdepolarizations or aftercontractions and contracture induced by epinephrine or strophanthidin were also inhibited by both anesthetics. Halothane and isoflurane may depress normal electromechanical activity and arrhythmogenic triggered activity through a reduction of cation fluxes across the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号