首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group A Streptococcus (GAS) infections represent a major public health burden in both developing and developed countries. In Australia and New Zealand GAS associated diseases are serious problems in Indigenous populations and a major cause of health inequality. Political recognition of these inequalities is providing impetus for strategies that reduce GAS disease and the development of a GAS vaccine now has governmental support in both Australia and New Zealand. Accordingly, an expert workshop was convened in March 2013 to consider available data on GAS vaccines. M-protein based vaccines constructed from the hyper-variable N-terminal region (30-valent vaccine) or the conserved C-repeat domain (J8 vaccine) were reviewed together with vaccine candidates identified using multi high-throughput approaches. Performing a comprehensive assessment of regional GAS strain epidemiology, defining the immune correlates of protection, and the establishment of clinical trial sites were identified as critical activities for a Trans-Tasman vaccine development programme.  相似文献   

2.
Olive C  Clair T  Yarwood P  Good MF 《Vaccine》2002,20(21-22):2816-2825
Infection with group A streptococci (GAS) can lead to rheumatic fever (RF) and rheumatic heart disease (RHD) which are a major health concern particularly in indigenous populations worldwide, and especially in Australian Aboriginals. A primary route of GAS infection is via the upper respiratory tract, and therefore, a major goal of research is the development of a mucosal-based GAS vaccine. The majority of the research to date has focused on the GAS M protein since immunity to GAS is mediated by M protein type-specific opsonic antibodies. There are two major impediments to the development of a vaccine-the variability in M proteins and the potential for the induction of an autoimmune response. To develop a safe and broad-based vaccine, we have therefore focused on the GAS M protein conserved C-region, and have identified peptides, J8 and the closely related J8 peptide (J14), which may be important in protective immunity to GAS infection. Using a mucosal animal model system, our data have shown a high degree of throat GAS colonisation in B10.BR mice 24h following intranasal immunisation with the mucosal adjuvant, cholera toxin B subunit (CTB), and/or diptheria toxoid (dT) carrier, or PBS alone, and challenge with the M1 GAS strain. However, GAS colonisation of the throat was significantly reduced following intranasal immunisation of mice with the vaccine candidate J8 conjugated to dT or J14-dT when administered with CTB. Moreover, J8-dT/CTB and J14-dT/CTB-immunised mice had a significantly higher survival when compared to CTB and PBS-immunised control mice. These data indicate that immunity to GAS infection can be evoked by intranasal immunisation with a GAS M protein C-region peptide vaccine that contains a protective B cell epitope and lacks a T cell autoepitope.  相似文献   

3.
《Vaccine》2018,36(50):7618-7624
Sustained control of group A Streptococcus (GAS) infections in settings of poverty has proven to be challenging, and an effective vaccine may be the most practical long-term strategy to reduce GAS-related disease burden. Candidate GAS vaccines based on the J8 peptide have demonstrated promising immunogenicity in mice, however, less is known about the role of J8 antibodies in the human immune response to GAS infection. We analysed the stimulation of J8 antibodies in response to infection, and the role of existing J8 antibodies in protection against subsequent infection, using data collected in the Fijian population: (1) cross sectional population serosurvey; (2) paired serum collection for assessment of M-specific and J8 antibody responses; and (3) longitudinal assessment of GAS infection and immunity. Median J8 antibody concentrations peaked in the 5–14 year age group, but there was no sustained increase with age. J8 antibody concentration was neither a significant predictor of time to next infection, nor did it show any relationship to the time since last recorded skin infection. Similarly, J8 antibody fold changes over a defined period were associated neither with the time since last skin infection, nor the number of intervening skin infections. While strong M-specific antibody responses were observed for skin infection, similarly strong J8 antibody responses were not observed. There is no indication that antibodies to the J8 antigen would be useful as either a marker of GAS infection or a measure of population immunity, with J8 antibody responses to infection fleeting, if existent at all.  相似文献   

4.
《Vaccine》2016,34(51):6472-6480
Infection with Group A streptococcus (GAS)—an oropharyngeal pathogen—leads to mortality and morbidity, primarily among developing countries and indigenous populations in developed countries. The development of safe and affordable GAS vaccines is challenging, due to the presence of various unique GAS serotypes, antigenic variation within the same serotype, and potential auto-immune responses. In the present study, we evaluated the use of a sublingual freeze-dried (FD) formulation based on immunogenic modular virus-like particles (VLPs) carrying the J8 peptide (J8-VLPs) as a potential safe and cost-effective GAS vaccine for inducing protective systemic and mucosal immunity. By using in vivo tracing of the sublingual J8-VLPs, we visualized the draining of J8-VLPs into the submandibular lymph nodes, in parallel with its rapid absorption into the systemic circulation, which support the induction of effective immune responses in both systemic and mucosal compartments. The sublingual administration of J8-VLPs resulted in a high serum IgG antibody level, with a good balance of Th1 and Th2 immune responses. Of note, sublingual vaccination with J8-VLPs elicited high levels of IgA antibody in the saliva. The co-administration of mucosal adjuvant cholera toxin (CT) further enhanced the increase in salivary IgA antibody levels induced by the J8-VLPs formulation. Moreover, the levels of salivary IgA and serum IgG observed following the administration of the CT-adjuvanted FD formulation of J8-VLPs (FD-J8-VLPs) and non-FD formulation of J8-VLPs were comparable. In fact, the saliva isolated from mice immunized with J8-VLPs and FD-J8-VLPs with CT demonstrated opsonizing activity against GAS in vitro. Thus, we observed that the sublingually delivered FD formulation of microbially produced modular VLPs could prevent and control GAS diseases in endemic areas in a cost-effective manner.  相似文献   

5.
《Vaccine》2018,36(26):3756-3763
Group A Streptococcus (GAS) or Streptococcus pyogenes is responsible for an estimated 500,000 deaths worldwide each year. Protection against GAS infection is thought to be mediated by phagocytosis, enhanced by bacteria-specific antibody. There are no licenced GAS vaccines, despite many promising candidates in preclinical and early stage clinical development, the most advanced of which are based on the GAS M-protein. Vaccine progress has been hindered, in part, by the lack of a standardised functional assay suitable for vaccine evaluation. Current assays, developed over 50 years ago, rely on non-immune human whole blood as a source of neutrophils and complement. Variations in complement and neutrophil activity between donors result in variable data that is difficult to interpret. We have developed an opsonophagocytic killing assay (OPKA) for GAS that utilises dimethylformamide (DMF)-differentiated human promyelocytic leukemia cells (HL-60) as a source of neutrophils and baby rabbit complement, thus removing the major sources of variation in current assays. We have standardised the OPKA for several clinically relevant GAS strain types (emm1, emm6 and emm12) and have shown antibody-specific killing for each emm-type using M-protein specific rabbit antisera. Specificity was demonstrated by pre-incubation of the antisera with homologous M-protein antigens that blocked antibody-specific killing. Additional qualifications of the GAS OPKA, including the assessment of the accuracy, precision, linearity and the lower limit of quantification, were also performed. This GAS OPKA assay has the potential to provide a robust and reproducible platform to accelerate GAS vaccine development.  相似文献   

6.
A vaccine against canine visceral leishmaniasis (CVL), comprising Leishmania braziliensis promastigote protein, sand fly gland extract (SGE) and saponin adjuvant, was evaluated in dog model, in order to analyse the immunogenicity of the candidate vaccine. The vaccine candidate elicited strong antigenicity in dogs in respect of specific SGE and Leishmania humoral immune response. The major saliva proteins recognized by serum from immunized dogs exhibited molecular weights of 35 and 45 kDa, and were related to the resistance pattern against Leishmania infection. Immunophenotypic analysis revealed increased circulating CD21+ B-cells and CD5+ T-cells, reflected by higher counts of CD4+ and CD8+ T-cells. The observed interaction between potential antigen-presenting cells (evaluated as CD14+ monocytes) and lymphocyte activation status indicated a relationship between innate and adaptive immune responses. The higher frequency in L. chagasi antigen-specific CD8+ T-lymphocytes, and their positive association with intense cell proliferation, in addition to the progressively higher production of serum nitric oxide levels, showed a profile compatible with anti-CVL vaccine potential. Further studies on immunological response after challenge with L. chagasi may provide important information that will lead to a better understanding on vaccine trial and efficacy.  相似文献   

7.
Group A streptococcus (GAS) causes a wide range of diseases, some of them related to autoimmune diseases triggered by repeated GAS infections. Despite the fact that GAS primarily colonizes the mucosal epithelium of the pharynx, the main mechanism of action of most vaccine candidates is based on development of systemic antibodies that do not cross-react with host tissues, neglecting the induction of mucosal immunity that could potentially block disease transmission. Peptide antigens from GAS M-surface protein can confer protection against infection; however, translation of such peptides into immunogenic mucosal vaccines that can be easily manufactured remains a challenge. In this work, a modular murine polyomavirus (MuPyV) virus-like particle (VLP) was engineered to display a GAS antigenic peptide, J8i. Heterologous modules containing one or two J8i antigen elements were integrated with the MuPyV VLP, and produced using microbial protein expression, standard purification techniques and in vitro VLP assembly. Both modular VLPs, when delivered intranasally to outbred mice without adjuvant, induced significant titers of J8i-specific IgG and IgA antibodies, indicating significant systemic and mucosal responses, respectively. GAS colonization in the throats of mice challenged intranasally was reduced in these immunized mice, and protection against lethal challenge was observed. This study shows that modular MuPyV VLPs prepared using microbial synthesis have potential to facilitate cost-effective vaccine delivery to remote communities through the use of mucosal immunization.  相似文献   

8.
《Vaccine》2021,39(16):2214-2223
IntroductionStudies on the cross-protective effect of HPV bivalent and quadrivalent vaccines demonstrated inconsistent findings against additional HPV types covered by the nonavalent vaccine. The objective of this study was to conduct a systematic literature review to assess the consistency and durability of the cross-protective neutralizing antibody immune responses of the currently licensed bivalent and quadrivalent vaccines to non-vaccine HPV types targeted by the nonavalent vaccine (HPV 6, 11, 31, 33, 45, 52, and 58).MethodsPubMed and EMBASE databases were searched from 2008 to 2019 to identify studies reporting antibody/immune response after vaccination with either the bivalent, quadrivalent, or nonavalent vaccine. Key outcomes were seroconversion, seropositivity or geometric mean titers against HPV types 6, 11, 31, 33, 45, 52, and 58.ResultsEighteen publications met inclusion criteria, reporting on 14 interventional and five observational studies. Across all studies, immune responses to non-vaccine high-risk HPV types after bivalent vaccination were higher than baseline or quadrivalent vaccine. Nonavalent vaccine elicited near total seroconversion to HPV types 31, 33, 45, 52, and 58, with seropositivity remaining near 100% up to 24 months post-dose 1. In contrast, bivalent and quadrivalent vaccination resulted in lower seroconversion levels for non-vaccine types, which waned over time.ConclusionsThe cross-protection antibody/immune response among participants having received all three doses of bivalent or quadrivalent vaccine is not comparable to the specific response elicited by HPV vaccine types. Even in cases where a statistically significant cross-reactive immunological response is reported, long-term data on the duration of the response beyond two years are very limited. Further, the lack of a standard for assays limits comparability of results between studies.  相似文献   

9.
《Vaccine》2017,35(1):19-26
BackgroundA major obstacle to the development of broadly protective M protein-based group A streptococcal (GAS) vaccines is the variability within the N-terminal epitopes that evoke potent bactericidal antibodies. The concept of M type-specific protective immune responses has recently been challenged based on the observation that multivalent M protein vaccines elicited cross-reactive bactericidal antibodies against a number of non-vaccine M types of GAS. Additionally, a new “cluster-based” typing system of 175 M proteins identified a limited number of clusters containing closely related M proteins. In the current study, we used the emm cluster typing system, in combination with computational structure-based peptide modeling, as a novel approach to the design of potentially broadly protective M protein-based vaccines.MethodsM protein sequences (AA 16–50) from the E4 cluster containing 17 emm types of GAS were analyzed using de novo 3-D structure prediction tools and the resulting structures subjected to chemical diversity analysis to identify sequences that were the most representative of the 3-D physicochemical properties of the M peptides in the cluster. Five peptides that spanned the range of physicochemical attributes of all 17 peptides were used to formulate synthetic and recombinant vaccines. Rabbit antisera were assayed for antibodies that cross-reacted with E4 peptides and whole bacteria by ELISA and for bactericidal activity against all E4G AS.ResultsThe synthetic vaccine rabbit antisera reacted with all 17 E4 M peptides and demonstrated bactericidal activity against 15/17 E4G AS. A recombinant hybrid vaccine containing the same E4 peptides also elicited antibodies that cross-reacted with all E4 M peptides.ConclusionsComprehensive studies using structure-based design may result in a broadly protective M peptide vaccine that will elicit cluster-specific and emm type-specific antibody responses against the majority of clinically relevant emm types of GAS.  相似文献   

10.
Yi Z  Fu Y  Yang C  Li J  Luo X  Chen Q  Zeng W  Jiang S  Jiang Y  He Y  Yang J  Liu Y  Li N  Zhu DY 《Vaccine》2007,25(4):638-648
In the present study, we constructed a viable therapeutic vaccine of recombinant M. smegmatis mediated IL-12/GLS (granulysin) gene transfer into murine macrophages to exert the immunotherapy effects on the Mycobacterium tuberculosis infection. We tested this recombinant therapeutic vaccine in an in vivo study to determine its capability of stimulating host specific immune responses against M. tuberculosis. BALB/c mice intranasally immunized with the therapeutic vaccine developed an efficient Th1 protective immune response against M. tuberculosis which was equal to that of the BCG strain. Inoculation intranasally with this viable vaccine induced high level of serum IFN-gamma, IL-12 and IgG2a. The viable vaccine was capable of inducing purified protein derivative (PPD) antigen-specific splenocytes proliferation and IFN-gamma production from T cells in spleens of the immunized mice. In addition, intranasally inoculation with the viable vaccine can induce PPD antigen-specific sIgA production in the broncho-alveolar lavage fluid (BALF) of the immunized mice. No change of IL-4 level was found in all groups. The therapeutic mechanism of this viable vaccine against M. tuberculosis infection observed here appeared to be a result of the specific Th1 immune response activated by mycobacterium antigen from M. smegmatis and the expression of sIL-12/GLS in alveolar macrophages via the M. smegmatis-mediated gene transfer method. This research demonstrates that the therapeutic gene can be introduced into a host by viable mycobacteria works to induce the host specific immune response against M. tuberculosis infection in vivo. Since this therapeutic vaccine can strongly induce specific Th1 responses against M. tuberculosis in BALB/c mice and has no obviously harmfulness to the host simultaneously, the recombinant vaccine might be a potential candidate therapeutic vaccine against tuberculosis.  相似文献   

11.
Sánchez S  Troncoso G  Criado MT  Ferreirós C 《Vaccine》2002,20(23-24):2964-2971
Human sera from healthy volunteers and patients convalescent from meningitis were used to search for widely cross-reactive antigens implicated in vivo protective responses. Using the type strain Neisseria meningitidis B16B6 and a wide variety of both N. meningitidis and N. lactamica strains, several cross-reactive antigens and bactericidal sera were found, although the cross-reactivity patterns did not correlate with bactericidal activity, a total correlation was found between bactericidal activity and reaction with one or two high molecular weight proteins (162 and 138 kDa), and a mouse serum against the purified proteins showed a high bactericidal activity. Our results suggest that the high molecular weight proteins found are immunogenic and cross-reactive, eliciting bactericidal responses during infection and as a result of natural immunity. These proteins should be taken into account in studies for future vaccine formulations.  相似文献   

12.
Live attenuated C-strain classical swine fever viruses (CSFV) provide a rapid onset of protection, but the lack of a serological test that can differentiate vaccinated from infected animals limits their application in CSF outbreaks. Since immunity may precede antibody responses, we examined the kinetics and specificity of peripheral blood T cell responses from pigs vaccinated with a C-strain vaccine and challenged after five days with a genotypically divergent CSFV isolate. Vaccinated animals displayed virus-specific IFN-γ responses from day 3 post-challenge, whereas, unvaccinated challenge control animals failed to mount a detectable response. Both CD4(+) and cytotoxic CD8(+) T cells were identified as the cellular source of IFN-γ. IFN-γ responses showed extensive cross-reactivity when T cells were stimulated with CSFV isolates spanning the major genotypes. To determine the specificity of these responses, T cells were stimulated with recombinant CSFV proteins and a proteome-wide peptide library from a related virus, BVDV. Major cross-reactive peptides were mapped on the E2 and NS3 proteins. Finally, IFN-γ was shown to exert potent antiviral effects on CSFV in vitro. These data support the involvement of broadly cross-reactive T cell IFN-γ responses in the rapid protection conferred by the C-strain vaccine and this information should aid the development of the next generation of CSFV vaccines.  相似文献   

13.
Adjuvants in vaccines are immune stimulants that play an important role in the induction of effective and appropriate immune responses to vaccine component. In search of a potent vaccine adjuvant, the water-soluble biopolymeric fraction BOS 2000 from Boswellia serrata was evaluated for desired activity. We investigated the ability of BOS 2000 to enhance HBsAg specific immune responses. The effect was determined in the form of protective anti-HBsAg titers, neutralizing antibodies (IgG1 and IgG2a), spleen cell lymphocyte proliferation by using MTT assay, Th1 (IFN-gamma and TNF-alpha) and Th2 (IL-4) cytokines as well as T-lymphocyte subsets (CD4/CD8) and intracellular cytokines (IFN-gamma/IL-4), these responses were highest in BOS 2000 immunized mice. Alum induced only a modest enhancement of antibody responses. Reducing the dose of adjuvant by 18.1-fold in comparison to alum, total IgG and its subtypes (IgG1 and IgG2a) antibodies titer in serum was significantly enhanced. Analysis of HBsAg specific cytokines revealed that alum was associated with a predominantly IL-4 response. In contrast, BOS 2000 was associated with production of both IFN-gamma and IL-4. We conclude that BOS 2000 is a potent enhancer of antigen-specific Th1 and Th2 immune responses in comparison to alum with Th2 limitation and is a promising adjuvant for vaccine applications.  相似文献   

14.
Marburg virus (MARV) is an African filovirus that causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, there are no MARV vaccines or therapies approved for human use. We hypothesized that developing a vaccine that induces a de novo synthesis of MARV antigens in vivo will lead to strong induction of both a humoral and cell-mediated immune response against MARV. Here, we develop and characterize three novel gene-based vaccine candidates which express the viral glycoprotein (GP) from either the Ci67, Ravn or Musoke strain of MARV. Immunization of mice with complex adenovirus (Ad)-based vaccine candidates (cAdVax vaccines), led to efficient production of both antibodies and cytotoxic T lymphocytes (CTL) specific to Musoke strain GP and Ci67 strain GP, respectively. Antibody responses were also shown to be cross-reactive across the MARV strains, but not cross-reactive to Ebola virus, a related filovirus. Additionally, three 1 x 10(8)pfu doses of vaccine vector were demonstrated to be safe in mice, as this did not lead to any detectable toxicity in liver or spleen. These promising results indicate that a cAdVax-based vaccine could be effective for induction of both humoral and cell-mediated immune responses to multiple strains of the Marburg virus.  相似文献   

15.
A conformationally restricted B cell epitope has been identified as a potential safe vaccine candidate from the major group A streptococcal virulence factor, the M protein. To maintain α-helical secondary structure, the minimal epitope is flanked with heterologous sequences to produce the chimeric vaccine candidate called J14. As a strategy toward developing an affordable multivalent GAS vaccine, we have expressed J14 recombinantly with a second GAS protective antigen H12 (rJ14H12). When administered to mice sub-cutaneously, the fusion protein stimulated a strong serum IgG response to the H12 component, but J14 was poorly immunogenic. To increase the immunogenicity of J14 when expressed with the model fusion partner, amino acid modifications were made to the initial recombinant J14 construct to produce rJJo. These changes stabilised the α-helical conformation of the recombinant antigen as assessed by circular dichroism. Mice immunised with rJJoH12, the fusion protein incorporating JJo, effectively stimulated a humoral response to both of the included antigens. These data support the feasibility of developing a multivalent vaccine incorporating the conformationally restricted protective antigen J14.  相似文献   

16.
Bluetongue virus (BTV) infections in ruminants pose a permanent agricultural threat since new serotypes are constantly emerging in new locations. Clinical disease is mainly observed in sheep, but cattle were unusually affected during an outbreak of BTV seroype 8 (BTV-8) in Europe. We previously developed an experimental vaccine based on recombinant viral protein 2 (VP2) of BTV-8 and non-structural proteins 1 (NS1) and NS2 of BTV-2, mixed with an immunostimulating complex (ISCOM)–matrix adjuvant. We demonstrated that bovine immune responses induced by this vaccine were as good or superior to those induced by a classic commercial inactivated vaccine. In this study, we evaluated the protective efficacy of the experimental vaccine in cattle and, based on the detection of VP7 antibodies, assessed its DIVA compliancy following virus challenge. Two groups of BTV-seronegative calves were subcutaneously immunized twice at a 3-week interval with the subunit vaccine (n = 6) or with adjuvant alone (n = 6). Following BTV-8 challenge 3 weeks after second immunization, controls developed viremia and fever associated with other mild clinical signs of bluetongue disease, whereas vaccinated animals were clinically and virologically protected. The vaccine-induced protection was likely mediated by high virus-neutralizing antibody titers directed against VP2 and perhaps by cellular responses to NS1 and NS2. T lymphocyte responses were cross-reactive between BTV-2 and BTV-8, suggesting that NS1 and NS2 may provide the basis of an adaptable vaccine that can be varied by using VP2 of different serotypes. The detection of different levels of VP7 antibodies in vaccinated animals and controls after challenge suggested a compliancy between the vaccine and the DIVA companion test. This BTV subunit vaccine is a promising candidate that should be further evaluated and developed to protect against different serotypes.  相似文献   

17.
Major histocompatibility complex (MHC) proteins are known to be incorporated into the human immunodeficiency virus (HIV-1) envelope as the virion buds from the host cell surface. Studies using simian immunodeficiency virus (SIV) infection of macaques have demonstrated that immunization with uninfected human cells or purified HLA proteins can provide protection from challenge with live SIV when it is grown in human cells expressing the same MHC alleles. Thus the induction of anti-MHC immune responses represents an important option to consider with respect to vaccine design for SIV and HIV. Here we examine plasmid DNA immunization strategies as an alternative to cellular or protein immunogens for the induction of xenogeneic and allogeneic immune responses in C57BL/6 mice and in an HLA transgenic mouse model system, respectively. We compared the immunogenicity of HLA-A2- and HLA-B27-expressing splenocytes with the corresponding plasmid DNA immunogens. Results from the transgenic mouse experiments indicate that plasmid DNA immunization with both class I and class II MHC-encoding vectors can elicit antibody responses recognizing conformationally intact MHC molecules. Our data also show that immunization with class I MHC-encoding DNA immunogens can elicit cytotoxic T-lymphocyte responses, demonstrating the potential to mobilize both antibody and cell-mediated anti-MHC immune responses in the context of this approach to HIV-1 vaccine design.  相似文献   

18.
Attenuated enteropathogenic yersiniae that translocate heterologous antigens into the cytosol of antigen presenting cells via their type three secretion system (TTSS) are considered promising candidates for the development of live oral vaccine carrier strains that induce CD8 T cell responses. Wild type Yersinia enterocolitica of serotype O:8 however efficiently suppresses the immune response of the host by translocating effector proteins called Yersinia outer proteins (Yops) into the cytosol of immune cells. We therefore tested immunogenicity, protective efficacy, and virulence ofyop mutants that translocate the model antigen Listeriolysin (LLO) of Listeria monocytogenes in a mouse model. A deltayopP mutant-based vaccine carrier strain induced the highest numbers of LLO91-99-specific CD8 T cells and effectively protected mice against a lethal challenge with Listeria whereas deltayopPT, deltayopPV(K42Q), and deltayopPO mutants of Y. enterocolitica induced fewer CD8 T cells and conferred only partial protection. The deltayopPH, deltayopPE, deltayopPM, and deltayopPQ mutants induced the weakest CD8 T cell response and did not significantly protect mice against Listeria presumably due to the strong attenuation of these strains in the mouse model. Even though a Y. enterocolitica strain WA-C(pTTSS), which translocated only LLO (but not Yops), induced superior MHC class I-restricted antigen presentation in DC compared to the deltayopP mutants in vitro, this strain was not able to significantly colonize mouse tissue or to induce CD8 T cell responses in vivo. The success in designing a Yersinia oral vaccine carrier is therefore dependent to a great extent on the subtle balance between immunogenicity and attenuation.  相似文献   

19.
Bacterial lipoproteins are potent stimulators of innate immune responses and can mediate humoral and cytotoxic T cell responses without additional adjuvants. OprI derived from Pseudomonas aeruginosa was tested in vitro and in vivo for its adjuvant potential in the context of a classical swine fever (CSF) subunit vaccine. OprI activated porcine monocyte-derived dendritic cells (MoDC), upregulating CD80/86 and MHC class II expression, as well as pro-inflammatory cytokines. OprI enhanced CSFV-antigen-specific lymphocyte proliferation and IFN-gamma release. An E2/NS3-based subunit vaccine adjuvanted with OprI stimulated specific immune responses and partial protection against CSFV infection. Although, a water-oil-water adjuvanted vaccine was more potent at protecting animals, this study demonstrates that OprI has immunostimulatory properties for porcine DC, and has potential as vaccine immunostimulant. Further studies are necessary to optimize antigen formulation enabling to translate the in vitro efficacy into a potent vaccine in vivo.  相似文献   

20.
The live attenuated vaccine strain of Venezuelan equine encephalitis virus (VEEV), TC-83, protects mice against challenge (subcutaneous and aerosol) with virulent VEEV but is not suitable for widescale human use. Elucidation of the immune response profile of protected mice should assist in the development of an improved vaccine. We determined the optimum dose of TC-83 required to consistently protect Balb/c mice from airborne challenge with the virulent Trinidad Donkey strain of VEEV and studied the development of humoral and cellular immune responses in protected mice between 6 h and 21 days post-vaccination. The most dramatic immune responses occurred in draining lymph nodes 24 h following vaccination with increased levels of activated B cells and T cells of both CD4(+) and CD8(+) subtypes. Activated monocyte/macrophages and natural killer cells were also seen between 6 h and 7 days post-vaccination. Serum contained detectable VEEV-specific IgG on day 5 post-vaccination with titres continuing to rise on days 7, 14 and 21. Isotypes of IgG measured on days 7 and 21 were predominantly of the IgG2a subclass, indicating that the immune response was Th1-mediated. Cytokine mRNA was quantified by RT-PCR and revealed production of the Th1 cytokine IFN-gamma and the inflammatory cytokine TNF-alpha, whereas the Th2 cytokine IL4 was not detected above control levels at any of the time points studied. This data describes key cellular immune responses at early times post-vaccination and is consistent with previous data demonstrating protection against aerosol challenge with VEEV in the absence of detectable levels of specific IgG or IgA antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号