首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble colony-stimulating factor-1 (sCSF-1) and membrane bound CSF-1 are synthesized by osteoblasts and stromal cells. However, the precise role of each form in osteoclastogenesis is unclear. In the op/op mouse, absence of osteoblast-derived CSF-1 leads to decreased osteoclasts and osteopetrosis. To determine whether sCSF-1 gene replacement can cure the osteopetrotic defect, we took advantage of the osteoblast specificity of the osteocalcin promoter to selectively express sCSF-1 in the bone of op/op mice. Transgenic mice harboring the human sCSF-1 cDNA under the control of the osteocalcin promoter were generated and cross-bred with heterozygous op/wt mice to establish op/op mutants expressing the transgene (op/opT). The op/op genotype and transgene expression were confirmed by PCR and Southern blot analysis, respectively. High levels of human sCSF-1 protein were selectively expressed in bone. At 2(1/2) wk, op/opT mice showed normal growth and tooth eruption. Femurs removed at 5 and 14 wk were analyzed by peripheral quantitative computed tomography and histomorphometry. The abnormal bone mineral density, cancellous bone volume, and growth plate width observed in op/op mice was completely reversed in op/opT mice by 5 wk, and this effect persisted at 14 wk, with measurements comparable with wt/wt mice at each time point. Correction of the skeletal abnormalities in the 5-wk-old op/opT mice correlated with a marked increase in the total osteoclast number, and their number per millimeter of bone surface compared with that of op/op mutants. Osteoclast number was maintained at 14 wk in op/opT mice and morphologically resembled wt/wt osteoclasts. These results indicate that sCSF-1 is sufficient to drive normal osteoclast development and that the osteocalcin promoter provides an efficient tool for delivery of exogenous genes to the bone. Moreover, targeting sCSF-1 to osteoblasts in the bone microenvironment may be a potentially useful therapeutic modality for treating bone disorders.  相似文献   

2.
Osteogenesis imperfecta (OI or brittle bone disease) is a disorder of connective tissues caused by mutations in the collagen genes. We previously showed that intrauterine transplantation of human blood fetal stem/stromal cells in OI mice (oim) resulted in a significant reduction of bone fracture. This work examines the cellular mechanisms and mechanical bone modifications underlying these therapeutic effects, particularly examining the direct effects of donor collagen expression on bone material properties. In this study, we found an 84% reduction in femoral fractures in transplanted oim mice. Fetal blood stem/stromal cells engrafted in bones, differentiated into mature osteoblasts, expressed osteocalcin, and produced COL1a2 protein, which is absent in oim mice. The presence of normal collagen decreased hydroxyproline content in bones, altered the apatite crystal structure, increased the bone matrix stiffness, and reduced bone brittleness. In conclusion, expression of normal collagen from mature osteoblast of donor origin significantly decreased bone brittleness by improving the mechanical integrity of the bone at the molecular, tissue, and whole bone levels.  相似文献   

3.
Congenital erythropoietic porphyria (CEP) is an inherited metabolic disorder characterized by an overproduction and accumulation of porphyrins in bone marrow. This autosomal recessive disease results from a deficiency of uroporphyrinogen III synthase (UROIIIS), the fourth enzyme of the haem biosynthetic pathway. It is phenotypically heterogeneous: patients with mild disease have cutaneous involvement, while more severely affected patients are transfusion dependent. The cloning of UROIIIS cDNA and genomic DNA has allowed the molecular characterization of the genetic defect in a number of families. To date, 22 different mutations have been characterized. Allogeneic bone marrow transplantation is the only curative treatment available for the severe, transfusion-dependent, cases. When bone marrow transplantation cannot be performed owing to the absence of a suitable donor, the autografting of genetically modified cells is an appealing alternative. The best approach to somatic gene therapy in this disease involves the use of recombinant retroviral vectors to transduce cells ex vivo, followed by autologous transplantation of the genetically modified cells. We investigated retroviral transfer in deficient human fibroblasts, immortalized lymphoblasts as well as bone marrow cells, and obtained a complete restoration of the enzymatic activity and full metabolic correction.Using K562 cells, an erythroleukaemic cell line, the expression of the transgene remained stable during 3 months and during erythroid differentiation of the cells. Finally, a 1.6- to 1.9-fold increase in enzyme activity compared to the endogenous level was found in normal CD34+ cells, a population of heterogeneous cells known to contain the progenitor/stem cells for long-term expression. The future availability of a mouse model of the disease will permit ex vivo gene therapy experiments on the entire animal.  相似文献   

4.
Toward gene therapy for disorders of globin synthesis   总被引:2,自引:0,他引:2  
Inherited disorders of hemoglobin remain desirable targets for genetically based therapies. That stem cell replacement reverses the phenotype of both thalassemia and sickle cell anemia has been well established through allogeneic bone marrow transplantation studies, yet significant toxicities and finite donor availability limit this approach to a minority of affected individuals. Genetically based strategies that have as their goal addition of a normal copy of the human beta-globin gene along with key regulatory sequences to autologous hematopoietic stem cells represent a viable alternative to allogeneic transplantation, but this approach has been impeded by formidable obstacles over the last decade. Large animal models have become the standard for the development of clinically relevant gene addition strategies, and significant progress in the techniques used to deliver potentially therapeutic genes has been achieved. The clinical application of such strategies may be close at hand, at least for disorders in which modest level, constitutive expression is sufficient to correct the phenotype. For the thalassemias and hemoglobinopathies, complex, regulated, lineage specific expression of the beta-globin gene at relatively high levels will be required. The discovery of the beta-globin locus control region renewed interest in the thalassemias and sickle cell anemia as targets for gene transfer, but difficulties in attaining high-titer vectors along with a tendency toward rearrangement when segments of the locus control region (LCR) were incorporated into retroviral vectors stalled further progress. Recent advances in vector construction have circumvented this problem and others limiting both gene transfer efficiency and regulation of transgene expression, offering new hope for clinical application.  相似文献   

5.
Austin TW  Salimi S  Veres G  Morel F  Ilves H  Scollay R  Plavec I 《Blood》2000,95(3):829-836
Using a mouse bone marrow transplantation model, the authors evaluated a Moloney murine leukemia virus (MMLV)-based vector encoding 2 anti-human immunodeficiency virus genes for long-term expression in blood cells. The vector also encoded the human nerve growth factor receptor (NGFR) to serve as a cell-surface marker for in vivo tracking of transduced cells. NGFR(+) cells were detected in blood leukocytes of all mice (n=16; range 16%-45%) 4 to 5 weeks after transplantation and were repeatedly detected in blood erythrocytes, platelets, monocytes, granulocytes, T cells, and B cells of all mice for up to 8 months. Transgene expression in individual mice was not blocked in the various cell lineages of the peripheral blood and spleen, in several stages of T-cell maturation in the thymus, or in the Lin(-/lo)Sca-1(+) and c-kit(+)Sca-1(+) subsets of bone marrow cells highly enriched for long-term multilineage-reconstituting activity. Serial transplantation of purified NGFR(+)c-kit(+)Sca-1(+) bone marrow cells resulted in the reconstitution of multilineage hematopoiesis by donor type NGFR(+) cells in all engrafted mice. The authors concluded that MMLV-based vectors were capable of efficient and sustained transgene expression in multiple lineages of peripheral blood cells and hematopoietic organs and in hematopoietic stem cell (HSC) populations. Differentiation of engrafting HSC to peripheral blood cells is not necessarily associated with dramatic suppression of retroviral gene expression. In light of earlier studies showing that vector elements other than the long-terminal repeat enhancer, promoter, and primer binding site can have an impact on long-term transgene expression, these findings accentuate the importance of empirically testing retroviral vectors to determine lasting in vivo expression.  相似文献   

6.
7.
Drobyski WR  Morse HC  Burns WH  Casper JT  Sandford G 《Blood》2001,97(8):2506-2513
Donor T cells play a pivotal role in facilitating alloengraftment but also cause graft-versus-host disease (GVHD). Ex vivo T-cell depletion (TCD) of donor marrow is the most effective strategy for reducing GVHD but can compromise engraftment. This study examined an approach whereby donor T cells are selectively eliminated in vivo after transplantation using transgenic mice in which a thymidine kinase (TK) suicide gene is targeted to the T cell using a CD3 promoter/enhancer construct. Lethally irradiated B10.BR mice transplanted with major histocompatibility complex (MHC)-incompatible TCD C57BL/6 (B6) bone marrow (BM) plus TK(+) T cells were protected from GVHD after treatment with ganciclovir (GCV) in a schedule-dependent fashion. To examine the effect of GCV treatment on alloengraftment, sublethally irradiated AKR mice underwent transplantation with TCD B6 BM plus limiting numbers (5 x 10(5)) of B6 TK(+) T cells. Animals treated with GCV had comparable donor engraftment but significantly reduced GVHD when compared with untreated mice. These mice also had a significantly increased number of donor splenic T cells when assessed 4 weeks after bone marrow transplantation. Thus, the administration of GCV did not render recipients T-cell deficient, but rather enhanced lymphocyte recovery. Adoptive transfer of spleen cells from GCV-treated chimeric mice into secondary AKR recipients failed to cause GVHD indicating that donor T cells were tolerant of recipient alloantigens. These studies demonstrate that administration of TK gene-modified donor T cells can be used as an approach to mitigate GVHD without compromising alloengraftment.  相似文献   

8.
9.
10.
Marodon G  Mouly E  Blair EJ  Frisen C  Lemoine FM  Klatzmann D 《Blood》2003,101(9):3416-3423
Achieving cell-specific expression of a therapeutic transgene by gene transfer vectors represents a major goal for gene therapy. To achieve specific expression of a transgene in CD4(+) cells, we have generated lentiviral vectors expressing the enhanced green fluorescent protein (eGFP) reporter gene under the control of regulatory sequences derived from the CD4 gene--a minimal promoter and the proximal enhancer, with or without the silencer. Both lentiviral vectors could be produced at high titers (more than 10(7) infectious particles per milliliter) and were used to transduce healthy murine hematopoietic stem cells (HSCs). On reconstitution of RAG-2-deficient mice with transduced HSCs, the specific vectors were efficiently expressed in T cells, minimally expressed in B cells, and not expressed in immature cells of the bone marrow. Addition of the CD4 gene-silencing element in the vector regulatory sequences led to further restriction of eGFP expression into CD4(+) T cells in reconstituted mice and in ex vivo-transduced human T cells. Non-T CD4(+) dendritic and macrophage cells derived from human CD34(+) cells in vitro expressed the transgene of the specific vectors, albeit at lower levels than CD4(+) T cells. Altogether, we have generated lentiviral vectors that allow specific targeting of transgene expression to CD4(+) cells after differentiation of transduced mice HSCs and human mature T cells. Ultimately, these vectors may prove useful for in situ injections for in vivo gene therapy of HIV infection or genetic immunodeficiencies.  相似文献   

11.
When the human β-globin gene is transferred into the bone marrow cells of live mice, its expression is very low. To investigate the reason for this, we transferred the bone marrow of transgenic mice containing and expressing the human β-globin into irradiated recipients. We demonstrate that long-term high level expression of the human β-globin gene can be maintained in the marrow and blood of irradiated recipients following transplantation. Although expression decreased over time in most animals because of host marrow reconstitution, the ratio of human β-globin transgene expression to endogenous mouse β-globin gene expression in donor-derived erythroid cells remained constant over time. We conclude that there is no inherent limitation to efficient expression of an exogenous human β-globin gene in mouse bone marrow cells following marrow transplantation. © 1993 Wiley-Liss, Inc.  相似文献   

12.
D W Clapp  L L Dumenco  M Hatzoglou  S L Gerson 《Blood》1991,78(4):1132-1139
Retroviral-mediated gene transfer into hematopoietic precursors often results in only short-term gene transduction in vivo. Loss of the transduced genetic material over time may be caused by the limited ability of retroviral infection to transduce genes into early, pluripotent hematopoietic stem cells. Because fetal liver contains actively proliferating multipotential stem cells that should be more susceptible to retroviral-mediated gene transfer than quiescent cells derived from adult bone marrow, these cells may be an ideal target for gene transduction. Furthermore, physiologic expansion of these cells during development obviates the need for marrow ablation during gene therapy in vivo. We performed in utero gene transfer by injecting high titer replication-defective retrovirus in vivo into the livers of 11, 14, 16, and 18 day gestation rats. After birth, the rats were analyzed for the presence of proviral integration and gene expression. The efficiency of gene transfer into bone marrow cells was greatest in rats infected at day 14 to 16 of gestation. In rats killed at 1 to 26 weeks of age, gene transfer was detected by Southern analysis in 48% and by polymerase chain reaction in 86% of bone marrow samples. The provirus was also detected in white blood cells, the granulocyte-macrophage colony-forming unit, thymus, spleen, liver, and lung. The presence of the transgene in bone marrow and other hematopoietic tissues at 26 weeks of age suggests that early hematopoietic precursors present in the fetal liver are susceptible targets for gene transfer and that these cells become resident in the bone marrow of the adult animal. This model is a new technique for gene transduction into proliferating hematopoietic cells in vivo that avoids bone marrow transplantation and has potential application in the correction of genetic defects in utero.  相似文献   

13.
The human CD34 gene is expressed on early progenitor and stem cells in the bone marrow. Here we report the isolation of the human CD34 locus from a human P1 artificial chromosome (PAC) library and the characterization and evaluation of this genomic fragment for expression of reporter genes in stable cell lines and transgenic mice. We show that a 160-kb fragment spanning 110 kb of the 5' flanking region and 26 kb of the 3' flanking region of the CD34 gene directs expression of the human CD34 gene in the bone marrow of transgenic mice. The expression of human CD34 transgenic RNA in tissues was found to be similar to that of the endogenous murine CD34 gene. Colony-forming cell assays showed that bone marrow cells staining positive for human CD34 consist of early progenitor cells in which expression of CD34 decreased with cell maturation. In order to test the construct for its ability to express heterologous genes in vivo, we used homologous recombination in bacteria to insert the tetracycline-responsive transactivator protein tTA. Analysis of transgenic human CD34-tTA mice by cross breeding with a strain carrying Cre recombinase under control of a tetracycline-responsive element demonstrated induction of Cre expression in mice in a pattern consistent with the expression of the human CD34 transgene.  相似文献   

14.
OBJECTIVE: Previous studies have shown that the HS21/45 promoter of the vav protooncogene drives a predominant expression of exogenous transgenes in mouse hematopoietic cells, including clonogenic bone marrow (BM) progenitors. We investigated the activity of this promoter in the hematopoietic stem cell compartment of adult mice. MATERIALS AND METHODS: Inbred Ly5.1 transgenic mice expressing a nonfunctional human CD4 marker gene (hCD4) under the control of the HS21/45 promoter were generated. BM cells from these animals were sorted based on the intensity of hCD4 expression. Fractions characterized by high, intermediate, or low/negative expression of the transgene were then assessed for their competitive repopulation ability (CRA), using unfractionated BM cells from Ly5.2 mice as a reference competitor population. RESULTS: Data showed that BM cells having a low/negative or intermediate expression of hCD4 had a very poor hematopoietic CRA. In contrast, BM cells with high hCD4 expression were characterized by a high CRA. These observations were confirmed in the short- and long-term posttransplantation of primary and secondary recipients when analyzing the lymphoid and myeloid cells of recipient mice. CONCLUSIONS: Our results demonstrate for the first time that the regulatory HS21/45 sequence of the vav gene constitutes an efficient promoter for driving transgene expression in multipotent hematopoietic stem cells residing in the BM of adult mice. Thus, this promoter is proposed for the development of transgenic mice and gene therapy vectors that require restricted expression of exogenous transgenes in cells of the hematopoietic system, including primitive hematopoietic stem cells.  相似文献   

15.
OBJECTIVES: We tested the hypothesis that gene therapy using apolipoprotein A-I Milano (apoA-IMilano) is more effective than that using wild-type apolipoprotein A-I (apoA-I) in reducing atherosclerosis. BACKGROUND: Apolipoprotein A-I Milano is a naturally occurring mutant with established antiatherogenic activity; however, its relative antiatherogenic efficacy compared with that of wild-type apoA-I remains unclear. METHODS: We performed bone marrow transplantation in female double-knockout mice lacking both the apoE and apoA-I genes using male donor mice-derived bone marrow that had been transduced with a retroviral vector alone or retroviral vector expressing wild-type apoA-I or apoA-IMilano gene under the control of macrophage-specific scavenger receptor A promoter. Mice were fed a high-cholesterol diet and killed 24 weeks after transplantation, at which time the extent of aortic atherosclerosis was determined. RESULTS: Compared with vector control (n = 12), apoA-IMilano gene therapy (n = 15) reduced aortic atherosclerosis by 65% (p < 0.001) and plaque macrophage immunoreactivity by 58% (p < 0.0001), whereas wild-type apoA-I (n = 11) reduced atherosclerosis by 25% (p = 0.1) and plaque macrophage immunoreactivity by 23% (p < 0.05). The apoA-IMilano gene therapy was significantly more effective in reducing atherosclerosis (p < 0.05) and macrophage immunoreactivity (p < 0.001) compared with wild-type apoA-I. The circulating levels of cholesterol, lipoprotein profile, and apoA-IMilano or wild-type apoA-I were comparable among the groups. Apolipoprotein A-I Milano was more effective than wild-type apoA-I in promoting macrophage cholesterol efflux. CONCLUSIONS: Macrophage-specific expression of the apoA-IMilano gene is more effective than wild-type apoA-I in reducing atherosclerosis and plaque inflammation despite comparable circulating levels of the transgene and lipid profile.  相似文献   

16.
17.
The 5' region of the human lysozyme gene from -3500 to +25 was fused to a chloramphenicol acetyltransferase (CAT) reporter gene and three transgenic founder mice were obtained. All three transgenic lines showed the same pattern of CAT enzyme expression in adult mouse tissues that was consistent with the targeting of elicited, activated macrophages in tissues and developing and elicited granulocytes. In normal mice high CAT enzyme activity was found in the spleen, lung, and thymus, tissues rich in phagocytically active cells, but not in many other tissues, such as the gut and muscle, which contain resident macrophages. Cultured resident peritoneal macrophages and cells elicited 18 hr (granulocytes) and 4 days (macrophages) after injection of sterile thioglycollate broth expressed CAT activity. Bacillus Calmette-Guérin infection of transgenic mice resulted in CAT enzyme expression in the liver, which contained macrophage-rich granulomas, whereas the liver of uninfected mice did not have any detectable CAT enzyme activity. Although the Paneth cells of the small intestine in both human and mouse produce lysozyme, the CAT gene, under the control of the human lysozyme promoter, was not expressed in the mouse small intestine. These results indicate that the human lysozyme promoter region may be used to direct expression of genes to activated mouse myeloid cells.  相似文献   

18.
Whether the negative impact of excess glucocorticoids on the skeleton is due to direct effects on bone cells, indirect effects on extraskeletal tissues, or both is unknown. To determine the contribution of direct effects of glucocorticoids on osteoblastic/osteocytic cells in vivo, we blocked glucocorticoid action on these cells via transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2, an enzyme that inactivates glucocorticoids. Osteoblast/osteocyte-specific expression was achieved by insertion of the 11beta-hydroxysteroid dehydrogenase type 2 cDNA downstream from the osteoblast-specific osteocalcin promoter. The transgene did not affect normal bone development or turnover as demonstrated by identical bone density, strength, and histomorphometry in adult transgenic and wild-type animals. Administration of excess glucocorticoids induced equivalent bone loss in wild-type and transgenic mice. As expected, cancellous osteoclasts were unaffected by the transgene. However, the increase in osteoblast apoptosis that occurred in wild-type mice was prevented in transgenic mice. Consistent with this, osteoblasts, osteoid area, and bone formation rate were significantly higher in glucocorticoid-treated transgenic mice compared with glucocorticoid-treated wild-type mice. Glucocorticoid-induced osteocyte apoptosis was also prevented in transgenic mice. Strikingly, the loss of vertebral compression strength observed in glucocorticoid-treated wild-type mice was prevented in the transgenic mice, despite equivalent bone loss. These results demonstrate for the first time that excess glucocorticoids directly affect bone forming cells in vivo. Furthermore, our results suggest that glucocorticoid-induced loss of bone strength results in part from increased death of osteocytes, independent of bone loss.  相似文献   

19.
20.
骨髓基质干细胞是一种由骨髓中分离获得的具有多种分化潜能的间质干细胞。在体外培养条件下,它可以分化为成骨细胞、软骨细胞、脂肪细胞、甚至于成肌细胞。因为骨髓基质干细胞具有易于获取、分高方便和良好的分化特性等特点,在细胞移植和基因治疗方面具有非常巨大的应用前景。对于缺血性心脏病而言,骨髓基质干细胞是非常好的细胞移植供体,对于改善心功能帮助巨大。本文献骨髓基质干细胞的生物学特性和在缺血性心脏病治疗中的应用前景进行简要综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号