首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pharynx of C. elegans is a rhythmically active muscle that pumps bacteria into the gut of the nematode. This activity is maintained by action potentials, which qualitatively bear a resemblance to vertebrate cardiac action potentials. Here, the ionic basis of the resting membrane potential and pharyngeal action potential has been characterized using intracellular recording techniques. The resting membrane potential is largely determined by a K(+) permeability, and a ouabain-sensitive, electrogenic pump. As previously suggested, the action potential is at least partly dependent on voltage-gated Ca(2+) channels, as the amplitude was increased as extracellular Ca(2+) was increased, and decreased by L-type Ca(2+) channel blockers verapamil and nifedipine. Barium caused a marked prolongation of action potential duration, suggesting that a calcium-activated K(+) current may contribute to repolarization. Most notably, however, we found that action potentials were abolished in the absence of external Na(+). This may be due, at least in part, to a Na(+)-dependent pacemaker potential. In addition, the persistence of action potentials in nominally free Ca(2+), the inhibition by Na(+) channel blockers procaine and quinidine, and the increase in action potential frequency caused by veratridine, a toxin that alters activation of voltage-gated Na(+) channels, point to the involvement of a voltage-gated Na(+) current. Voltage-clamp analysis is required for detailed characterization of this current, and this is in progress. Nonetheless, these observations are quite surprising in view of the lack of any obvious candidate genes for voltage-gated Na(+) channels in the C. elegans genome. It would therefore be informative to re-evaluate the data from these homology searches, with the aim of identifying the gene(s) conferring this Na(+), quinidine, and veratridine sensitivity to the pharynx.  相似文献   

2.
Transmembrane receptors with tyrosine kinase activity (RTK) constitute a superfamily of proteins present in all metazoans that is associated with the control and regulation of cellular processes. They have been the focus of numerous studies and are a good subject for comparative analyses of multigene families in different species aimed at understanding metazoan evolution. The sequence of the genome of the nematode worm Caenorhabditis elegans is available. This offers a good opportunity to study the superfamily of nematode RTKs in its entirety and to compare it with its mammalian counterpart. We show that the C. elegans RTKs constitute various groups with different phylogenetic relationships with mammalian RTKs. A group of four RTKs show structural similarity with the three mammalian receptors for the vascular endothelial growth factors. Another group comprises RTKs with a short extracellular region, a feature not known in mammals; the genes encoding these RTKs are clustered on chromosome II with other gene families, including genes encoding chitinase-like proteins. Most of the C. elegans RTKs have no direct orthologous relationship with any mammalian RTK, providing an illustration of the importance of the separate evolution of the different phyla.  相似文献   

3.
4.
Members of the transient receptor potential (TRP) ion channel family mediate diverse sensory transduction processes in both vertebrates and invertebrates. In particular, members of the TRPA subfamily have distinct thermosensory roles in Drosophila, and mammalian TRPA1 is postulated to have a function in noxious cold sensation and mechanosensation. Here we show that mutations in trpa-1, the C. elegans ortholog of mouse Trpa1, confer specific defects in mechanosensory behaviors related to nose-touch responses and foraging. trpa-1 is expressed and functions in sensory neurons required for these mechanosensory behaviors, and contributes to neural responses of these cells to touch, particularly after repeated mechanical stimulation. Furthermore, mechanical pressure can activate C. elegans TRPA-1 heterologously expressed in mammalian cells. Collectively, these data demonstrate that trpa-1 encodes an ion channel that can be activated in response to mechanical pressure and is required for mechanosensory neuron function, suggesting a possible role in mechanosensory transduction or modulation.  相似文献   

5.
Epithelial and endothelial tyrosine kinase (Etk), also known as Bmx (bone marrow X kinase) plays an important role in apoptosis of epithelial cells. The goal of this study was to investigate whether Etk is involved in apoptosis of small cell lung cancer (SCLC) cells and correlated with the expression levels of apoptosis-associated proteins such as Bcl-2, Bcl-XL and p53. One hundred and seventy-one cases of lung cancer specimens including seventy-one SCLCs and one hundred NSCLCs were immunostained for Etk, Bcl-2, Bcl-XL and p53. Parental SCLC H446 cell line, and its subline (H446-Etk) that overexpresses Etk, were used to study the role of Etk in apoptosis induced by doxorubicin. It was found that high expression of Etk occurs in 74.6% of SCLC cases, but only in 40% of NSCLC cases, and there is marked difference in the expression levels of Bcl-2, Bcl-XL and p53 between Etk-positive and Etk-negative SCLC cases. Furthermore, the levels of Bcl-2 and Bcl-XL significantly increased in H446-Etk cells than that in H446 cells after doxorubicin treatment, and were positively associated with Etk expression. However, p53 did not correspond with Etk expression although its expression decreased greatly with apoptosis both in H446-Etk and H446 cells. After doxorubicin treatment, the cell viability was significantly higher in H446-Etk cells than in parental H446 cells. Downregulation of Etk by Etk siRNA sensitized H446 cells to doxorubicin. Our results indicate that upregulation of tyrosine kinase Etk may be a new mechanism involved in protection of SCLC cells from apoptosis. Bcl-2 and Bcl-XL but not p53 may contribute to doxorubicin-induced apoptosis through Etk pathway.  相似文献   

6.
The mitochondrial respiratory chain is composed of five protein complexes capable of generating cellular energy in the form of ATP. Defects in mitochondrial energy production can result in a wide variety of diseases with tissue-specific effects. We previously have isolated a mutation in the atp-2 gene, which encodes the active site or beta-subunit of complex V in Caenorhabditis elegans. This atp-2(ua2) mutation is lethal, resulting in developmental arrest at the third larval stage (L3). In this report, we use mosaic analysis to identify the tissues in which atp-2 gene activity is dispensable for development past the L3 stage. The loss of atp-2 in any tissue can provoke arrest at the L3 stage. However, animals with a loss of the atp-2 gene in the ABa lineage, which gives rise to neuronal, pharyngeal, and hypodermal cells, and/or the E lineage, which gives rise to the intestinal cells, can occasionally develop past L3. Loss of atp-2 gene function in the lineages that give rise to the body muscles is invariably associated with developmental arrest. This finding suggests that the body muscles may play a key role in regulating development. We conclude that atp-2 functions cell nonautonomously in this developmental process. Our findings suggest that atp-2 is involved in the production or the regulation of a global, developmental signal required for the L3-to-L4 transition.  相似文献   

7.
Almost half of breast Ductal Carcinoma in situ are likely to remain non threatening in situ lesions with no invasion to the surrounding stroma and no metastases. The majority of focal disruptions in myoepithelial (ME) cell layers indicative of invasion onset were found to be overlying epithelial cell clusters with no or substantially reduced estrogen receptor α (ERα) expression. Here we report the down-regulation of tyrosine kinase-2 (TYK2) and up-regulation of strumpellin expression, among other proteins in ERα(−) cells located at disrupted ME layers compared to adjacent ERα(+) cells overlying an intact myoepithelial layer. ERα(+) and ERα(−) cells were microdissected from the same in vivo human breast cancer tissues, proteins were extracted and separated utilizing Differential in-Gel Electrophoresis followed by trypsin digestion, MALDI-TOF analysis, and protein identification. Proteins expressed by ERα(−) cell clusters were found to express higher levels of strumpellin that binds to valosin-containing protein (VCP) to slow-down wound closure and promote growth; and lower levels of TYK2, a jak protein necessary for lineage specific differentiation. TYK2 levels were further analyzed by immunohistochemistry in a cohort composed of 70 patients with broad clinical characteristics. TYK2 levels were minimal in TxN1M0 breast cancers which is the stage where the initial regional lymph node metastasis is observed. Our data highlight the role of TYK2 downregulation in breast cancer cell de-differentitation and initiation of regional metastasis. In addition, the aggressiveness of the ERα(−) cell clusters compared to ERα(+) ones present in the same duct of the same patient was confirmed.  相似文献   

8.
9.
Until very recently it was not known whether the invertebrate Caenorhabditis elegans was capable of mounting a specific immune response to protect itself from pathogens. It has only just become clear that this simple nematode in fact possesses a complex innate immune system, involving multiple signalling pathways and an armoury of antimicrobial proteins and peptides. Genetic and microarray approaches are now revealing the molecular cross-talk that exists between the different signalling cascades.  相似文献   

10.
We have isolated the complete cDNA of a human SEL-1L gene, termed TSA305, that is abundantly expressed only in the pancreas. The cDNA contained an open reading frame of 2382 nucleotides, encoding a deduced protein of 794 amino acids whose predicted sequence showed 46% identity and 64% similarity with SEL-1 of Caenorhabditis elegans. SEL-1 is thought to be a negative regulator of the NOTCH, LIN-12, and GLP-1 receptors, which are required for differentiation and maturation of cells as well as cell–cell interactions during development in C. elegans. The degree of homology among these proteins suggests that the TSA305 gene product may be a member of the SEL-1 family and therefore involved in downregulation of mammalian Notch signaling. Direct sequencing revealed at least 20 coding exons in TSA305. We localized the gene to chromosome bands 14q24.3–q31 by radiation hybrid (RH) mapping and fluorescence in situ hybridization (FISH). The IDDM11 locus has been mapped in this region, and TSA305 may represent a candidate gene for predisposition in some families whose insulin-dependent diabetes is not linked to the HLA locus. Received: March 29, 1999 / Accepted: May 11, 1999  相似文献   

11.
In yeast, increasing the copy number of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase Sir2 extends lifespan, which can be inhibited by nicotinamide (Nam), the end-product of Sir2-mediated NAD-breakdown. Furthermore, the yeast pyrazinamidase/nicotinamidase PNC-1 can extend yeast lifespan by converting Nam. In Caenorhabditis elegans (C. elegans), increased dosage of the gene encoding SIR-2.1 also increases lifespan. Here, we report that knockdown of the C. elegans homologue of yeast PNC-1 as well as growing worms on Nam-containing medium significantly decreases adult lifespan. Accordingly, increased gene dosage of pnc-1 increases adult survival under conditions of oxidative stress. These data show for the first time the involvement of PNC-1/Nam in the survival of a multicellular organism and may also contribute to our understanding of lifespan regulation in mammals.  相似文献   

12.
The 20 neurons that innervate the Caenorhabditis elegans pharynx form a simple nervous system that develops and operates in near complete isolation from the rest of the worm body and, therefore, offers a manageable degree of complexity for developmental genetics studies. This review discusses the progress that has been made in determining the mechanisms by which 4 of the 20 pharyngeal neurons develop, and emphasizes surprising processes that add to the classic growth cone guidance model which is usually thought to explain how most axons establish their trajectories.  相似文献   

13.
Touch sensitivity in Caenorhabditis elegans   总被引:1,自引:1,他引:0  
The nematode Caenorhabditis elegans was the first organism for which touch insensitive mutants were obtained. The study of the genes defective in these mutants has led to the identification of components of a mechanosensory complex needed for specific cells to sense gentle touch to the body. Multiple approaches using genetics, cell biology, biochemistry, and electrophysiology have characterized a channel complex, containing two DEG/ENaC pore-forming subunits and several other proteins, that transduces the touch response. Other mechanical responses, sensed by other cells using a variety of other components, are less well understood in C. elegans. Many of these other senses may use TRP channels, although DEG/ENaC channels have also been implicated.  相似文献   

14.
Conserved semaphorin-plexin signaling systems govern various aspects of animal development, including axonal guidance in vertebrates and epidermal morphogenesis in Caenorhabditis elegans. Here we provide in vivo evidence that stimulation of mRNA translation via eukaryotic initiation factor 2alpha (eIF2alpha) is an essential downstream event of semaphorin signaling in C. elegans. In semaphorin/plexin mutants, a marked elevation in the phosphorylation of eIF2alpha is observed, which causes translation repression and is causally related to the morphological epidermal phenotype in the mutants. Conversely, removal of constraints on translation by genetically reducing the eIF2alpha phosphorylation largely bypasses requirement for the semaphorin signal in epidermal morphogenesis. We also identify an actin-depolymerizing factor/cofilin, whose expression in the mutants is predominantly repressed, as a major translational target of semaphorin signaling. Thus, our results reveal a physiological significance for translation of mRNAs for cytoskeletal regulators, linking environmental cues to cytoskeletal rearrangement during cellular morphogenesis in vivo.  相似文献   

15.
16.
BACKGROUND: Kelch-related proteins constitute an expanding family, members of which carry two conserved motifs named the BTB/POZ and the kelch repeat domains. The best-characterized member, Drosophila Kelch, constitutes the ring canals in the egg chamber in association with actin. However, physiological and biochemical functions of the members of this family remain largely uncharacterized. RESULTS: We identified the kel-1 gene encoding a Kelch-related protein in the nematode Caenorhabditis elegans. The deduced KEL-1 protein had 618 amino acid residues and was most similar to Drosophila Kelch. Loss of kel-1 function caused growth arrest at an early larval stage, most likely at the beginning of L2. The kel-1 deletion mutant appeared normal in morphology, movement and pumping action for the initial two to three days after hatching, but it failed to convey foods effectively to intestine and could hardly increase in body size. Analyses using immunostaining and reporter gene expression indicated that kel-1 was expressed almost exclusively in the g1 pharyngeal gland cells during late embryogenesis and at all developmental stages thereafter. CONCLUSIONS: C. elegans KEL-1 protein is essential for the larval development, probably performing a function required for feeding in the pharyngeal g1 gland cells, which are supposed to secrete materials aiding digestion.  相似文献   

17.
Curcumin-mediated lifespan extension in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Curcumin is the active ingredient in the herbal medicine and dietary spice, turmeric (Curcuma longa). It has a wide range of biological activities, including anti-inflammatory, antioxidant, chemopreventive, and chemotherapeutic activities. We examined the effects of curcumin on the lifespan and aging in Caenorhabditis elegans, and found that it responded to curcumin with an increased lifespan and reduced intracellular reactive oxygen species and lipofuscin during aging. We analyzed factors that might influence lifespan extension by curcumin. We showed that lifespan extension by curcumin in C. elegans is attributed to its antioxidative properties but not its antimicrobial properties. Moreover, we showed that lifespan extension had effects on body size and the pharyngeal pumping rate but not on reproduction. Finally, lifespan tests with selected stress- and lifespan-relevant mutant strains revealed that the lifespan-extending phenotype was absent from the osr-1, sek-1, mek-1, skn-1, unc-43, sir-2.1, and age-1 mutants, whereas curcumin treatment prolonged the lifespan of mev-1 and daf-16 mutants. Our study has unraveled a diversity of modes of action and signaling pathways to longevity and aging with curcumin exposure in vivo.  相似文献   

18.
High-throughput gene mapping in Caenorhabditis elegans   总被引:10,自引:0,他引:10  
Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.  相似文献   

19.
During induction of the Caenorhabditis elegans hermaphrodite vulva, a signal from the anchor cell activates the LET-23 epidermal growth factor receptor (EGFR)/LET-60 Ras/MPK-1 MAP kinase signaling pathway in the vulval precursor cells. We have characterized two mechanisms that limit the extent of vulval induction. First, we found that gap-1 may directly inhibit the LET-60 Ras signaling pathway. We identified the gap-1 gene in a genetic screen for inhibitors of vulval induction. gap-1 is predicted to encode a protein similar to GTPase-activating proteins that likely functions to inhibit the signaling activity of LET-60 Ras. A loss-of-function mutation in gap-1 suppresses the vulvaless phenotype of mutations in the let-60 ras signaling pathway, but a gap-1 single mutant does not exhibit excess vulval induction. Second, we found that let-23 EGFR prevents vulval induction in a cell-nonautonomous manner, in addition to its cell-autonomous role in activating the let-60 ras/mpk-1 signaling pathway. Using genetic mosaic analysis, we show that let-23 activity in the vulval precursor cell closest to the anchor cell (P6.p) prevents induction of vulval precursor cells further away from the anchor cell (P3.p, P4.p, and P8.p). This result suggests that LET-23 in proximal vulval precursor cells might bind and sequester the inductive signal LIN-3 EGF, thereby preventing diffusion of the inductive signal to distal vulval precursor cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号