首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major histocompatibility complex (MHC) class II molecules present antigenic peptides derived from engulfed exogenous proteins to CD4+ T cells. Exogenous antigens are processed in mature endosomes and lysosomes where acidic proteases reside and peptide‐binding to class II alleles is favoured. Hence, maintenance of the microenvironment within these organelles is probably central to efficient MHC class II‐mediated antigen presentation. Lysosome‐associated membrane proteins such as LAMP‐2 reside in mature endosomes and lysosomes, yet their role in exogenous antigen presentation pathways remains untested. In this study, human B cells lacking LAMP‐2 were examined for changes in MHC class II‐restricted antigen presentation. MHC class II presentation of exogenous antigen and peptides to CD4+ T cells was impaired in the LAMP‐2‐deficient B cells. Peptide‐binding to MHC class II on LAMP‐2‐deficient B cells was reduced at physiological pH compared with wild‐type cells. However, peptide‐binding and class II‐restricted antigen presentation were restored by incubation of LAMP‐2‐negative B cells at acidic pH, suggesting that efficient loading of exogenous epitopes by MHC class II molecules is dependent upon LAMP‐2 expression in B cells. Interestingly, class II presentation of an epitope derived from an endogenous transmembrane protein was detected using LAMP‐2‐deficient B cells. Consequently, LAMP‐2 may control the repertoire of peptides displayed by MHC class II molecules on B cells and influence the balance between endogenous and exogenous antigen presentation.  相似文献   

2.
Askew D  Harding CV 《Immunology》2008,123(3):447-455
To examine heterogeneity in dendritic cell (DC) antigen presentation function, murine splenic DCs were separated into CD4+ and CD8+ populations and assessed for the ability to process and present particulate antigen to CD4+ and CD8+ T cells. CD4+ and CD8+ DCs both processed exogenous particulate antigen, but CD8+ DCs were much more efficient than CD4+ DCs for both major histocompatibility complex (MHC) class II antigen presentation and MHC class I cross-presentation. While antigen processing efficiency contributed to the superior antigen presentation function of CD8+ DCs, our studies also revealed an important contribution of CD24. CD8+ DCs were also more efficient than CD4+ DCs in inducing naïve T cells to acquire certain effector T-cell functions, for example generation of cytotoxic CD8+ T cells and interferon (IFN)-γ-producing CD4+ T cells. In summary, CD8+ DCs are particularly potent antigen-presenting cells that express critical costimulators and efficiently process exogenous antigen for presentation by both MHC class I and II molecules.  相似文献   

3.
An exclusive feature of dendritic cells (DCs) is their ability to cross‐present exogenous antigens in MHC class I molecules. We analyzed the fate of protein antigen in antigen presenting cell (APC) subsets after uptake of naturally formed antigen‐antibody complexes in vivo. We observed that murine splenic DC subsets were able to present antigen in vivo for at least a week. After ex vivo isolation of four APC subsets, the presence of antigen in the storage compartments was visualized by confocal microscopy. Although all APC subsets stored antigen for many days, their ability and kinetics in antigen presentation was remarkably different. CD8α+ DCs showed sustained MHC class I‐peptide specific CD8+ T‐cell activation for more than 4 days. CD8α? DCs also presented antigenic peptides in MHC class I but presentation decreased after 48 h. In contrast, only the CD8α? DCs were able to present antigen in MHC class II to specific CD4+ T cells. Plasmacytoid DCs and macrophages were unable to activate any of the two T‐cell types despite detectable antigen uptake. These results indicate that naturally occurring DC subsets have functional antigen storage capacity for prolonged T‐cell activation and have distinct roles in antigen presentation to specific T cells in vivo.  相似文献   

4.
It is generally assumed that the MHC class I antigen (Ag)‐processing (CAP) machinery — which supplies peptides for presentation by class I molecules — plays no role in class II–restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)‐cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4+ T‐cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II‐associated self peptides suggesting that the CAP machinery impacts class II–restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4+ T‐cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4+ T‐cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II–restricted peptidome, impacting the CD4+ T‐cell repertoire, and ultimately altering Th‐cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II–restricted epitopes that would otherwise be capable of eliciting functional Th‐cell responses.  相似文献   

5.
While Burkitt lymphoma (BL) has a well‐known defect in HLA class I‐mediated antigen presentation, the exact role of BL‐associated HLA class II in generating a poor CD4+ T‐cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. This defect in CD4+ T‐cell recognition was not associated with low levels of co‐stimulatory molecules on BL cells, as addition of external co‐stimulation failed to elicit CD4+ T‐cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL‐associated class II molecules. Interestingly, functional class II–peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II‐mediated antigen presentation and CD4+ T‐cell recognition. Biochemical analysis showed that these molecules were greater than 30 000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47 000 molecular weight enolase‐like molecule that enhances class II‐mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II‐mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.  相似文献   

6.
Molecular chaperones such as heat shock protein 90 (Hsp90) have been shown to form complexes with tumor antigens and can be used to prepare anticancer vaccines largely due to this property. Earlier studies had suggested that mice immunized with a molecular chaperone-based vaccine derived from tumors became immune to further vaccination and that both CD8+ and CD4+ T cells were activated by the chaperone vaccine in a manner dependent on scavenger receptor SREC-I. Here we have investigated mechanisms whereby SREC-I might facilitate uptake of Hsp90-conjugated peptides by APC into the MHC class II pathway for presentation to CD4+ T cells. Our studies showed that antigenic peptides associated with Hsp90 were taken up into the class II pathway by a mechanism dependent on SREC-I binding and internalization and presented to CD4+ T cells. In addition our studies showed that SREC-I could associate with MHC class II molecules on the cell surface and in intracellular endosomes, suggesting a mechanism involving facilitated uptake of peptides into the MHC class II pathway. These studies in addition to our earlier findings showed SREC-I to play a primary role in chaperone-associated antigen uptake both through cross priming of MHC class I molecules and entry into the class II pathway.  相似文献   

7.
CD4+ T cell lines raised against the protective leishmanial antigens GP46 and P8 were used to study the presentation of endogenously synthesized Leishmania antigens by infected cells. Using two different sources of macrophages, the 14.07 macrophage cell line (H-2k) which constitutively expresses major histocompatibility complex (MHC) class II molecules, and elicited peritoneal exudate cells, we found that cells infected with Leishmania amastigotes presented little, if any endogenously synthesized parasite antigens to CD4+ T cells. In contrast, promastigote-infected macrophages did present endogenous parasite molecules to CD4+ T cells, although only for a limited time, with maximal presentation occurring within 24 h of infection and decreasing to minimal antigen presentation at 72 h post-infection. These observations suggest that once within the macrophage, Leishmania amastigote antigens are sequestered from the MHC class II pathway of antigen presentation. This allows live parasites to persist in infected hosts by evading the activation of CD4+ T cells, a major and critical anti-leishmanial component of the host immune system. Studies with drugs that modify fusion patterns of phagosomes suggest that the mechanism of this antigen sequestration includes targeted fusion of the parasitophorous vacuole with certain endocytic compartments.  相似文献   

8.
Previous studies on the MHC class‐specific differentiation of CD4+CD8+ thymocytes into CD4+ and CD8+ T cells have focused on the role of coreceptor molecules. However, CD4 and CD8 T cells develop according to their MHC class specificities even in these mice lacking coreceptors. This study investigated the possibility that lineage is determined not only by coreceptors, but is also guided by the way how MHC molecules are presented. MHC class II molecules possess a highly conserved Cys in their transmembrane domain, which is palmitoylated and thereby associates with lipid rafts, whereas neither palmitoylation nor raft association was observed with MHC class I molecules. The generation of CD4 T cells was impaired and that of CD8 T cells was augmented when the rafts on the thymic epithelial cells were disrupted. This was due to the conversion of MHC class II‐specific thymocytes from the CD4 lineage to CD8. The ability of I‐Ad molecule to associate with rafts was lost when its transmembrane Cys was replaced. The development of DO11.10 thymocytes recognizing this mutant I‐Adm was converted from CD4 to CD8. These results suggest that the CD4 lineage commitment is directed by the raft‐associated presentation of MHC class II molecules.  相似文献   

9.
Skin Langerhans cells (LC) are antigen-presenting cells capable of expressing MHC class I and class II molecules on the plasma membrane. This molecular activity was reviewed to combine the knowledge of peptide presentation by MHC and HLA class I and class II molecules to prime CD8+ cytotoxic T cells (CTLs) and CD4+ T helper cells, respectively. The possible utilization of the skin dendritic cells for the development of antiviral CTLs and antibodies by synthetic peptides modeled according to the motifs of peptides that naturally interact with the peptide binding grooves of the various HLA haplotypes is discussed and evaluated. It may be possible that the introduction of synthetic viral peptides with motifs to fit the HLA class I haplotypes of a human population to the skin dendritic cells will prime selectively the cellular or the humoral immune responses. This approach may provide a new vaccination technique that applies synthetic virus peptides as vaccines for the immunization of humans. The neuropeptide CGRP interacts with LC and modulates antigen presentation.  相似文献   

10.
Mature CD4+ and CD8+ T cells are restricted by major histocompatibility complex (MHC) class II and class I molecules, respectively. In a primary mixed lymphocyte reaction (MLR), CD8+ T cells from C57BL/6 (B6) mice can respond to allo-class I molecules, but not allo-class II molecules. However, a significant fraction of CD8+ T cells from C57BL/6 class II-deficient (B6Aα?) mice violate this rule by responding vigorously in a MLR to class II molecules. The frequency of responding cells is ~ 50 % of that of B6 CD8+ T cells responding to B6bm1 allo-class I molecules. This response requires neither appropriate co-receptor, i.e. CD4, nor exogenous lymphokines, indicating that interactions between the T cell receptors (TCR) and class II molecules are remarkably efficient. Since these CD8+ T cells are positively selected by class I molecules in the thymus of class II-deficient mice, these CD8+ T cells should interact with both classes of MHC molecules. The absence of thymic negative selection by class II molecules may result in the production of these CD8+ T cells. The data imply that a substantial fraction of CD4+CD8+ double-positive thymocytes in wild-type mice interacts with both classes of MHC molecules prior to thymic selection.  相似文献   

11.
Autophagy plays an important role in maintaining intracellular homeostasis by promoting the transit of cytoplasmic material, such as proteins, organelles and pathogens, for degradation within acidic organelles. Yet, in immune cells, autophagy pathways serve an additional role in facilitating intracellular surveillance for pathogens and changes in self. Autophagy pathways can modulate key steps in the development of innate and adaptive immunity. In terms of adaptive immunity, autophagy regulates the development and survival of lymphocytes as well as the modulation of antigen processing and presentation. Specialized forms of autophagy may be induced by some viral pathogens, providing a novel route for major histocompatibility complex (MHC) class I antigen presentation and enhanced CD8+ T-cell responses. Autophagy induction in target cells also increases their potential to serve as immunogens for dendritic cell cross-presentation to CD8+ T cells. The requirement for autophagy in MHC class II presentation of cytoplasmic and nuclear antigens is well established, yet recent studies also point to a critical role for autophagy in modulating CD4+ T-cell responses to phagocytosed pathogens. Autophagy pathways can also modulate the selection and survival of some CD4+ T cells in the thymus. However, much still remains to be learned mechanistically with respect to how autophagy and autophagy-linked genes regulate pathogen recognition and antigen presentation, as well as the development and survival of immune cells.  相似文献   

12.
Autophagy delivers cytoplasmic constituents for lysosomal degradation. Recent studies have demonstrated that this pathway mediates resistance to pathogens and is targeted for immune evasion by viruses and bacteria. Lysosomal degradation products, including pathogenic determinants, are then surveyed by the adaptive immune system to elicit antigen-specific T cell responses. CD4+ T helper cells have been shown to recognize nuclear and cytosolic antigens via presentation by major histocompatibility complex (MHC) class II molecules after autophagy. Furthermore, some sources of natural MHC class II ligands display characteristics of autophagy substrates, and autophagosomes fuse with late endosomes, in which MHC class II loading is thought to occur. Although MHC class II antigen processing via autophagy has so far mainly been described for professional antigen-presenting cells like B cells, macrophages, and dendritic cells, it might be even more important for cells with less endocytic potential, like epithelial cells, when these express MHC class II at sites of inflammation. Therefore, autophagy might contribute to immune surveillance of intracellular pathogens via MHC class II presentation of intracellular pathogen-derived peptides.  相似文献   

13.
Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4+ T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4+ T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II–peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II–peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4+ T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II–peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide–MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.  相似文献   

14.
《Immunology》2017,150(1):16-24
The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8+ cytotoxic and CD4+ helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8+ cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4+ T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down‐regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8+ cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour‐specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti‐tumour immune response, considering the role of tumour‐infiltrating cell populations and highlighting possible future therapeutic targets.  相似文献   

15.
The consequence of recognition of antigen on antigen-presenting cells that are induced to express major histocompatibility complex (MHC) class II molecules following an inflammatory process is still not clear. In this study, we have investigated the outcome of antigen presentation by epithelial cells and we have used as a model thyroid follicular cells (TFC) that are known to express MHC class II molecules in autoimmune thyroid diseases and acquire the capacity to present autoantigens to T cells infiltrating the thyroid gland. The result show that MHC class II-expressing TFC were unable to stimulate a primary T cell alloresponse, using CD4+ T cells from three HLA-mismatched responders. Phenotypic analysis showed that TFC, after incubation with interferon-γ, do not express the co-stimulatory molecules B7-1 (CD80) and -2 (CD86). Addition of murine DAP.3 cells expressing human B7-1 (DAP.3-B7) to cultures containing peripheral blood CD4+ T cells and DR1-expressing TFC led to a proliferative response, suggesting that the failure of TFC to stimulate a primary alloresponse was due to a lack of co-stimulation. Similarly, HLA-DR-restricted, influenza-specific T cell clones dependent on B7 for co-stimulation did not respond to peptide presented by TFC; again the lack of response could be overcome by co-culture of TFC with DAP.3-B7. Furthermore, recognition of antigen on TFC inhibited interleukin-2 (IL-2) production in the B7-dependent T cells. In contrast, in T helper type 0 (Th0) T cells, IL-4 release was not affected by TFC presentation. In addition, antigen presentation by TFC favored IL-4 production relative to IL-2 production by B7-indpendent Th0 clones. These results suggest that antigen presentation by MHC class II+ TFC may induce tolerance in autoreactive Th1 cells but may simultaneously favors a Th2 response in uncommitted T cells, and thereby support autoantibody production.  相似文献   

16.
Summary: Assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum is a highly coordinated process that results in abundant class I/peptide complexes at the cell surface for recognition by CD8+ T cells and natural killer cells. During the assembly process, a number of chaperones and accessory molecules, such as transporter associated with antigen processing, tapasin, ER60, and calreticulin, assist newly synthesized class I molecules to facilitate loading of antigenic peptides and to optimize the repertoire of surface class I/peptide complexes. This review focuses on the relative importance of these accessory molecules for CD8+ T‐cell responses in vivo and discusses reasons that may help explain why some CD8+ T‐cell responses develop normally in mice deficient in components of class I assembly, despite impaired antigen presentation.  相似文献   

17.
Evidence is presented that thermal or oxidizing stress‐activated DC interact with CD4+ T cells to induce and maintain a TCR‐independent homeostatic memory circuit. Stress‐activated DC expressed endogenous intra‐cellular and cell surface HSP70. The NF‐κB signalling pathway was activated and led to the expression of membrane‐associated IL‐15 molecules. These interacted with the IL‐15 receptor complex on CD4+ T cells, thus activating the Jak3 and STAT5 phosphorylation signalling pathway to induce CD40 ligand expression, T‐cell proliferation and IFN‐γ production. CD40 ligand on CD4+ T cells in turn re‐activated CD40 molecules on DC, inducing DC maturation and IL‐15 expression thereby maintaining the feedback circuit. The proliferating CD4+ T cells were characterized as CD45RA? CD62L+ central memory cells, which underwent homeostatic proliferation. The circuit is independent of antigen and MHC‐class‐II‐TCR interaction as demonstrated by resistance to TCR inhibition by ZAP70 inhibitor or MHC‐class II antibodies. These findings suggest that stress can activate a DC‐CD4+ T‐cell interacting circuit, which may be responsible for maintaining a homeostatic antigen‐independent memory.  相似文献   

18.
19.
Watts C 《Nature immunology》2004,5(7):685-692
The endosomes and lysosomes of antigen-presenting cells host the processing and assembly reactions that result in the display of peptides on major histocompatibility complex (MHC) class II molecules and lipid-linked products on CD1 molecules. This environment is potentially hostile for T cell epitope and MHC class II survival, and the influence of regulators of protease activity and specialized chaperones that assist MHC class II assembly is crucial. At present, evidence indicates that individual proteases make both constructive and destructive contributions to antigen processing for MHC class II presentation to CD4 T cells. Some features of CD1 antigen capture within the endocytic pathway are also discussed.  相似文献   

20.
Cytotoxic T lymphocytes (CTL) recognize foreign antigens as short peptides presented by class I molecules of the major histocompatibility complex (MHC). T2 cells are profoundly defective in the presentation of endogenously synthesized antigens to CTL due to a deletion of MHC class II-encoded genes for transporters associated with antigen presentation (TAP1/TAP2). Surprisingly, we here demonstrate that T2 cells, after infection with Sendai virus, are readily killed by H-2Kb restricted CD8+ T cells. In contrast to classical class I-mediated antigen presentation, the presentation of Sendai virus antigen inT2Kb cells is brefeldin A (BFA) insensitive. The present findings may suggest the presence of an alternative pathway for MHC class I-mediated antigen presentation in T2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号