首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affinity maturation of the B cell response to antigen (Ag) takes place in the germinal centers (GCs) of secondary follicles. Two sequential molecular mechanisms underpin this process. First, the B cell repertoire is diversified through hypermutation of the immunoglobulin (Ig) variable region genes. Second, mutant B cell clones with improved affinity for Ag are positively selected by Ag and CD40 ligand (L). This selection step is contingent upon "priming" of GC B cells for apoptosis. The molecular means by which B cell apoptosis is initiated and controlled in the GC remains unclear. Here, we show that GC B cell apoptosis is preceded by the rapid activation of caspase-8 at the level of CD95 death-inducing signaling complex (DISC). We found that GC B cells ex vivo display a preformed inactive DISC containing Fas-associated death domain-containing protein (FADD), procaspase-8, and the long isoform of cellular FADD-like IL-1beta-converting enzyme-inhibitory protein (c-FLIP(L)) but not the CD95L. In culture, c-FLIP(L) is rapidly lost from the CD95 DISC unless GC B cells are exposed to the survival signal provided by CD40L. Our results suggest that (a) the death receptor signaling pathway is involved in the affinity maturation of antibodies, and (b) c-FLIP(L) plays an active role in positive selection of B cells in the GC.  相似文献   

2.
CD30, a non-death domain-containing member of the tumor necrosis factor receptor superfamily, triggers apoptosis in anaplastic large cell lymphoma cells. The CD30 signaling pathways that lead to the induction of apoptosis are poorly defined. Here, we show that the induction of apoptosis by CD30 requires concurrent inhibition of p38 mitogen-activated protein kinase, which itself is activated by engagement of CD30 with CD30 ligand. Treatment of anaplastic large cell lymphoma cells with CD30 ligand and pharmacologic inhibitors of p38 mitogen-activated protein kinase, but not with CD30 ligand or inhibitors alone, triggered the activation of caspase-8 and the induction of apoptosis. Caspase-8 activation occurred within a few hours (2.5-4 h) after receptor triggering, was unaffected by the neutralization of ligands for the death domain-containing receptors TNFR1, Fas, DR3, DR4, or DR5, but was abolished by the expression of a dominant-negative form of the adaptor protein FADD. Importantly, we show that expression of the caspase-8 inhibitor c-FLIP(S) is strongly induced by the CD30 ligand, and that this is dependent on the activation of p38 mitogen-activated protein kinase. Thus, we provide evidence that the induction of apoptosis by CD30 in anaplastic large cell lymphoma cells is normally circumvented by the activation of p38 mitogen-activated protein kinase. These findings have implications for CD30-targeted immunotherapy of anaplastic large cell lymphoma.  相似文献   

3.
The Akt inhibitor, perifosine, is an alkylphospholipid exhibiting antitumor properties and is currently in phase II clinical trials for various types of cancer. The mechanisms by which perifosine exerts its antitumor effects, including the induction of apoptosis, are not well understood. The current study focused on the effects of perifosine on the induction of apoptosis and its underlying mechanisms in human non-small cell lung cancer (NSCLC) cells. Perifosine, at clinically achievable concentration ranges of 10 to 15 micromol/L, effectively inhibited the growth and induced apoptosis of NSCLC cells. Perifosine inhibited Akt phosphorylation and reduced the levels of total Akt. Importantly, enforced activation of Akt attenuated perifosine-induced apoptosis. These results indicate that Akt inhibition is necessary for perifosine-induced apoptosis. Despite the activation of both caspase-8 and caspase-9, perifosine strikingly induced the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 5, and down-regulated cellular FLICE-inhibitory protein (c-FLIP), an endogenous inhibitor of the extrinsic apoptotic pathway, with limited modulatory effects on the expression of other genes including Bcl-2, Bcl-X(L), PUMA, and survivin. Silencing of either caspase-8 or death receptor 5 attenuated perifosine-induced apoptosis. Consistently, further down-regulation of c-FLIP expression with c-FLIP small interfering RNA sensitized cells to perifosine-induced apoptosis, whereas enforced overexpression of ectopic c-FLIP conferred resistance to perifosine. Collectively, these data indicate that activation of the extrinsic apoptotic pathway plays a critical role in perifosine-induced apoptosis. Moreover, perifosine cooperates with TRAIL to enhance the induction of apoptosis in human NSCLC cells, thus warranting future in vivo and clinical evaluation of perifosine in combination with TRAIL in the treatment of NSCLC.  相似文献   

4.
5.
ECH (epoxycyclohexenone) specifically blocks death receptor-mediated apoptosis induced by anti-Fas antibody, Fas ligand, or TNF-alpha, whereas it has no effect on death receptor independent apoptosis induced by staurosporine, MG-132, C2-ceramide, or UV irradiation. ECH blocks the activation of pro-caspase-8 in the death-inducing signaling complex (DISC), even though recruitment of FADD and pro-caspase-8 is not affected. In Fas ligand treated cells, ECH is only able to inhibit the activation of pro-caspase-8 and it has no effect on the already-activated caspase-8. ECH has a relatively higher affinity to pro-caspase-8, although it directly binds both pro- and active-form of caspase-8. In conclusion, ECH targets pro-caspase-8 and blocks the self-activation of pro-caspase-8 in the DISC, and thus selectively inhibits death receptor-mediated apoptosis. Moreover novel non-peptide inhibitors, RKTS-33 & RKTS-34 that are chemically synthesized derivatives of ECH have been developed.  相似文献   

6.
Fas-associated death domain (FADD) and caspase-8 are key signal transducers for death receptor-induced apoptosis, whereas cellular FLICE-inhibitory protein (cFLIP) antagonizes this process. Interestingly, FADD and caspase-8 also play a role in T cell development and T cell receptor (TCR)-mediated proliferative responses. To investigate the underlying mechanism, we generated cFLIP-deficient T cells by reconstituting Rag-/- blastocysts with cFLIP-deficient embryonic stem cells. These Rag chimeric mutant mice (rcFLIP-/-) had severely reduced numbers of T cells in the thymus, lymph nodes, and spleen, although mature T lymphocytes did develop. Similar to FADD- or caspase-8-deficient cells, rcFLIP-/- T cells were impaired in proliferation in response to TCR stimulation. Further investigation revealed that cFLIP is required for T cell survival, as well as T cell cycling in response to TCR stimulation. Interestingly, some signaling pathways from the TCR complex appeared competent, as CD3 plus CD28 cross-linking was capable of activating the ERK pathway in rcFLIP-/- T cells. We demonstrate an essential role for cFLIP in T cell function.  相似文献   

7.
The adenoviral protein E3-14.7K (14.7K) is an inhibitor of TNF-induced apoptosis, but the molecular mechanism underlying this protective effect has not yet been explained exhaustively. TNF-mediated apoptosis is initiated by ligand-induced recruitment of TNF receptor-associated death domain (TRADD), Fas-associated death domain (FADD), and caspase-8 to the death domain of TNF receptor 1 (TNFR1), thereby establishing the death-inducing signaling complex (DISC). Here we report that adenovirus 14.7K protein inhibits ligand-induced TNFR1 internalization. Analysis of purified magnetically labeled TNFR1 complexes from murine and human cells stably transduced with 14.7K revealed that prevention of TNFR1 internalization resulted in inhibition of DISC formation. In contrast, 14.7K did not affect TNF-induced NF-kappaB activation via recruitment of receptor-interacting protein 1 (RIP-1) and TNF receptor-associated factor 2 (TRAF-2). Inhibition of endocytosis by 14.7K was effected by failure of coordinated temporal and spatial assembly of essential components of the endocytic machinery such as Rab5 and dynamin 2 at the site of the activated TNFR1. Furthermore, we found that the same TNF defense mechanisms were instrumental in protecting wild-type adenovirus-infected human cells expressing 14.7K. This study describes a new molecular mechanism implemented by a virus to escape immunosurveillance by selectively targeting TNFR1 endocytosis to prevent TNF-induced DISC formation.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.  相似文献   

9.
The short life span of granulocytes, which limits many inflammatory responses, is thought to be influenced by the Bcl-2 protein family, death receptors such as CD95 (Fas/APO-1), stress-activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), and proinflammatory cytokines like granulocyte colony-stimulating factor (G-CSF). To clarify the roles of these various regulators in granulocyte survival, we have investigated the spontaneous apoptosis of granulocytes in culture and that induced by Fas ligand or chemotherapeutic drugs, using cells from normal, CD95-deficient lpr, or vav-bcl-2 transgenic mice. CD95-induced apoptosis, which required receptor aggregation by recombinant Fas ligand or the membrane-bound ligand, was unaffected by G-CSF treatment or Bcl-2 overexpression. Conversely, spontaneous and drug-induced apoptosis occurred normally in lpr granulocytes but were suppressed by G-CSF treatment or Bcl-2 overexpression. Although activation of p38 MAPK has been implicated in granulocyte death, their apoptosis actually was markedly accelerated by specific inhibitors of this kinase. These results suggest that G-CSF promotes granulocyte survival largely through the Bcl-2-controlled pathway, whereas CD95 regulates a distinct pathway to apoptosis that is not required for either their spontaneous or drug-induced death. Moreover, p38 MAPK signaling contributes to granulocyte survival rather than their apoptosis.  相似文献   

10.
Epithelial ovarian carcinoma (EOC) remains a highly lethal malignancy. Despite the progress in surgical and therapeutic strategies, resistance to chemotherapy is still a major concern. Cytotoxic therapies mediate killing of cancer cells by activating the intrinsic mitochondrial apoptotic pathway, and p53 status is a key factor in determining the efficacy of apoptotic signaling. The extrinsic (CD95) death receptor-dependent signaling pathway also contributes to the efficacy of cancer therapy. We previously showed that EOC are generally resistant to CD95-dependent apoptosis. In p53 wild-type EOC tumors, CD95-mediated apoptosis is impaired at the receptor level by the long form of cellular FLICE-inhibitory protein, whereas this mechanism does not account for resistance in tumors with mutated p53 (p53mu). In the present study, we examined both intrinsic and death receptor-dependent apoptotic signaling in p53mu OVCAR3 EOC cell line, showing that these cells are less susceptible to cisplatin treatment as compared with p53 wild-type EOC cells and also resist CD95-mediated apoptosis due to inefficient formation of the death-inducing signaling complex and weak mitochondrial signal amplification. However, pretreatment of OVCAR3 cells with clinically relevant cisplatin concentrations significantly improved receptor-dependent apoptotic signaling by up-modulating CD95 receptor expression and increasing death-inducing signaling complex formation efficiency. The synergy of cisplatin pretreatment and CD95 triggering in inducing cell death was also shown in p53mu tumor cells derived from ascitic fluid of advanced-stage EOC patients. These findings support the effectiveness of a combined therapeutic treatment able to sensitize cancer cells to apoptosis even when p53 is functionally inactivated.  相似文献   

11.
The T cell costimulatory molecule CD28 is important for T cell survival, yet both the signaling pathways downstream of CD28 and the apoptotic pathways they antagonize remain poorly understood. Here we demonstrate that CD4(+) T cells from CD28-deficient mice show increased susceptibility to Fas-mediated apoptosis via a phosphatidylinositol 3-kinase (PI3K)-dependent pathway. Protein kinase B (PKBalpha/Akt1) is an important serine/threonine kinase that promotes survival downstream of PI3K signals. To understand how PI3K-mediated signals downstream of CD28 contribute to T cell survival, we examined Fas-mediated apoptosis in T cells expressing an active form of PKBalpha. Our data demonstrate that T cells expressing active PKB are resistant to Fas-mediated apoptosis in vivo and in vitro. PKB transgenic T cells show reduced activation of caspase-8, BID, and caspase-3 due to impaired recruitment of procaspase-8 to the death-inducing signaling complex (DISC). Similar alterations are seen in T cells from mice which are haploinsufficient for PTEN, a lipid phosphatase that regulates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) and influences PKBalpha activity. These findings provide a novel link between CD28 and an important apoptosis pathway in vivo, and demonstrate that PI3K/PKB signaling prevents apoptosis by inhibiting DISC assembly.  相似文献   

12.
Caspase activation is required for T cell proliferation   总被引:22,自引:0,他引:22  
Triggering of Fas (CD95) by its ligand (FasL) rapidly induces cell death via recruitment of the adaptor protein Fas-associated death domain (FADD), resulting in activation of a caspase cascade. It was thus surprising that T lymphocytes deficient in FADD were reported recently to be not only resistant to FasL-mediated apoptosis, but also defective in their proliferative capacity. This finding suggested potentially dual roles of cell growth and death for Fas and possibly other death receptors. We report here that CD3-induced proliferation and interleukin 2 production by human T cells are blocked by inhibitors of caspase activity. This is paralleled by rapid cleavage of caspase-8 after CD3 stimulation, but no detectable processing of caspase-3 during the same interval. The caspase contribution to T cell activation may occur via TCR-mediated upregulation of FasL, as Fas-Fc blocked T cell proliferation, whereas soluble FasL augmented CD3-induced proliferation. These findings extend the role of death receptors to the promotion of T cell growth in a caspase-dependent manner.  相似文献   

13.
TNF-related apoptosis-inducing ligand (TRAIL) is a tumor-selective cytokine with potential anticancer activity and is currently under clinical testing. Head and neck squamous cell carcinoma (HNSCC), like other cancer types, exhibits varied sensitivity to TRAIL. MLN4924 is a newly developed investigational small molecule inhibitor of NEDD8-activating enzyme with potent anticancer activity. This study reveals a novel function of MLN4924 in synergizing with TRAIL to induce apoptosis in HNSCC cells. MLN4924 alone effectively inhibited the growth of HNSCC cells and induced apoptosis. When combined with TRAIL, synergistic effects on decreasing the survival and inducing apoptosis of HNSCC cells occurred. MLN4924 decreased c-FLIP levels without modulating death receptor 4 and death receptor 5 expression. Enforced expression of c-FLIP substantially attenuated MLN4924/TRAIL-induced apoptosis. Thus c-FLIP reduction plays an important role in mediating MLN4924/TRAIL-induced apoptosis. Moreover, MLN4924 decreased c-FLIP stability, increased c-FLIP ubiquitination, and facilitated c-FLIP degradation, suggesting that MLN4924 decreases c-FLIP levels through promoting its degradation. MLN4924 activated c-jun-NH(2)-kinase (JNK) signaling, evidenced by increased levels of phospho-c-Jun in MLN4924-treated cells. Chemical inhibition of JNK activation not only prevented MLN4924-induced c-FLIP reduction, but also inhibited MLN4924/TRAIL-induced apoptosis, suggesting that JNK activation mediates c-FLIP downregulation and subsequent enhancement of TRAIL-induced apoptosis by MLN4924. Because knockdown of NEDD8 failed to activate JNK signaling and downregulate c-FLIP, it is likely that MLN4924 reduces c-FLIP levels and enhances TRAIL-induced apoptosis independent of NEDD8 inhibition.  相似文献   

14.
Transgenic mice with cardiac-restricted overexpression of secretable TNF (MHCsTNF) develop progressive LV wall thinning and dilation accompanied by an increase in cardiomyocyte apoptosis and a progressive loss of cytoprotective Bcl-2. To test whether cardiac-restricted overexpression of Bcl-2 would prevent adverse cardiac remodeling, we crossed MHCsTNF mice with transgenic mice harboring cardiac-restricted overexpression of Bcl-2. Sustained TNF signaling resulted in activation of the intrinsic cell death pathway, leading to increased cytosolic levels of cytochrome c, Smac/Diablo and Omi/HtrA2, and activation of caspases -3 and -9. Cardiac-restricted overexpression of Bcl-2 blunted activation of the intrinsic pathway and prevented LV wall thinning; however, Bcl-2 only partially attenuated cardiomyocyte apoptosis. Subsequent studies showed that c-FLIP was degraded, that caspase-8 was activated, and that Bid was cleaved to t-Bid, suggesting that the extrinsic pathway was activated concurrently in MHCsTNF hearts. As expected, cardiac Bcl-2 overexpression had no effect on extrinsic signaling. Thus, our results suggest that sustained inflammation leads to activation of multiple cell death pathways that contribute to progressive cardiomyocyte apoptosis; hence the extent of such programmed myocyte cell death is a critical determinant of adverse cardiac remodeling.  相似文献   

15.
肿瘤坏死因子相关诱导凋亡配体(TRAIL)是TNF家族中的一个新型凋亡分子。白血病细胞表达TRAIL可使其逃脱免疫监视;TRAIL死亡受体突变具有一定致癌作用。TRAIL能诱导造血系统肿瘤细胞凋亡,同时还具有生长抑制作用,是一个潜在的抗肿瘤药物。  相似文献   

16.
[目的]探讨Fas相关死亡结构域蛋白(Fas associated protein with death domain,FADD)在奥沙利铂(L—OHP)抑制裸鼠人结肠癌皮下移植瘤生长中的表达及其可能机制。【方法】建立BALB/C-nu/nu裸鼠SW480人结肠癌皮下移植瘤模型,L-OHP行瘤体内注射,与氟尿嘧啶治疗进行对比。观察各组肿瘤瘤重和体积变化,计算抑瘤率。采用HE染色和TUNEL法检测瘤体组织肿瘤细胞凋亡情况,Western-blotting检测FADD蛋白表达情况。【结果】L-OHP和氟尿嘧啶均能显著抑制裸鼠皮下移植瘤的生长,且L-OHP对移植瘤的抑制作用和L-OHP组肿瘤细胞凋亡率明显强于(高于)氟尿嘧啶和5-Fu组,差异有统计学意义(P〈0.05)。TUNEL法观察到棕褐色的阳性肿瘤凋亡细胞,Western-blotting结果显示FADD蛋白表达增加。[结论]L-OHP通过诱导SW480细胞凋亡从而抑制裸鼠人结肠癌皮下移植瘤,其作用机制可能与激活凋亡死亡受体途径、FADD表达上调有关。  相似文献   

17.
18.
目的:探讨过表达miRNA-326对椎间盘退变(intervertebral disc degeneration,IDD)髓核(nucleus pulposus,NP)细胞凋亡的影响及其作用机制。方法:构建miRNA-326慢病毒表达载体,在293T细胞中获得重组慢病毒,经感染NP细胞得到稳定过表达细胞系GV369-miRNA-326-NP,同时设置空载体GV369-NP组与空白组。荧光显微镜观察慢病毒载体的标签蛋白[绿色荧光蛋白(green fluorescent protein,GFP)]的表达,实时荧光定量PCR(real-time quantitative polymerase chain reaction,RT-qPCR)方法检测miRNA-326的表达,流式细胞术检测细胞凋亡,荧光素酶报告基因分析验证miRNA-326与FasL的靶向关系,蛋白质印迹法检测细胞中凋亡相关蛋白FADD,caspase-3,Bcl-2及Bax的表达,使用试剂盒检测细胞线粒体膜电势的变化情况。结果:荧光显微镜下示,经慢病毒感染的过表达细胞系和空载体细胞系均出现绿色荧光,而空白组未见绿色荧光。与空白组相比,GV369-miRNA-326-NP组中miRNA-326的表达水平、Bcl-2表达水平和线粒体膜电位明显升高,而细胞凋亡率,FADD,caspase-3和Bax的表达水平明显下降,差异均有统计学意义(P<0.05);GV369-NP组与空白组相比,差异无统计学意义(P>0.05)。荧光素酶报告基因分析证实miRNA-326与FasL存在靶向关系。结论:MiRNA-326可抑制IDD NP细胞发生凋亡,既可通过靶向性调控外源性FasL/Fas通路参与caspase-3和FADD介导的细胞凋亡,也可通过线粒体途径对细胞凋亡发挥作用。  相似文献   

19.
20.
Apoptosis-related genes play important roles in thymocyte maturation. We show that cellular FLICE-like inhibitory protein (c-FLIP), a procaspase-8-like apoptotic regulator, plays an essential role in the efficient development of mature T lymphocytes. Mice conditionally lacking c-FLIP in T lymphocytes display severe defects in the development of mature T cells, as indicated by a dramatically reduced number of CD4+ and CD8+ T cells in the spleen and lymph nodes of mutant mice. The impaired T lymphocyte maturation in c-FLIP conditional knockout mice occurs at the single-positive thymocyte stage and may be caused by enhanced apoptosis in vivo. Moreover, although c-FLIP has been implicated in T cell receptor signaling through nuclear factor (NF)-kappaB and Erk pathways, activation of NF-kappaB and Erk in c-FLIP-deficient thymocytes appears largely intact. Collectively, our data suggest that the primary role of c-FLIP in thymocyte maturation is to protect cells from apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号