首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment induces proliferation and survival of MM cells, as well as osteoclastogenesis. This study investigated the therapeutic potential of novel p38 mitogen-activated protein kinase (p38MAPK) inhibitor LY2228820 (LY) in MM. Although cytotoxicity against MM cell lines was modest, LY significantly enhanced the toxicity of bortezomib by down-regulating bortezomib-induced heat shock protein 27 phosphorylation. LY inhibited interleukin-6 secretion from long term cultured-BM stromal cells and BM mononuclear cells (BMMNCs) derived from MM patients in remission. LY also inhibited macrophage inflammatory protein-1alpha secretion from patient MM cells and BMMNCs as well as normal CD14 positive osteoclast precursor cells. Moreover, LY significantly inhibited in vitro osteoclastogenesis from CD14 positive cells induced by macrophage-colony stimulating factor and soluble receptor activator of nuclear factor-kappaB ligand. Finally, LY also inhibited in vivo osteoclatogenesis in a severe combined immunodeficiency mouse model of human MM. These results suggest that LY represents a promising novel targeted approach to improve MM patient outcome both by enhancing the effect of bortezomib and by reducing osteoskeletal events.  相似文献   

2.
3.
Accumulating evidence indicates that menaquinone-4 (MK-4), a vitamin K(2) with four isoprene units, inhibits osteoclastogenesis in murine bone marrow culture, but the reason for this inhibition is not yet clear, especially in human bone marrow culture. To clarify the inhibitory mechanism, we investigated the differentiation of colony-forming-unit fibroblasts (CFU-Fs) and osteoclasts in human bone marrow culture, to learn whether the enhancement of the differentiation of CFU-Fs from progenitor cells might relate to inhibition of osteoclast formation. Human bone marrow cells were grown in alpha-minimal essential medium with horse serum in the presence of MK-4 until adherent cells formed colonies (CFU-Fs). Colonies that stained positive for alkaline phosphatase activity (CFU-F/ALP(+)) were considered to have osteogenic potential. MK-4 stimulated the number of CFU-F/ALP(+) colonies in the presence or absence of dexamethasone. The stimulation was also seen in vitamin K(1) treatment. These cells had the ability to mineralize in the presence of alpha-glycerophosphate. In contrast, both MK-4 and vitamin K(1) inhibited 1,25 dihydroxyvitamin D(3)-induced osteoclast formation and increased stromal cell formation in human bone marrow culture. These stromal cells expressed ALP and Cbfa1. Moreover, both types of vitamin K treatment decreased the expression of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor (RANKL/ODF) and enhanced the expression of osteoprotegerin/osteoclast inhibitory factor (OPG/OCIF) in the stromal cells. The effective concentrations were 1.0 microM and 10 microM for the expression of RANKL/ODF and OPG/OCIF respectively. Vitamin K might stimulate osteoblastogenesis in bone marrow cells, regulating osteoclastogenesis through the expression of RANKL/ODF more than through that of OPG/OCIF.  相似文献   

4.
Currently, no approved monoclonal antibody (mAb) therapies exist for human multiple myeloma (MM). Here we characterized cell surface CS1 as a novel MM antigen and further investigated the potential therapeutic utility of HuLuc63, a humanized anti-CS1 mAb, for treating human MM. CS1 mRNA and protein was highly expressed in CD138-purified primary tumor cells from the majority of MM patients (more than 97%) with low levels of circulating CS1 detectable in MM patient sera, but not in healthy donors. CS1 was expressed at adhesion-promoting uropod membranes of polarized MM cells, and short interfering RNA (siRNA) targeted to CS1 inhibited MM cell adhesion to bone marrow stromal cells (BMSCs). HuLuc63 inhibited MM cell binding to BMSCs and induced antibody-dependent cellular cytotoxicity (ADCC) against MM cells in dose-dependent and CS1-specific manners. HuLuc63 triggered autologous ADCC against primary MM cells resistant to conventional or novel therapies, including bortezomib and HSP90 inhibitor; and pretreatment with conventional or novel anti-MM drugs markedly enhanced HuLuc63-induced MM cell lysis. Administration of HuLuc63 significantly induces tumor regression in multiple xenograft models of human MM. These results thus define the functional significance of CS1 in MM and provide the preclinical rationale for testing HuLuc63 in clinical trials, either alone or in combination.  相似文献   

5.
OBJECTIVE: Receptor activator of nuclear factor-kappaB ligand (RANKL) promotes osteoclast differentiation from monocyte precursors by inducing a cohort of genes, including tartrate-resistant acid phosphatase (TRAP) and matrix metalloproteinase-9 (MMP-9). A family of synthetic triterpenoids with antiinflammatory and pro-apoptotic properties was described to modulate differentiation in monocytic cell lineages. We therefore investigated the ability of the potent and bioavailable synthetic triterpenoid TP-222 to inhibit RANKL-induced osteoclast formation and MMP-9 expression from monocytic precursor cells. METHODS: Osteoclast formation was assayed by staining for TRAP-positive multinucleated cells. MMP-9 expression was measured by quantitative RT-PCR, Western blot, immunohistochemistry, and gel zymography. In vivo effects of TP-222 were assessed by daily intraperitoneal injection of 4-week-old mice for 7 days followed by measurement of osteoclast number and MMP-9 expression at the cartilage/bone junction of the epiphyseal growth plate. RESULTS: RANKL promoted and TP-222 (300 nM) inhibited osteoclast formation in cultures of RAW264.7 cells or bone marrow-derived monocytes. RANKL also induced MMP-9 expression in RAW264.7 cells and this was reduced by concurrent or subsequent addition of TP-222. TP-222 treatment significantly reduced the mean number of osteoclasts present at the cartilage/bone interface compared to vehicle-injected control mice. Morphometric analyses of tissue sections showed that TP-222 treatment reduced the amount of immunoreactive MMP-9 present in both mononucleated pre-osteoclasts and osteoclasts. CONCLUSION: Our data demonstrate that TP-222 inhibits osteoclast formation and MMP-9 expression in vitro and in vivo, and suggest that triterpenoids may be useful compounds for modulating bone resorption diseases.  相似文献   

6.
Perifosine is a synthetic novel alkylphospholipid, a new class of antitumor agents which targets cell membranes and inhibits Akt activation. Here we show that baseline phosphorylation of Akt in multiple myeloma (MM) cells is completely inhibited by perifosine [octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate] in a time- and dose-dependent fashion, without inhibiting phosphoinositide-dependent protein kinase 1 phosphorylation. Perifosine induces significant cytotoxicity in both MM cell lines and patient MM cells resistant to conventional therapeutic agents. Perifosine does not induce cytotoxicity in peripheral blood mononuclear cells. Neither exogenous interleukin-6 (IL-6) nor insulinlike growth factor 1 (IGF-1) overcomes Perifosine-induced cytotoxicity. Importantly, Perifosine induces apoptosis even of MM cells adherent to bone marrow stromal cells. Perifosine triggers c-Jun N-terminal kinase (JNK) activation, followed by caspase-8/9 and poly (ADP)-ribose polymerase cleavage. Inhibition of JNK abrogates perifosine-induced cytotoxicity, suggesting that JNK plays an essential role in perifosine-induced apoptosis. Interestingly, phosphorylation of extracellular signal-related kinase (ERK) is increased by perifosine; conversely, MEK inhibitor synergistically enhances Perifosine-induced cytotoxicity in MM cells. Furthermore, perifosine augments dexamethasone, doxorubicin, melphalan, and bortezomib-induced MM cell cytotoxicity. Finally, perifosine demonstrates significant antitumor activity in a human plasmacytoma mouse model, associated with down-regulation of Akt phosphorylation in tumor cells. Taken together, our data provide the rationale for clinical trials of perifosine to improve patient outcome in MM.  相似文献   

7.
Osteolytic bone disease in multiple myeloma (MM) is associated with upregulation of osteoclast (OCL) activity and constitutive inhibition of osteoblast function. The extracellular signal-regulated kinase 1/2 (ERK1/2) pathway mediates OCL differentiation and maturation. We hypothesized that inhibition of ERK1/2 could prevent OCL differentiation and downregulate OCL function. It was found that AZD6244, a mitogen-activated or extracellular signal-regulated protein kinase (MEK) inhibitor, blocked OCL differentiation and formation in a dose-dependent manner, evidenced by decreased alphaVbeta3-integrin expression and tartrate-resistant acid phosphatase positive (TRAP+) cells. Functional dentine disc cultures showed inhibition of OCL-induced bone resorption by AZD6244. Major MM growth and survival factors produced by OCLs including B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL), as well as macrophage inflammatory protein (MIP-1alpha), which mediates OCL differentiation and MM, were also significantly inhibited by AZD6244. In addition to ERK inhibition, NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1) and c-fos were both downregulated, suggesting that AZD6244 targets a later stage of OCL differentiation. These results indicate that AZD6244 inhibits OCL differentiation, formation and bone resorption, thereby abrogating paracrine MM cell survival in the bone marrow microenvironment. The present study therefore provides a preclinical rationale for the evaluation of AZD6244 as a potential new therapy for patients with MM.  相似文献   

8.
9.
To explore the mechanisms involved in the pathogenesis of human multiple myeloma (MM), we investigated the potential role of interleukin-6 (IL-6), a B-cell differentiation factor in humans, and a growth factor for rat/mouse heterohybridomas and murine plasmacytomas. Using a heterohybridoma assay, we found that two well-documented human myeloma cell lines, RPMI 8226 and U266, did not secrete IL-6 and did not express RNA messengers for IL-6. Neutralizing antibodies to IL-6 did not inhibit their proliferation, and recombinant IL-6 did not stimulate it. Taken together, these data show that IL-6 is not the autocrine growth factor of these human myeloma cell lines. A high production of IL-6 was found in the bone marrows of patients with fulminating MM, compared with patients with inactive or slightly active MM, or to healthy donors. This IL-6 production was assigned to adherent cells of the bone-marrow environment but not to myeloma cells. A spontaneous proliferation of myeloma cells freshly isolated from patients was observed in short-term cultures. Recombinant IL-6 was able to amplify it two- to threefold. The spontaneous proliferation of the myeloma cells was inhibited by anti-IL-6 antibodies and reinduced by recombinant IL-6. After 2 to 3 weeks of culture, the myeloma-cell proliferation progressively declined and no IL-6-dependent myeloma cell lines could be obtained despite repeated additions of fresh IL-6 and costimulation with other cytokines such as tumor necrosis factor (TNF)beta, or IL-1 beta. These data demonstrated a paracrine but not autocrine regulation of the growth and differentiation of myeloma cells by IL-6.  相似文献   

10.
Cysteine-rich protein 61 (CYR61/CCN1) belongs to the family of CCN matricellular proteins. Most of the known effects of CCN proteins appear to be due to binding to extracellular growth factors or integrins, including alpha(v)beta(3) and alpha(v)beta(5). Although CYR61 can stimulate osteoblast differentiation, until now the effect of CYR61 on osteoclasts was unknown. We demonstrate that recombinant human CYR61 inhibits the formation of multinucleated, alpha(v)beta(3)-positive, or tartrate-resistant acid phosphatase-positive human, mouse, and rabbit osteoclasts in vitro. CYR61 markedly reduced the expression of the osteoclast phenotypic markers tartrate-resistant acid phosphatase, matrix metalloproteinase-9, calcitonin receptor, and cathepsin K. However, CYR61 did not affect the formation of multinucleated osteoclasts when added to osteoclast precursors prior to fusion or affect the number or resorptive activity of osteoclasts cultured on dentine discs, indicating that CYR61 affects early osteoclast precursors but not mature osteoclasts. CYR61 did not affect receptor activator of nuclear factor-kappaB (RANK) ligand-induced phosphorylation of p38 or ERK1/2 in human macrophages and did not affect RANK ligand-induced activation of nuclear factor-kappaB, indicating that CYR61 does not appear to inhibit osteoclastogenesis by affecting RANK signaling. Furthermore, a mutant form of CYR61 defective in binding to alpha(v)beta(3) also inhibited osteoclastogenesis, and CYR61 inhibited osteoclastogenesis similarly in cultures of mouse wild-type or beta(5)(-/-) macrophages. Thus, CYR61 does not appear to inhibit osteoclast formation by interacting with alpha(v)beta(3) or alpha(v)beta(5). These observations demonstrate that CYR61 is a hitherto unrecognized inhibitor of osteoclast formation, although the exact mechanism of inhibition remains to be determined. Given that CYR61 also stimulates osteoblasts, CYR61 could represent an important bifunctional local regulator of bone remodeling.  相似文献   

11.
Members of the arenavirus family, famous for their hemorrhagic syndromes, cause distinct neurological disorders; however, cellular and molecular targets as well as pathogenesis of peripheral nervous system disorders associated with these viruses are unknown. Using noncytolytic lymphocytic choriomeningitis virus, the prototype arenavirus, and pseudotyped Lassa fever virus, we showed that the Schwann cells, but not the neurons, were preferentially targeted and harbored the virus. This permissiveness was caused by the viral glycoprotein usage of its receptor alpha-dystroglycan, which was highly abundant on Schwann cell membranes. Persistent lymphocytic choriomeningitis virus infection rendered immature Schwann cells defective or incapable of forming compact myelin sheathes when they differentiated to myelinating phenotype in an in vitro differentiation model of Schwann cells. Persistent infection did not cause Schwann cell apoptosis or cytopathic effect. Defects in myelination coincided with the down-regulation of dystroglycan expression and disruption of the laminin-2 organization and basal lamina assembly on Schwann cell-axon units. The data provide evidence for a selective perturbation of laminin-2-laminin-2 receptor communication pathway in the peripheral nervous system by a nonlytic virus and the resulting myelin defects, which may partly contribute to neurological abnormalities associated with arenaviral infection.  相似文献   

12.
13.
Vascular endothelial cells (EC) participate in the process of bone formation through the production of factors regulating osteoclast differentiation and function. In this study, we report the selective expression in primary human microvascular EC of Osteostat/TNF superfamily 18, a ligand of the TNF superfamily. Osteostat protein is detectable in human microvascular EC and is highly up-regulated by IFN-alpha and IFN-beta. Moreover, an anti-Osteostat antibody strongly binds to the vascular endothelium in human tissues, demonstrating that the protein is present in the EC layers surrounding blood vessels. Functional in vitro assays were used to define Osteostat involvement in osteoclastogenesis. Both recombinant and membrane-bound Osteostat inhibit differentiation of osteoclasts from monocytic precursor cells. Osteostat suppresses the early stage of osteoclastogenesis via inhibition of macrophage colony-stimulating factor-induced receptor activator of NF-kappaB (RANK) expression in the osteoclast precursor cells. This effect appears to be specific for the differentiation pathway of the osteoclast lineage, because Osteostat does not inhibit lipopolysaccharide-induced RANK expression in monocytes and dendritic cells, or activation-induced RANK expression in T cells. These findings demonstrate that Osteostat is a novel regulator of osteoclast generation and substantiate the major role played by the endothelium in bone physiology.  相似文献   

14.
15.
16.
The contribution of the type II pneumocyte to the pathogenesis of silicosis is largely unknown. Prominent features of silicosis are hyperplasia and hypertrophy of type II epithelial cells, often accompanied by phospholipid accumulation in the lung. The biologic regulation of these events is poorly understood. This study addresses the question of a direct effect of silica on type II pneumocytes, since direct contact of the inhaled silica dust can occur in vivo. Type II cells were isolated from fetal rat lungs and their epithelial specificity was verified. Experiments were performed on 2nd passage monolayers in 2% serum. Repair, replication, and growth activity was evaluated by the incorporation of [3H]thymidine. Cytotoxicity was measured by quantitating the release of [14C]adenine and expressed as a cytotoxicity index (CI). Type II cell proliferation and cytotoxicity were evaluated for the mineral dusts silica (SiO2), aluminum-treated silica (SiO2AlK), and titanium (TiO2). Of these mineral dusts, only low concentrations of silica increased type II cell [3H]thymidine incorporation (silica 2.5 micrograms/mL: 52% above control, P less than .05; silica 20 micrograms/mL: 57% above control, P less than .02). In addition, silica increased the cell number significantly, although to a lesser degree. Exposure of the type II epithelial cells to silica dust for 24 h resulted in dose-dependent cytotoxicity (silica 10 micrograms/mL, CI = 9.1%, P less than .0002; 250 micrograms/mL, CI = 45.1%, P less than .0001). SiO2Al completely suppressed these proliferation and cytotoxicity effects, which were then similar to those of the inert dust, TiO2. These data suggest that direct exposure and contact of the type II pneumocytes to low-dose silica dust initiated repair, replication, and growth activity, while exposure to higher silica concentrations resulted in marked cytotoxicity. Both the repair, replication, and growth and the cytotoxic responses of the type II epithelial cells to silica exposure are related to the surface properties of silica.  相似文献   

17.
18.
BACKGROUND & AIMS: The cyclooxygenase 2 (COX-2) and ErbB/HER pathways are important modulators of cancer cell growth. We sought to determine the effects of treatment with a specific COX-2 inhibitor and/or a monoclonal antibody against the ErbB receptor subtype HER-2/neu on carcinoma cell growth. METHODS: A cell-proliferation assay was used to determine the response of HCA-7 cells to the HER-3/HER-4 ligand heregulin beta-1 (HRGbeta-1). Both in vitro and in vivo assays were used to determine the effects of the selective COX-2 inhibitor, celecoxib, and/or an anti-HER-2/neu monoclonal antibody (either Herceptin [Genetech Inc., S. San Francisco, CA] or 2C4) on cell growth. RESULTS: HCA-7 cells express HER-2/neu messenger RNA and protein, and exposure of these cells to HRGbeta-1 results in a significant stimulation of cell growth. Celecoxib or Herceptin inhibits HCA-7 cell growth in vitro and in vivo. Combination therapy with celecoxib plus Herceptin or celecoxib plus 2C4 resulted in additive effects that resulted in almost complete inhibition of tumor growth. CONCLUSIONS: Combined treatment with COX-2 and HER-2/neu inhibitors more effectively reduces colorectal carcinoma growth than either agent alone. Therefore, targeting of both the COX-2 and ErbB signaling pathways may represent a novel approach for the treatment and/or prevention of colorectal cancer in humans.  相似文献   

19.
Wang ES  Teruya-Feldstein J  Wu Y  Zhu Z  Hicklin DJ  Moore MA 《Blood》2004,104(9):2893-2902
The role of angiogenesis in lymphoproliferative diseases is not well established. We demonstrate here that human lymphoma cells secrete vascular endothelial growth factor (VEGF) and express VEGF receptor 1 (VEGFR-1) and VEGFR-2. Proliferation of non-Hodgkin lymphoma (NHL) cells under serum-free conditions was enhanced by the addition of VEGF and was blocked by VEGFR-1- and VEGFR-2-specific antibodies. To differentiate between VEGF-mediated autocrine and paracrine effects on lymphoma growth, NOD/SCID mice engrafted with human diffuse large B-cell lymphoma (DLBCL) were treated with species-specific antibodies against human VEGFR-1 (6.12), human VEGFR-2 (IMC-1C11), murine VEGFR-1 (MF-1), or murine VEGFR-2 (DC101). Treatment with 6.12 or DC101 (targeting tumor VEGFR-1 and host VEGFR-2) reduced established DLBCL xenograft growth, whereas treatment with IMC-1C11 or MF-1 (targeting tumor VEGFR-1 and host VEGFR-1) had no effect. Decreased tumor volumes after 6.12 and DC101 treatment correlated with increased tumor apoptosis and reduced vascularization, respectively, supporting the presence of autocrine VEGFR-1- and paracrine VEGFR-2-mediated pathways in lymphomagenesis. Inhibition of paracrine VEGF interactions (DC101) in these models was equivalent to their inhibition with rituximab. Combining DC101 with therapeutic agents (rituximab, 6.12, methotrexate) consistently improved tumor responses over those of single-agent therapy. These data support the further clinical development of VEGFR-targeted approaches for the therapy of aggressive DLBCL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号