首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmids containing the replication origin of the Escherichia coli chromosome (oriC plasmids) are unstable in certain recA strains of E. coli. However, they can be maintained more stably in other recA strains. This stable maintenance has allowed us to study the incompatibility properties of oriC plasmids. We have found that two oriC plasmids are incompatible: they cannot be stably coinherited in individual dividing cells. An oriC plasmid is excluded from growing bacteria at a much faster rate in the presence of a hybrid plasmid made from an oriC plasmid and a high-copy-number vector plasmid than in the presence of another oriC plasmid. By inserting various segments around the oriC region into high-copy-number vectors, we have shown that two different regions in the vicinity of the oriC region determine incompatibility. One region, which we named incA, includes the region essential for autonomous replication of the oriC plasmid. The other, incB, is adjacent to incA but is not required for autonomous replication.  相似文献   

2.
3.
4.
Plasmid P1 replication: negative control by repeated DNA sequences.   总被引:18,自引:9,他引:18       下载免费PDF全文
The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pieces of the incA fragment that each contain only three repeats destabilize P1 plasmids efficiently. This result makes it unlikely that incA specifies a regulatory product. Our in vivo results suggest that the repeating DNA sequence itself negatively controls replication by titrating a P1-determined protein, RepA, that is essential for replication. Consistent with this hypothesis is the observation that the RepA protein binds to the incA fragment in vitro.  相似文献   

5.
pRK212.2, a derivative of the broad host range plasmid RK2, contains two EcoRI cleavage fragments, A and B, neither of which can replicate by itself in Escherichia coli. Fragment A (41.7 kilobases), but not fragment B (14.4 kilobases), can be cloned by insertion into the unrelated plasmids mini-F and ColE1. Fragment B contains the origin of replication and the ampicillin-resistance determinant of RK2. Transformation of E. coli cells containing the mini-F-fragment A hybrid plasmid with fragment B DNA results in the recircularization and replication of fragment B as a nonmobilizable plasmid (pRK2067) with the copy number and incompatibility properties of RK2. Fragment B cannot be cloned in the absence of fragment A because the latter fragment suppresses a function, specified by fragment B, that results in loss of host cell viability. A small segment (2.4 kilobases) of fragment B that contains the RK2 origin of replication but no longer affects host cell growth in the absence of fragment A had been cloned previously by insertion into a ColE1 plasmid. This hybrid plasmid, designated pRK256, will replicate in E. coli polA mutants only when a fragment A-bearing helper plasmid is present. These results demonstrate that the potentially lethal function specified by fragment B of RK2 is not necessary for replication and that at least one trans-acting function is directly involved in RK2 replication.  相似文献   

6.
Previous studies on transient replication of papillomaviruses have shown an absolute requirement for the viral E1 and E2 proteins in DNA replication. Here we demonstrate that for human papillomavirus type 1a (HPV-1a) DNA, the E1 protein alone is sufficient for in vivo replication of plasmids containing the viral origin of replication. Replication was origin-specific and required the presence of a DNA sequence containing a putative E1 binding site, but the E2 binding sites were dispensable. In the presence of the E1 protein, E2 stimulated replication of plasmids containing the E1 and E2 binding sites, but no stimulation was observed when the origin plasmids lacked E2 binding sites. Conversely, in the presence of E1 alone, the E2 binding sites did not affect replication. Plasmids containing the replication origins of HPV-6b, HPV-18, and bovine papillomavirus type 1 (BPV-1) also replicated efficiently in the presence of the HPV-1a E1 and E2 proteins. However, plasmids containing the origins of HPV-6b and HPV-18 failed to replicate in the presence of HPV-1a E1 alone, whereas a plasmid containing the BPV-1 origin replicated to lower levels than the HPV-1a origin-containing plasmid. These results suggest that replication from papillomaviral origins in the presence of E1 alone is presumably dependent on the strength of E1-origin interactions. Additionally, E1-dependent replication is stimulated by the E2 protein in the presence of E2 binding sites.  相似文献   

7.
A primosome assembly site for F plasmid DNA replication has been identified. This site, which we term rriA (F), is localized to one strand of a 385-base-pair Sau3A restriction fragment very close to ori 2 and within the 2.25-kilobase DNA sequence required for replication and incompatibility of the entire F plasmid. rriA (F) was isolated by cloning into the deletion phage vector M13 delta Elac. This phage forms very faint plaques due to a deletion of the M13 complementary strand origin but forms large wild-type plaques when DNA single-strand initiation determinants are inserted. The single-stranded viral DNA of the Sau3A F-M13 delta Elac recombinant provides an effector site of dATP hydrolysis by the primosomal protein n'. It also provides an assembly site for the Escherichia coli primosome protein complex that directs the in vitro conversion of the single-stranded DNA to a double-stranded form by the same mechanism as that used by phi X174. Homologies of the nucleotide sequence between this F DNA sequence and the previously identified primosome assembly sites in phi X174 phage DNA and in ColE1 plasmid DNA (rriA and rriB) have been found. The sequences 5' G-T-G-A-G-C-G 3' and 5' G-N-G-G-A-A-G-C 3' or variations of these sequences occur from two to five times within each assembly locus. In addition, two distinct 15-base-pair sequences in rriA (F) are perfectly homologous to corresponding sequences in rriA (ColE1).  相似文献   

8.
The Escherichia coli gene encoding one of the primosomal proteins, protein i, was cloned by the use of synthetic oligonucleotide probes. Nucleotide sequence analysis revealed a coding region for protein i of 537 base pairs preceded by a possible promoter sequence. The gene is located adjacent to the dnaC locus, probably both being in a single operon. The protein i gene was shown to be closely related to the dnaT locus based on the following observations. (i) A multicopy plasmid carrying only the protein i gene suppresses the temperature-sensitive phenotype of a dnaT strain and restores the ability of the strain to carry out stable DNA replication in the absence of protein synthesis. (ii) An extract from a dnaT strain does not support replication of the plasmid pBR322 in vitro; addition of purified protein i restores its activity. These results indicate that protein i is encoded by dnaT and that it is essential for chromosomal DNA replication and is involved in the induction of stable DNA replication during the SOS response.  相似文献   

9.
RepA, an initiation protein of R1 plasmid replication, was purified from an Escherichia coli strain overproducing the protein. The purified RepA protein specifically initiated replication in vitro of plasmid DNA bearing the replication origin of R1 plasmid (oriR). The replication, strictly dependent on added RepA protein, was independent of host RNA polymerase but required other host replication functions (DnaB and DnaC proteins, the single-stranded-DNA-binding protein SSB, and DNA gyrase). The replication was also completely dependent on the host DnaA function. In filter binding assays in high salt (0.5 M KCl) conditions, RepA specifically binds to both supercoiled and linear plasmid DNA containing the oriR sequence, whereas it binds to nonspecific DNA in low salt. DNase I-protection studies on a linearized DNA fragment revealed that DnaA protein specifically binds to a 9-base-pair DnaA-recognition sequence ("DnaA box") within oriR only when RepA is bound to the sequence immediately downstream of the DnaA box. These results indicate that initiation of R1 plasmid replication is triggered by interaction of RepA and DnaA proteins with the oriR sequence.  相似文献   

10.
Primary structure of the essential replicon of the plasmid pSC101.   总被引:35,自引:4,他引:35       下载免费PDF全文
The replicon of the low copy number plasmid pSC101 has an obligatory requirement for the dnaA initiator protein of Escherichia coli as well as a plasmid-encoded initiator protein. We have identified the cistron of the plasmid-encoded initiator by DNA sequence analysis. Fusion of the initiator cistron with the lacZ gene of E. coli yielded a fusion protein of approximately equal to 150 kilodaltons, thus confirming that the open reading frame detected by DNA sequence analysis actually encoded a 37.5-kilodalton protein. Deletion of 26 amino acid residues from the COOH terminus of the plasmid initiator abolished autonomous replication from pSC101 origin. By in vitro deletion analysis we have shown that, although sequences downstream from the initiator cistron are dispensable, a maximum of 400 base pairs immediately upstream from the NH2-terminal region of the initiator is necessary for plasmid replication. These upstream sequences contain an A + T-rich region and three tandem repeats of a 21-base pair sequence; these features are characteristics of other replication origins.  相似文献   

11.
EcoRI endonuclease-generated DNA fragments carrying replication regions of the F'lac and R6-5 plasmids have been cloned and isolated, using as a selection vehicle a nonreplicating ampicillin-resistance DNA fragment derived from a Staphylococcus aureus plasmid. Heteroduplex analysis of the constructed plasmid chimeras and the parent replicons has localized the cloned R6-5 replication region to a DNA segment between kilobase pair coordinates 1.0 and 88.0 on the R6-5 map. Physical proximity between the plasmid replication functions and the locus governing plasmid incompatibility has been shown for both parent replicons. The cloning method reported appears to be generally applicable for the identification and isolation of replication regions of a variety of complex genomes.  相似文献   

12.
Nucleotide sequence of Escherichia coli K-12 replication origin.   总被引:48,自引:16,他引:48       下载免费PDF全文
From subfragments of an EcoRI fragment (9 kilobase pairs) that contained the replication origin of the Escherichia coli chromosome and had been cloned as a recombinant with a nonreplicating DNA fragment coding for ampicillin resistance, small derivative plasmids were constructed. The smallest of these, pTSO151, contained a segment of 463 base pairs as the chromosomal component. Another plasmid, pSY134, constructed from BamHI digests of the EcoRI fragment and mini-F(pMF21), contained a region of 422 base pairs identical with a corresponding region in pTSO151. We conclude that the replication origin of E. coli chromosome is located within this 422-base-pair segment. The nucleotide sequence of this segment is presented.  相似文献   

13.
We have determined the sequence of the gene encoding a single-stranded DNA (ss DNA) binding protein (SSB) from the Escherichia coli F sex factor and the amino acid sequence of the protein it encodes. The protein has extensive homology with E. coli SSB, particularly within its NH2-terminal region, where 87 of the first 115 amino acid residues are identical to those of the E. coli protein. We have previously shown that this portion of E. coli SSB contains the DNA binding region. The sequences diverge extensively in their COOH-terminal regions, although small areas of homology exist in several places. Six of the last seven amino acid residues of the two proteins are identical, which may have implications in terms of the direct interactions of these proteins with other proteins required for DNA replication, recombination, and repair. The coding region of the F plasmid ssf gene is 537 base pairs. The protein encoded by the gene contains 178 amino acids (one more than E. coli SSB) and has a calculated molecular weight of 19,505. Other than the presumptive Shine-Dalgarno sequence, the promoter and terminator regions of both genes are not similar. The most significant feature in this regard may be the lack of a region of dyad symmetry within the presumptive promoter of the F plasmid ssf gene as is found in the region of the presumptive E. coli ssb promoter. In this report the predicted secondary structures of both the F plasmid and E. coli SSB proteins are compared and the evolutionary significance of their sequence and structural similarities to the functional domains of the proteins are discussed.  相似文献   

14.
We have used in vivo methods to identify multiple DNA-binding sites for the negatively autoregulated mini-F replication factor PifC. Sequence analysis of pif operator constitutive mutants, isolated as insensitive to repression by PifC, establishes the structure of pifO. This site contains a 17-base-pair (bp) region of dyad symmetry with 7-bp perfect inverted repeats separated by 3 bp. In vivo DNA methylation studies with dimethyl sulfate show that the reactivity of five of six guanine residues in the pifO region is altered in the presence of PifC protein. In addition, there are several sites of PifC-dependent methylation enhancement and protection upstream of pifO within repeated sequences bearing homology to pifO. The significance of the repeated PifC binding sequences and their relationship to the primary origin of mini-F replication (oriV1) are discussed.  相似文献   

15.
Dispensable replicons such as F plasmid [95 kilobases (kb)] or its mini-derivatives such as mini-F (9.3 kb) or lambda mini-F efficiently induced cellular SOS genes such as sfiA (sulA) when they were damaged by UV irradiation and then introduced into a recipient bacterium. To generate an SOS signal, UV light-damaged mini-F or mini-F conditional mutants deficient in replication required that the bacterial RecBC enzyme retained some activity different from the nuclease activity that was dispensable. In contrast, UV light-damaged F plasmid produced an SOS signal independently of the activity of the RecBC enzyme and of the expression of the mini-F, -H, and -G proteins. Our findings are consistent with a picture in which the SOS signal is constituted by stretches of single-stranded DNA on a replicon. Moreover, our present data combined with other data previously published lead to the hypothesis that the SOS signal induced by mini-F plasmid is located in trans on the host chromosome, whereas the one generated by UV light-damaged F plasmid is in cis on the transferred DNA.  相似文献   

16.
The bacterial origins of DNA replication have been isolated from Pseudomonas aeruginosa and Pseudomonas putida. These origins comprise a second class of bacterial origins distinct from enteric-type origins: both origins function in both Pseudomonas species, and neither functions in Escherichia coli; enteric origins do not function in either pseudomonad. Both cloned sequences hybridize to chromosomal fragments that show properties expected of replication origins. These origin plasmids are highly unstable, are present at low copy number, and show mutual incompatibility properties. DNA sequence analysis shows that both origins contain several 9-base-pair (bp) E. coli DnaA protein binding sites; four of these are conserved in position and orientation, two of which resemble the R1 and R4 sites of the E. coli origin. Conserved 13-bp direct repeats adjacent to the analogous R1 site are also found. No GATC sites are in the P. aeruginosa origin and only four are in the P. putida origin; no other 4-bp sequence is present in high abundance. Both origins are found between sequences similar to the E. coli and Bacillus subtilis dnaA, dnaN, rpmH, and rnpA genes, a gene organization identical to that for B. subtilis and unlike that of E. coli. A second autonomously replicating sequence was obtained from P. aeruginosa that has some properties of bacterial origins.  相似文献   

17.
An analogue of the DnaJ molecular chaperone in Escherichia coli.   总被引:8,自引:1,他引:8       下载免费PDF全文
Escherichia coli DnaJ functions as a typical molecular chaperone in coordination with other heat shock proteins such as DnaK and GrpE in a variety of cellular processes. In this study, it was found that E. coli possesses an analogue of DnaJ, as judged from not only its primary structure but also its possible function. This protein, named CbpA (for curved DNA-binding protein), was first identified as a DNA-binding protein that preferentially recognizes a curved DNA sequence. Cloning and nucleotide sequencing of the gene encoding CbpA revealed that the predicted product is very similar to DnaJ in amino acid sequence: overall identity is 39%. The cbpA gene functions as a multicopy suppressor for dnaJ mutations. The mutational lesions characteristic of a dnaJ null mutant--namely, temperature sensitivity for growth and defects in lambda phage and mini-F DNA replication--were all restored upon introduction of the cbpA gene on a multicopy plasmid. An insertional mutant of cbpA was also isolated, which showed no noticeable phenotype, particularly with regard to temperature sensitivity for growth. However, when this cbpA::kan allele was combined with the dnaJ null allele, the resultant strain was unable to grow at 37 degrees C, at which strains carrying each mutation alone could grow normally. These genetic results are interpreted as meaning that the function(s) of CbpA in E. coli is closely related to that of DnaJ.  相似文献   

18.
A composite plasmid (pXX11) was constructed by joining of an oriC plasmid (pMCR115) carrying the replication origin (oriC) of the Escherichia coli chromosome and a mini-F plasmid (pSC138) carrying the ampicillin-resistance gene (bla). Plasmid pXX11 can replicate, by using oriC, in Hfr cells and mafA mutant cells that cannot support replication of an F plasmid. This plasmid is stably maintained in these host cells during cell growth even under nonselective conditions by use of the partition mechanism of the mini-F genome. In contrast to other oriC plasmids reported previously, pXX11 has no detectable effect on host cell growth. Higher copy-number (Cop-) mutants of pXX11 were isolated, and some of them were found to carry an insertion or deletion within a region derived from the E. coli chromosome. This region, designated cop (copy number), covers about 0.7 kilobase pair and is located approximately 3 kilobase pairs away from the oriC region at the side opposite the asn gene. Evidence suggests that the normal cop region locted on the oriC plasmid acts to reduce the copy number of the plasmid. Plasmid pXX11 complements the uncB402 mutation located on the host chromosome, but some of the Cop- plasmids do not, suggesting that the cop region is vey closely linked to uncB.  相似文献   

19.
20.
RepA, the replication initiator protein of Pseudomonas pPS10 plasmid, is made of two winged-helix (WH) domains. RepA dimers undergo a structural transformation upon binding to origin DNA sequences (iterons), resulting in monomerization and alpha-helix into beta-strand conversion. This affects the N-terminal domain (WH1) and generates a metastable intermediate. Here it is shown that the interaction of short dsDNA oligonucleotides, including iteron or operator RepA targets, with the isolated WH1 domain promotes the assembly of different nanostructures. These range from irregular aggregates to amyloid spheroids and fibers. Their intrinsic order inversely correlates with the extent of the transformation induced by each DNA sequence on RepA. However, DNA is not a constituent of the assembled fibers, in agreement with the protein-only principle for amyloid structure. Thus, the RepA-WH1 domain on DNA binding mimics the behavior of the mammalian prion protein. The stretch of amino acids responsible for WH1 aggregation has been identified, leading to the design of mutants with enhanced or reduced amyloidogenicity and the synthesis of a peptide that assembles into a cross-beta structure. RepA amyloid assemblies could have a role in the negative regulation of plasmid replication. This article underlines the potential of specific nucleic acid sequences in promoting protein amyloidogenesis at nearly physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号