首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biological monitoring for occupational exposure to toluene   总被引:1,自引:0,他引:1  
A study was undertaken to examine the relationship between exposure of workers to toluene in the work environment and biological indicators of toluene exposure. The biological indicators studied were toluene in expired air, toluene in blood obtained by the finger prick method, and urinary hippuric acid. The study was undertaken in a factory in Singapore that manufactures speakers for audio systems. A total of 86 female workers exposed to toluene at the workplace and a control group of workers not exposed to toluene were examined. All of them were teetotalers, were nonsmokers, and gave no history of chronic drug usage. The 8-hr time-weighted average exposure level of toluene ranged from 1.6 ppm to 263 ppm. The study showed the expected toluene levels in finger prick blood was 1.4 micrograms/mL after an 8-hr exposure to 100 ppm of toluene. Toluene concentration in expired air of 16 ppm after an 8-hr exposure to 100 ppm compared favorably with other studies. The toluene in blood/expired air ratio was observed to be lower than in other studies. In this study, the expected urinary hippuric acid level for a 100-ppm exposure to toluene was 2.7 g/g creatinine. This level is higher than that recorded in other studies. The results showed that at low levels of toluene, urinary hippuric acid is not a valuable indicator of exposure. Toluene in expired air is the most reliable biological indicator of exposure to toluene.  相似文献   

2.
Short-term exposure to a high concentration (TWA > 100 ppm) of toluene can cause hepatotocixity and neurotoxicity in humans. Data on the effects of exposure to low levels of toluene, however, are controversial. In addition, few studies on the effects of toluene exposure on the autonomic nervous system have been conducted. Urine samples from 34 male factory workers in Taiwan who were exposed to low levels of toluene either intermittently (n = 13) or continuously (n = 21) were taken on a Monday morning after a 2-day hiatus and at the end of the workweek on Friday evening. Urinary hippuric acid levels were measured using high-performance liquid chromatography (HPLC). A complete blood work-up was also performed for each subject. The prevalence and severity of neurotoxic symptoms were investigated by a self-reported questionnaire, a neuropsychiatric battery, and sympathetic and peripheral nerve function tests. The mean value of urinary hippuric acid corrected for creatinine (Cr) was 0.34 ± 0.18 g/g Cr on Monday morning and 0.43 ± 0.26 g/g Cr on Friday evening. The difference in the mean value of urinary hippuric acid between the two periods (p < 0.01) and the odds ratio of impairment of sympathetic (OR = 4.13, p = 0.11) and peripheral nerves (OR = 6.94, p = 0.074) were higher in workers continuously exposed to toluene. In addition, workers who were continuously exposed to toluene had a lower mean platelet count (216 ± 41 × 10(6) /μL) than workers who were intermittently exposed (252 ± 40 × 10(6)/μL), (p = 0.018). Furthermore, there was a positive relationship between neurological abnormalities and a self-reported neuropsychiatric measurement (r = 0.35-0.66, p < 0.05) in all workers. These data suggest that continuous exposure to low levels of toluene may be associated with sympathetic and peripheral nerve dysfunction and sub-clinical hematological damage. Further research needs to be carried out regarding how chronic exposure to low-levels of toluene affects workers.  相似文献   

3.
Comparative evaluation of biomarkers of occupational exposure to toluene   总被引:2,自引:2,他引:0  
Objectives This study was initiated to make comparative evaluation of five proposed urinary markers of occupational exposure to toluene, i.e., benzyl alcohol, benzylmercapturic acid, o-cresol, hippuric acid and un-metabolized toluene. Methods In practice, six plants in Japan were surveyed, and 122 Japanese workers (mostly printers; all men) together with 12 occupationally nonexposed control subjects (to be called controls; all men) agreed to participate in the study. Surveys were conducted in the second half of working weeks. Time-weighted average exposure (about 8 h) to toluene and other solvents were monitored by diffusive sampling. End-of-shift urine samples were collected and analyzed for the five markers by the methods previously described; simultaneous determination of o-cresol was possible by the method originally developed for benzyl alcohol analysis. Results The toluene concentration in the six plants was such that the grand geometric mean (GM) for the 122 cases was 10.4 ppm with the maximum of 121 ppm. Other solvents coexposed included ethyl acetate (26 ppm as GM), methyl ethyl ketone (26 ppm), butyl acetate (1 ppm) and xylenes (1 ppm). By simple regression analysis, hippuric acid correlated most closely with toluene in air (r = 0.85 for non-corrected observed values) followed by un-metabolized toluene (r = 0.83) and o-cresol (r = 0.81). In a plant where toluene in air was low (i.e., 2 ppm as GM), however, un-metabolized toluene and benzylmercapturic acid in urine showed better correlation with air-borne toluene (r = 0.79 and 0.61, respectively) than hippuric acid (r = 0.12) or o-cresol (r = 0.17). Benzyl alcohol tended to increase only when toluene exposure was intense. Correction for creatinine concentration or specific gravity of urine did not improve the correlation in any case. Multiple regression analysis showed that solvents other than toluene did not affect the levels of o-cresol, hippuric acid or un-metabolized toluene. Levels of benzylmercapturic acid and un-metabolized toluene were below the limits of detection [limit of detections (LODs); 0.2 and 2 μg/l, respectively] in the urine from the control subjects. Conclusions In over-all evaluation, hippuric acid, followed by un-metabolized toluene and o-cresol, is the marker of choice for occupational toluene exposure. When toluene exposure level is low (e.g., 2 ppm), un-metabolized toluene and benzylmercapturic acid in urine may be better indicators. Detection of un-metabolized toluene or benzylmercapturic acid in urine at the levels in excess of the LODs may be taken as a positive evidence of toluene exposure, because their levels in urine from the controls are below the LODs. The value of benzyl alcohol as an exposure marker should be limited.  相似文献   

4.
Object Ambient air and biological monitoring of an occupational toluene exposure was carried out on a group of 33 workers. Method The biological monitoring of the workers was based on determination of the concentration of toluene in blood and on quantification of the urinary metabolites o-cresol and hippuric acid. All blood and urine samples were collected post-shift. Results The average toluene concentration in the workplace air was 65?ppm, ranging from 13 to 151?ppm. An average concentration of toluene in blood of 911?μg/l was found, corresponding to an average urinary concentration of 2.9?mg/l (2.3?mg/g creatinine) o-cresol and 2.4?g/l (1.9?g/g creatinine) hippuric acid. Both urinary metabolites can be correlated with the concentration of toluene in ambient air and blood, respectively. Conclusions The results of our study indicate that the determination of the urinary o-cresol excretion represents a diagnostically specific and sensitive parameter for the estimation of an individual toluene uptake. In contrast, monitoring of the concentration of hippuric acid in urine cannot be recommended for assessment of individual exposure. To set up a biological tolerance value (BAT) for o-cresol, a urinary concentration of 3?mg/l o-cresol should be in accordance with the current MAK value of 50?ppm toluene.  相似文献   

5.
6.
OBJECTIVES: Polycyclic aromatic hydrocarbons (PAH) and toluene have been reported to induce reactive oxygen species and oxidative stress. This study was performed to investigate the effects of low level exposure to PAHs or toluene on the lipid peroxidation level in elementary school children and the elderly in a rural area. METHODS: Forty seven elementary school children and 40 elderly people who were living in a rural area and not occupationally exposed to PAH or toluene were the subjects of this study. Information about active or passive smoking and diet was obtained using a self-administered questionnaire. The urinary 1-hydroxypyrene (1-OHP), 2-naphthol, hippuric acid and thiobarbituric acid reactive substance (TBARS) concentrations were measured, and these values were corrected with the urinary creatinine concentration. RESULTS: In school children, the geometric means of the urinary 1-OHP, 2-naphthol, hippuric acid and TBARS levels were 0.02 micromol/mol creatinine, 0.47 micromol/mol creatinine, 0.14 g/g creatinine and 0.95 micromol/g creatinine, respectively. Those values for the elderly were 0.07 micromol/mol creatinine, 1.87 micromol/mol creatinine, 0.11 g/g creatinine and 1.18 micro mol/g creatinine, respectively. The mean levels of urinary 1-OHP, 2-naphthol and TBARS were significantly higher in the elderly subjects than in the children. The urinary TBARS level was not correlated with the urinary 1-OHP, 2-naphthol and hippuric acid, but they were correlated with the age of the subjects. CONCLUSIONS: These results suggest that low level inhalation exposure to PAH or toluene does not markedly increase lipid peroxidation, and age is a significant determinant of lipid peroxidation.  相似文献   

7.
Summary A new method for the direct determination of hippuric acid (HA) and o-, m- and p-methylhippuric acids (MHAs) in the urine, metabolites of toluene and o-, m- and p-xylenes by high performance liquid chromatography (HPLC) is described. A stainless-steel column packed with silica gel having dinitrophenyl residue and a mixed solution of methanol/water/acetic acid (80/20/0.2) containing tetra-n-butylammonium bromide (0.2% w/v) as mobile phase was used. Concentrations of HA and MHAs were estimated from their peak height at a wave length of 225 nm. Urine can be analyzed directly without solvent extraction or pretreatment to obtain complete separation of HA and o-, m- and p-MHAs. Urine samples from male workers exposed to toluene or xylenes were analyzed for HA or MHAs. The urinary levels of HA and MHAs increased by exposure to toluene and xylenes in proportion to the environmental concentrations of the solvents, although there is a considerable variation in metabolite concentrations. The slope of regression line between toluene and HA and that between m-xylene and m-MHA were similar. The urinary concentrations of HA and MHAs corresponding to 100 ppm (TLV) of toluene was 2.35 g/g creatinine and that of m-MHA corresponding to 100 ppm (TLV) of m-xylene was 2.05 g/g creatinine. The warning levels of the urinary metabolite concentrations of a group of workers and that of an individual worker corresponding to TLV of organic solvent concentration is discussed.  相似文献   

8.
Toluene in blood as a marker of choice for low-level exposure to toluene   总被引:1,自引:1,他引:0  
The validity of two new biological exposure markers of toluene in blood (TOL-B) and toluene in urine (TOL-U) was examined in comparison with that of the traditional marker of hippuric acid in urine (HA-U) in 294 male workers exposed to toluene in workroom air (TOL-A), mostly at low levels. The exposure was such that the geometric mean for toluene was 2.3 ppm with a maximum of 132 ppm; the workers were also exposed to other solvents such as hexane, ethyl acetate, styrene, and methanol, but at lower levels. The chance of cutaneous absorption was remote. Higher correlation with TOL-A and better sensitivity in separating the exposed workers from the nonexposed subjects were taken as selection criteria. When workers exposed to TOL-A at lower concentrations (< 50 ppm, < 10 ppm, < 2 ppm, etc.) were selected and correlation with TOL-A was examined, TOL-B showed the largest correlation coefficient which was significant even at TOL-A of < 1 ppm, whereas correlation of HA-U was no longer significant when TOL-A was < 10 ppm. TOL-U was between the two extremes. The sensitivities of TOL-B and TOL-U were comparable; HA-U showed the lowest sensitivity. Thus, it was concluded that TOL-B is the indicator of choice for detecting toluene exposure at low levels.  相似文献   

9.
OBJECTIVE: To examine if benzylmercapturic acid (or N-acetyl- S-benzyl cysteine) in urine can be used as a marker of occupational exposure to toluene. METHODS: A factory survey was conducted in the latter half of a working week. A group of 46 men, who volunteered for the study, was engaged in ink preparation, surface coating or printing work. Diffusive samplers were used to measure average solvent exposure in an 8-h shift. End-of-shift urine samples were analyzed for benzylmercapturic acid (BMA) by a modification of an HPLC method originally developed for phenylmercapturic acid determination. RESULTS: The workers were exposed primarily to toluene [TOL; 13 ppm as the geometric mean (GM) and 86 ppm at the maximum] together with isopropyl alcohol (<1 and 4 ppm), ethyl acetate (2 and 127 ppm) and methyl ethyl ketone (2 and 142 ppm). BMA in urine correlated closely [correlation coefficient ( r) =0.7] with TOL in air, irrespective of correction for urine density. The lowest TOL concentration at which urinary BMA increased to a measurable level was approximately 10 ppm, and urinary BMA could separate the exposed from the non-exposed when TOL exposure was 15 ppm or higher. CONCLUSIONS: BMA in end-of-shift urine samples is a good marker of occupational TOL exposure. Urinalysis for BMA is sensitive enough to detect TOL exposure at 15 ppm, and therefore BMA appears to be more sensitive than hippuric acid and possibly o-cresol as a urinary marker of TOL exposure.  相似文献   

10.
This study was initiated to evaluate o-cresol and benzylmercapturic acid in urine in comparison with other biomarkers, as tools to estimate the intensity of occupational exposure to toluene at low levels. In total, 108 solvent exposed workers (engaged in tape production) and 17 non-exposed controls (all men) participated in the study. The surveys were conducted in the second half of working weeks. Diffusive sampling was conducted to measure 8-h time-weighted average intensity of occupational exposure to toluene. Blood and urine samples were collected at the end of a working shift. Blood samples were subjected to analysis for toluene (Tol-B), and urine samples were analyzed for benzyl alcohol (BeOH-U), benzylmercapturic acid (BMA-U), o-cresol (o-CR-U), hippuric acid (HA-U) and toluene (Tol-U) by the methods previously described. The toluene concentrations in workplaces were low in general, with a geometric mean (GM) and the maximum concentration of 1.9 ppm and 8.8 ppm, respectively. The statistical analyses of the six biomarkers for correlation with air-borne toluene showed that both Tol-B and Tol-U gave a high correlation coefficient of 0.58 to 0.61 (p<0.01), whereas the coefficients for BeOH-U and BMA-U together with HA-U were all low (up to 0.22, depending on the correction for urine density) and statistically insignificant (p>0.10) in most cases. o-CR-U had an intermediary coefficient of 0.20 (p<0.05). Comparison with previous publications disclosed that BeOH-U, BMA-U and HA-U correlate with toluene in air when the exposure is intense (e.g., 50 ppm or above), but no longer proportional to air-borne toluene when the exposure is low, e.g., 2 ppm. Such appeared to be also the case for o-CR-U. In over-all evaluation, the validity of o-CR-U in monitoring occupational exposure to toluene at low levels (e.g., 2 ppm) appear to be limited, and BMA-U is not an appropriate biomarker. BeOH-U and HA-U are also inappropriate for this purpose. Only Tol-B and Tol-U may be employed to estimate toluene exposure at low levels.  相似文献   

11.
Ikeda, Masayuki, and Ohtsuji, Hatsue (1969).Brit. J. industr. Med.,26, 244-246. Significance of urinary hippuric acid determination as an index of toluene exposure. Urine samples from 118 male workers in photogravure printing factories were analysed for hippuric acid. The urinary levels of hippuric acid were proportional to the environmental concentrations of toluene, although within wide variations. The urinary concentration of hippuric acid corresponding to 200 p.p.m. of toluene was 3·5 g./litre (specific gravity 1·016) or 4·3 g./g. creatinine.  相似文献   

12.
Summary In order to investigate possible effects of smoking and drinking on the metabolism of toluence in occupational settings, 206 toluene-exposed men (mean age: 31.4 years) in shoemaking, painting, or surface-coating workshops together with 246 nonexposed control men (36.8 years) were studied for the time-weighted average intensities of exposure to toluene, hippuric acid concentration in shift-end urine samples, and the two social habits of smoking and drinking. The mean daily consumptions of cigarettes and ethanol were about 20 pieces and 10 g among smokers and drinkers, respectively. The geometric mean toluene concentration among the exposed subjects was about 20 ppm, with a maximum of 521 ppm. Regression analysis after classification of the subjects by smoking and drinking clearly demonstrated that the two social habits, when combined, markedly reduce the hippuric acid level in the urine of workers exposed to was a significant association between smoking and drinking habits, which hindered separate evaluation of the effects of the two habits on toluene metabolism. Comparison of the present results with the findings reported in the literature, however, suggested that the observed effects may be attributable to smoking rather than to drinking habits.  相似文献   

13.
Objectives The purpose of the present study was to compare validity of various biomarkers of occupational exposure to toluene (Tol) at low levels. The focus was placed on the comparison of un-metabolized toluene in urine (Tol-U) and peripheral blood (Tol-B) with hippuric acid in urine (HA-U). Methods Surveys were conducted in 16 workplaces on the second half of working weeks, with participation of male solvent workers. Urine and peripheral blood samples were collected at the end of the shifts. After exclusion of cases with dense or diluted urine samples, 473 valid sets of samples were obtained for statistical evaluation. Time-weighted average exposure (for about 8-h) were monitored by diffusive sampling for toluene and other four solvents. Blood samples were subjected to the analyses for Tol-B, whereas urine samples were analyzed for HA-U and Tol-U. Results The solvent exposures were low, i.e., a grand geometric mean (GM) Tol concentration was 1.6 ppm, and the GM for the SUM in the additiveness equation was 0.12. The correlation analyses of the biomarkers in urine and blood with Tol exposure showed that Tol-U and Tol-B were more closely [correlation coefficients (r) being 0.67 and 0.60, respectively] related than HA-U (r = 0.27). Results of receiver operator characteristic analyses were in agreement with the correlation analysis results. Conclusions Taking the non-invasive nature of sampling together, Tol in the end-of-shift spot urine sample appears to be the marker of choice for biological monitoring of occupational exposure to Tol at low levels such as <2 ppm as a geometric mean.  相似文献   

14.
Summary The urinary excretion of hippuric acid (HA) and ortho-cresol (O-cr) in man was measured in two studies of 7-h exposure to toluene in a climate chamber, either constant concentration of 100 ppm or varying concentrations containing peaks of 300 ppm but with a time-weighted average of 100 ppm. In Study A, four males were exposed to clean air and to constant and varying concentrations of toluene in combination with rest and with 100 W exercise in 140 min. Exercise increased end exposure excretion rate of HA and O-cr by 47 and 114%, respectively. After exposure, all excess HA was excreted within 4 h, while O-cr was eliminated with a half life of about 3 h. Alveolar air concentration of toluene varied between 21 and 31 ppm during constant exposure and between 13 and 57 ppm during varying exposure, but no difference in mean alveolar toluene concentration or in metabolite excretion was seen between the exposure schedules. In Study B, 32 males and 39 females aged between 31 and 50 years were exposed once to either clean air, constant or varying concentrations of toluene. Background excretion rate of HA was 0.97 ± 0.75 mg/min (1.25 ± 1.05 g/g creatinine) and rose to 3.74 ± 1.40 mg/min (3.90 ± 1.85 g/g cr) during the last 3 h of exposure to 100 ppm toluene. The corresponding figures for O-cr were 0.05 ± 0.05 g/min (0.08 ± 0.14 mg/g cr), and 2.04 ± 0.84 g/min (2.05 ± 1.18 mg/g cr). The individual creatinine excretion rate was considerably influenced by sex, body weight and smoking habits, thus influencing the metabolite concentration standardised in relation to creatinine. It is concluded that both metabolites are estimates of toluene exposure. O-cr is more specific than HA, but the individual variation in excretion of both metabolites is large, and when implementing either of them as biological exposure indices, the influence of sex, body size, age as well as consumption of tobacco and alcohol has to be considered.  相似文献   

15.
Summary Three fatal cases of organic solvent abuse revealed high levels of toluene in blood and alveolar air and a high level of hippuric acid, metabolite of toluene, in urine. The lethal concentration of toluene was estimated to be 2,000 ppm.Furthermore, 10 male and female volunteer students were exposed to 107 ±12 ppm toluene for 4 hours. Hippuric acid in urine increased with the exposure time and reached maximum 2 hours after initiation of toluene exposure and remained at the same level thereafter. Following cessation of exposure to toluene, hippuric acid in urine showed a rapid decrease and recovered almost to the normal level 4 hours after cessation of exposure.Urinary excretion of hippuric acid in 7 rabbits exposed to 350 ppm for 100 minutes or to 4,500 ppm toluene for 10 minutes, reached its maximum 1.5–2 hours after initiation of exposure and decreased rapidly after cessation of exposure to toluene to recover to the normal level 4 hours later.Read before the 43rd Annual Meeting of Japanese Association of Industrial Health at Tokushima on April 2, 1970, and the 18th Annual Meeting of North Kanto Medical Association at Maebashi on November 14, 1971.  相似文献   

16.
Objectives: (1) To assess the value of urinary butoxyacetic acid (BAA) measurement for the monitoring of workers exposed to low concentration of 2-butoxyethanol (BE); (2) to evaluate the in vivo effect of low occupational BE exposure on the erythrocyte lineage; and (3) to test the possible influence of genetic polymorphism for cytochrome P450 2E1 (CYP 2E1) on urinary BAA excretion rate. Methods: Thirty-one male workers exposed to BE in a beverage package production plant were examined according to their external (BE) and internal (BAA) solvent exposure. The effect of this exposure on erythrocyte lineage [red blood cell numeration (RBC), hemoglobin (Hb), hematocrit (Htc), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), haptoglobin (Hp), reticulocyte numeration (Ret) and osmotic resistance (OR)], hepatic [aspartate aminotransferase (GOT), alanine aminotransferase (GPT)] and renal [plasmatic creatinine, urinary retinol binding protein (RBP)] parameters was also investigated. DNA purified from whole blood was used for CYP 2E1 genotyping. Results: Average airborne concentration of BE was 2.91 mg/m3 (0.59 ppm) with a standard deviation of 1.30 mg/m3 (0.27 ppm). There was a relatively good correlation between external and internal exposure estimated by measuring BAA in post-shift urine samples (average 10.4 mg/g creatinine; r=0.55;P=0.0012). Compared with a matched control group (n=21) exposed workers had a statistically significant decrease (3.3%;P=0.03) in Hct while MCHC was increased (2.1%;P=0.02). No significant difference was observed either in other erythroid parameters or in hepatic and renal biomarkers. One exposed individual exhibited a mutant allele with increased cytochrome P450 oxidative activity which coincided with a very low urinary BAA excretion. Conclusions: Single determination of BAA in post-shift urine samples can be used to assess exposure to low levels of BE. A slight but significant effect on erythroid parameters suggesting membrane damage was observed in exposed workers. The influence of the genetic polymorphism for CYP 2E1 deserves further investigation for the interpretation of urinary BAA measurements. Received: 6 December 1996 / Accepted: 21 February 1997  相似文献   

17.
The relationship between occupational exposure to methyl ethyl ketone (MEK) and its concentration in urine and blood was studied in a group of 72 workers in a printing factory. Personal exposure monitoring was carried out with passive samplers during the workshifts. The time weighted average (TWA) concentration of MEK ranged from 1.3 to 223.7 ppm, with a mean concentration of 47.6 ppm. In addition to MEK, toleuene, xylene, isopropyl alcohol, and ethyl acetate were detected as the main contaminants in all samples.At the end of the workshift, urine samples were collected to determine the urinary MEK, hippuric acid (HA), and creatinine, and blood samples were also collected at the same time for determination of MEK. The concentrations of urinary MEK ranged from 0.20 to 8.08 mg/L with a mean of 1.19 mg/L and significantly correlated with TWA concentrations of MEK in the air with a correlation coefficient of 0.889 for uncorrected urine samples. The concentration of MEK in the blood was also significantly correlated with the TWA concentration of MEK with a correlation coefficient of 0.820.From these relationships, MEK concentrations in urine and blood corresponding to the threshold limit value-TWA (200 ppm; ACGIH 1992) were calculated to be 5.1 mg/L and 3.8 mg/L as a biological exposure index (BEI), respectively. Although the BEI for urinary MEK obtained from the present study was higher than that of previous reports and ACGIH's recommendation (2.0 mg/L), the BEI agreed well with a previous study in Japan. On the other hand, the relationship between toluene exposure and urinary HA level, an index of toluene exposure, was also studied at the same time. The urinary concentration of HA corresponding to TWA at 100 ppm was 2.6 g/g creatinine as BEI. This value agreed well with both ACGIH's recommendation (2.5 g/g creatinine) and the values reported by Japanese researchers who have studied Japanese workers. Ethnic differences of MEK metabolism may affect the relationship between exposure and BEI.  相似文献   

18.
Summary In a climatic exposure chamber four healthy volunteers were exposed to 100ppm toluene, 100ppm toluene + ethanol, 100ppm toluene + cimetidine, and 100ppm toluene + propranolol for 7h each at random over four consecutive days. A control experiment and 3.5 h of exposure to 200 ppm toluene were also performed. Ethanol inhibited toluene metabolism by 0.5 as expressed by the urinary excretion of two of the metabolites of toluene, namely o-cresol and hippuric acid. In agreement with this, the mean alveolar concentration of toluene was greater by 1.7 during ethanol exposure; 45 min after discontinuation of exposure the increase was by 3.3. Neither cimetidine nor propranolol changed toluene metabolism significantly. The results indicate that ethanol may prolong the time interval in which toluene is retained in the human body in persons simultaneously exposed to ethanol and toluene. When using o-cresol or hippuric acid in biological monitoring of persons occupationally exposed to toluene, the consumption of ethanol should be considered.Supported by grants from the Working Environment Fund, Denmark  相似文献   

19.
The purpose of this study was to investigate whether the metabolic suppression of hippuric acid (HA) occurs in field workers coexposed to toluene, xylene and ethyl benzene. Eleven male spray painters were recruited into this study and monitored for 2 weeks using a repeated-measures study design. The sampling was conducted for 3 consecutive working days each week. Toluene, ethyl benzene, and xylene in the air were collected using 3M 3500 organic vapor monitors. Urine samples were collected before and after work shift, and urinary HA, methyl hippuric acid, mandelic acid, and phenylgloxylic acid concentrations were determined. In the first week, toluene concentrations were 2.66 ± 0.95 (mean ± SE) ppm, whereas ethyl benzene and xylene concentrations were 27.84 ± 3.61 and 72.63 ± 13.37 ppm, respectively, for all subjects. Pre–work shift HA concentrations were 230.23 ± 37.31 mg/g creatinine, whereas pre–work shift HA concentrations were 137.81 ± 14.15 mg/g creatinine. Mean urinary HA concentration was significantly greater in the pre–work shift samples than in the pre–work shift samples (p = 0.043). In the second week, toluene concentrations were much lower (0.28 ppm), whereas ethyl benzene and xylene were 47.12 ± 8.98 and 23.88 ± 4.09 ppm, respectively, for all subjects. Pre–work shift HA concentrations were 351.98 ± 116.23 mg/g creatinine, whereas pre–work shift HA concentrations were 951.82 ± 116.23 mg/g creatinine. Mean urinary HA concentration was significantly greater in the pre–work shift samples than in the pre–work shift samples (p <0.01); a significant correlation (r = 0.565; p = 0.002) was found between pre–work shift urinary HA levels and ethyl benzene exposure. This study showed that urinary HA peak was delayed to next morning for workers coexposed to toluene, ethyl benzene, and xylene; xylene and ethyl benzene probably played competitive inhibitors for metabolism of toluene. The study also presumed that urinary HA became the major metabolite of ethyl benzene at the end of work shift, when the exposure concentrations of ethyl benzene were 2.0 times those of xylene.  相似文献   

20.
It has been postulated that occupational exposure to hydrocarbons may damage the kidney and lead to glomerulonephritis and chronic renal failure. As laminin is a ubiquitous basement membrane component that seems to play a central part in the structure and function of basement membranes and as the normal renal filtration process is highly dependent on an intact glomerular basement membrane, the serum laminin concentration was examined in a population of workers exposed to hydrocarbons. The hydrocarbon exposure was assessed by exposure surrogates (exposure duration and exposure score). An interaction between occupational exposure to hydrocarbons and hypertension increased the laminin concentration whereas the laminin concentration decreased in workers exposed for a long time probably because of a selection effect. In a subgroup of printers exposed to toluene whose hippuric acid excretion had been recorded for several years this interaction was confirmed when the hippuric acid excretion was substituted for the other exposure indices. In the exposed group, the age-related decline in creatinine clearance was accelerated. These results seem to confirm that occupational exposure to hydrocarbons is a non-specific factor that may promote a deterioration of renal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号