首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The fragile X syndrome, the most common cause of inherited mental retardation, is characterized by unique genetic mechanisms, which include amplification of a CGG repeat and abnormal DNA methylation. We have proposed that 2 main types of mutations exist. Premutations do not cause mental retardation, and are characterized by an elongation of 70 to 500 bp, with little or no somatic heterogeneity and without abnormal methylation. Full mutations are associated with high risk of mental retardation, and consist of an amplification of 600 bp or more, with often extensive somatic heterogeneity, and with abnormal DNA methylation. To analyze whether the latter pattern is already established during fetal life, we have studied chorionic villi from 10 fetuses with a full mutation. In some cases we have compared them to corresponding fetal tissues. Our results indicate that somatic heterogeneity of the full mutation is established during (and possibly limited to) the very early stages of embryogenesis. This is supported by the extraordinary concordance in mutation patterns found in 2 sets of monozygotic twins (9 and 30 years old). While the methylation pattern specific of the inactive X chromosome appears rarely present on chorionic villi of normal females, the abnormal methylation characteristic of the full mutation was present in 8 of 9 male or female chorionic villi analyzed. This suggests that the methylation mechanisms responsible for establishing the inactive X chromosome pattern and the full mutation pattern are, at least in part, distinct. Our results validate the analysis of chorionic villi for direct prenatal diagnosis of the fragile X syndrome.  相似文献   

2.
Fragile X syndrome, associated with the fragile site at Xq27.3 (FRAXA), is the most common form of familial mental retardation. The fragile X mutation has recently been characterized as a heritable unstable DNA sequence, p(CCG)n/p(CGG)n, in the FRAXA locus. In the present study, a correlation between fragile X-genotypes in the FRAXA locus and hypermethylation of an adjacent CpG island was examined in four Japanese families with fragile X syndrome. We show here that the heritable unstable DNA sequences in the fragile X chromosome usually increase in size when transmitted by female carriers, and that the degree of methylation in the CpG island correlated with the increased sizes of the unstable DNA sequences. When a hypermethylated full mutation was transmitted by a male to his daughters, both the size of the unstable DNA sequence and the degree of the methylation reduced to the premutation range. Our observations suggest that female meiosis has a greater potential for amplifying unstable DNA sequences and that amplified DNA sequences can be transmitted through germ cells, while male germ cells seem not to be able to tolerate highly amplified unstable DNA sequences.  相似文献   

3.
4.
The fragile X syndrome phenotype of mental retardation is almost always caused by abnormal CGG trinucleotide amplification within the FMR1 gene. Occasionally fragile X syndrome results from point mutations or deletions within or around the FMR1 locus. We have identified a mentally retarded African American male with typical fragile X phenotype and a 300–400 base pair intragenic deletion near the CGG repeat segment, present in his peripheral blood lymphocytes with no apparent mosaicism. His mother, who is not retarded, has a full FMR1 CGG expansion mutation with 700–900 repeats. A review of 23 published cases with FMR1 gene deletions shows full FMR1 mutation in the mother of only 1 other propositus, a male with FMR1 full mutation/premutation/deletion mosaicism of his cultured skin fibroblasts and peripheral blood lymphocytes. The various deletions within FMR1 and their clinical significance are reviewed. Am. J. Med. Genet. 72:430–434, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The fragile X syndrome is characterised by mental retardation, behavioural features, and physical features, such as a long face with large protruding ears and macro-orchidism. In 1991, after identification of the fragile X mental retardation (FMR1) gene, the cytogenetic marker (a fragile site at Xq27.3) became replaced by molecular diagnosis. The fragile X syndrome was one of the first examples of a "novel" class of disorders caused by a trinucleotide repeat expansion. In the normal population, the CGG repeat varies from six to 54 units. Affected subjects have expanded CGG repeats (>200) in the first exon of the FMR1 gene (the full mutation). Phenotypically normal carriers of the fragile X syndrome have a repeat in the 43 to 200 range (the premutation). The cloning of the FMR1 gene led to the characterisation of its protein product FMRP, encouraged further clinical studies, and opened up the possibility of more accurate family studies and fragile X screening programmes.  相似文献   

6.
The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs (full mutation: FM) generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The absence of FMR1 protein, FMRP, seen in FM is the cause of the mental retardation in patients with FXS. The premutation (PM) is defined as 55-200 CGGs. Female PM carriers are at risk of developing primary ovarian insufficiency. Elderly PM carriers might develop a progressive neurodegenerative disorder called fragile X-associated tremor/ataxia syndrome (FXTAS). Although arising from the mutations in the same gene, distinct mechanisms lead to FXS (absence of FMRP), FXTAS (toxic RNA gain-of-function) and FXPOI. The pathogenic mechanisms thought to underlie these disorders are discussed. This review gives insight on the implications of all possible repeat length categories seen in fragile X families.  相似文献   

7.
We report on further cases of high functioning fragile X males showing decreased expression of FMR1 protein, absence of detectable methylation at the EagI site in the FMR1 gene promoter, and highly unusual patterns of fragile X mutations defined as smear of expansions extending from premutation to full mutation range. Very diffuse and therefore not easily detectable patterns of full mutations were also observed on prenatal testing using DNA from chorionic villi sampled at a time of development when full mutations were still unmethylated in this particular tissue. In the search for possible determinants of such unusual patterns, repeat expansions in the premutation and in the lower full mutation range were identified on genomic PstI blots previously prepared for fragile X DNA testing. Cases with 130 or more triplets, and a number of shorter repeats, were reinvestigated on EcoRI plus EagI digests. Among the 119 expansions, there were 22 in our sample showing either blurred bands or smears on PstI blots. This particular characteristic was strongly associated with the coincidence of a repeat size of more than 130 triplets and absence of EagI site methylation. Our data set also includes cases of mosaic patterns consisting of smears of unmethylated expansions to more than 130 CGGs and of clear bands of methylated expansions. We therefore suggest that in fragile X syndrome unusual smeared patterns of mutations result from somatic instability of larger repeats under circumstantial absence of repeat methylation.  相似文献   

8.
The purposes of this study were to present DNA analysis findings of our case series of fragile X syndrome (FXS) based on methylation-specific polymerase chain reaction (MS-PCR), PCR, and Southern blotting alongside developmental characteristics including psychological profiles and to review the literature on FXS in Korea. The reports of 65 children (male:female, 52:13; age, 6.12+/-4.00 yrs) referred for the diagnosis of FXS over a 26-months period were retrospectively reviewed for the identification of full mutation or premutation of fragile X mental retardation 1 (FMR1). Among the 65 children, there were 4 boys with full mutation, and one boy showed premutation of FMR1, yielding a 6.15% positive rate of FXS. All 4 children with full mutation showed significant developmental delay, cognitive dysfunction, and varying degrees of autistic behaviors. The boys with premutation showed also moderate mental retardation, severe drooling, and behavioral problems as severe as the boys with full mutation. Thirteen articles on FXS in Korea have been published since 1993, and they were reviewed. The positive rate of FXS was in the range of 0.77-8.51%, depending on the study groups and the method of diagnosis. Finally, the population-based prevalence study on FXS in Korea is required in the near future.  相似文献   

9.
Early menopause in the fragile X carriers has been well documented in several reports. All surveys demonstrated that 13-25% of fragile X carriers experienced premature ovarian failure (POF), defined as menopause before the age of 40 years. In 1995 we started screening two groups of subjects as a part of a Fragile X Research Program: 1) women previously diagnosed as fragile X carriers from the register of our center and 2) women with POF and without a family history of fragile X or other forms of mental retardation. In this study we report the preliminary data collected from 75 fragile X families; in 30 of them, POF was present in one or several subjects, all of whom had a fragile X premutation. None of the women with a full mutation experienced POF in our series of patients. We also identified 89 families without a family history of fragile X or mental retardation, and there were 108 subjects who experienced POF, of which 6.5% had a fragile X premutation. This is 70-fold higher than the background prevalence of fragile X premutation in the Italian population and suggests an association with POF. These data confirm the results of other surveys.  相似文献   

10.
Fragile X syndrome, one of the most common human genetic diseases, is characterised by a unique genetic mechanism which involves dynamic mutation because of a heritable unstable DNA sequence and abnormal DNA methylation. Direct detection of the dynamic mutation and its methylation status at the DNA level would facilitate reliable tests for prenatal and postnatal diagnosis of the disease and for carrier detection. However, it has been suggested that DNA methylation can not be used as the basis for prenatal diagnosis as the CpG island is not always methylated in chorionic villus DNA. We report here a male fetus exhibiting both extensive somatic heterogeneity and abnormal hypermethylation of the full fragile X mutation in chorionic villus DNA as well as in fetal tissue DNA. Our results indicate that both somatic heterogeneity and hypermethylation of the full fragile X mutation are events that are clearly detectable in the 11th to 12th week of pregnancy.  相似文献   

11.
Different mutations occurring in the unstable CGG repeat in 5'' untranslated region of FMR1 gene are responsible for three fragile X-associated disorders. An expansion of over ∼200 CGG repeats when associated with abnormal methylation and inactivation of the promoter is the mutation termed ‘full mutation'' and is responsible for fragile X syndrome (FXS), a neurodevelopmental disorder described as the most common cause of inherited intellectual impairment. The term ‘abnormal methylation'' is used here to distinguish the DNA methylation induced by the expanded repeat from the ‘normal methylation'' occurring on the inactive X chromosomes in females with normal, premutation, and full mutation alleles. All male and roughly half of the female full mutation carriers have FXS. Another anomaly termed ‘premutation'' is characterized by the presence of 55 to ∼200 CGGs without abnormal methylation, and is the cause of two other diseases with incomplete penetrance. One is fragile X-associated primary ovarian insufficiency (FXPOI), which is characterized by a large spectrum of ovarian dysfunction phenotypes and possible early menopause as the end stage. The other is fragile X-associated tremor/ataxia syndrome (FXTAS), which is a late onset neurodegenerative disorder affecting males and females. Because of the particular pattern and transmission of the CGG repeat, appropriate molecular testing and reporting is very important for the optimal genetic counselling in the three fragile X-associated disorders. Here, we describe best practice guidelines for genetic analysis and reporting in FXS, FXPOI, and FXTAS, including carrier and prenatal testing.  相似文献   

12.
目的对脆性X智力低下蛋白(fragile X mental retardation protein,FMRP)免疫细胞化学诊断方法并进行临床流行病学评价;利用ROC曲线确定适合本地筛查脆性X综合征的外周血淋巴细胞FMRP免疫组化法的诊断临界点。方法对临床拟诊为不明原因智力低下的的41例不明原因的智力低下患儿,同时进行免疫细胞化学方法进行外周血淋巴细胞FMRP表达检测和7-deza—dGTP PCR法两种方法检查,以目前较为公认的7-deza—dGTP PCR法为诊断金标准,对外周血淋巴细胞FMRP细胞免疫组化法(SP法)进行实验评价,计算其灵敏度、特异度、阳性似然比、阴性似然比等统计学指标。采用ROC曲线确定适合本地筛查脆性X综合征的外周血淋巴细胞FMRP表达率的诊断临界点。结果41例不明原因智力低下患儿中染色体核型分析均正常,其中染色体脆性位点检查异常的1例,约为2.4%。7-deza—dGTP PCR法诊断FXS患者11例,约占26.2%,其中男9例,女2例;ROC计算得出最佳的外周血淋巴细胞FMRP表达率的诊断临界点为46%,灵敏度为90.9%,特异度为93.5%。结论外周血淋巴细胞FMRP免疫细胞化学检测是一种可靠的FXS诊断和筛查方法,具有快速、简便、廉价、相对无创伤性等优点,可进行大样本筛查及标本邮寄快递检测,适宜在我国基层开展早期FXS患者诊断和筛查。  相似文献   

13.
Studies of the FMR1 mutation in multiple tissues are important to further our understanding of CGG repeat expansion in development and of the frequency and possible clinical significance of inter-tissue heterogeneity in fragile X syndrome. With some exceptions, most cases reported have shown strong similarity of the mutation size and methylation status between tissues. However, there have been only a few studies of multiple tissues including regions of the brain. We report on two postmortem studies of multiple tissues, one of a male with a full mutation (fully methylated) and one of a male carrier of a premutation. The male with the full mutation (TH) had a typical presentation of fragile X syndrome, including mild mental retardation. He had a methylated full mutation of two predominant sizes in all 12 tissues analyzed, including three regions of the brain. The male carrier of a premutation (GC) was clinically unaffected, and the mutation was the same size in all 14 tissues examined including seven regions of the brain. Therefore, both cases demonstrated lack of inter-tissue heterogeneity, suggesting strong somatic stability after the period of expansion to the observed mutation size(s). Also, both cases showed consistency between clinical phenotype and mutation characteristics in the brain.  相似文献   

14.
目的探讨甲基化特异性三重PCR检测FMR1基因不同突变类型的价值。方法用甲基化特异性三重PCR方法检测了99例病人的FMR1基因,并用半巢式PCR和Southern印迹杂交方法进行比较。结果用甲基化特异性三重PCR检测出70例男性正常基因型、27例女性正常基因型,1例男性全突变基因型,1例女性前突变基因型,与半巢式PCR和Southern印迹杂交方法的检测结果相符。结论甲基化特异性三重PCR能准确检测FMR1突变的不同类型,适用于对脆性X综合征的临床筛查和诊断。  相似文献   

15.
Chromosomes carrying the mutation causing the fragile X [fra(X)] syndrome have been shown to have an unstable DNA sequence close to or within the fragile site. The length variation is located within a DNA fragment containing a CGG trinucleotide repeat which is unstable in both mitosis and meiosis. We have used the probe StB12.3 from the region to analyze the mutations and the methylation patterns in 21 families segregating for the fra(X) syndrome. Among 40 fra(X) males all showed an abnormal pattern. The normal 2.8 kb band was absent in 36 individuals and replaced by a heterogeneous smear of larger size. The remaining four were shown to be "mosaics" with the presence of both mutated, unmethylated and mutated, methylated fragments. We found four normal transmitting males, one which was a great-grandson of another normal transmitting male indicating that the pre-mutation can remain stable through two meioses in the female. In nine fra(X) positive females the abnormal pattern consisted of a smear, usually seen in affected males, in addition to the normal bands. Five of these females were mentally normal. Of clinical importance is the prediction of mental impairment in females. We suggest that this is not made by the detection of the full mutation alone, but rather by the degree of methylation of the normal X chromosome. Our results suggest that difference of clinical expression in monozygotic twins may be correlated with difference in methylation pattern. Six out of 33 fra(X) negative females at risk were diagnosed as carriers. Our observations indicate that molecular heterogeneity is responsible for variable expression of the fra(X) syndrome in both males and females.  相似文献   

16.
Eleven complete Spanish pedigrees with fragile X syndrome were analysed by Southern blotting with the DNA probe StB12.3 previously isolated and described by Oberlé et al. [1991]. This probe allowed the direct detection of affected males and carrier females and was able to distinguish between normal males and normal transmitting males (NTMs). One hundred and twenty three individuals were analyzed, 115 from the pedigrees and 8 from the general population. Five mosaic cases were found (4 males and one female) showing both the premutation and the full mutation. One half of the females with the full mutation were mentally retarded but no female with mental retardation carried the premutated pattern, suggesting that the absence of the full mutation in females is a very good criterion for pre-or postnatal diagnosis of normal mental status.  相似文献   

17.
PURPOSE: To develop a high-throughput, automated, accurate method suitable for population-based carrier detection of fragile X syndrome. METHODS: We developed a new method called capillary Southern analysis that allows automated high-throughput screening for expanded fragile X mental retardation 1 (FMR1) alleles. Initially samples are analyzed by a multiplex polymerase chain reaction that contains an internal control to establish gender. All females heterozygous for two normal alleles are reported as normal without further analysis. All females homozygous at the FMR1 locus (24% of all analysis) are then analyzed by capillary Southern analysis. Theoretically this method can detect expansion as high as 2000 CGG repeats, although in our series the largest nonmosaic FMR1 present was 950 CGG repeats. After assay development, we performed capillary Southern analysis on 995 female and 557 male samples submitted for fragile X syndrome testing by polymerase chain reaction and Southern blot. RESULTS: The polymerase chain reaction/capillary Southern analysis technique identified 100% of six female premutation carriers, seven full mutation carrier females, one premutation male, and five affected males. There was only one discrepancy between analysis by polymerase chain reaction/Southern blot and analysis by polymerase chain reaction/capillary Southern analysis. A single female sample appeared to be heterozygous for a premutation allele by polymerase chain reaction/capillary Southern analysis but was negative by Southern blot. It is possible this patient is a mosaic for the premutation allele, but because samples were deidentified, we were unable to determine whether this was a true false positive. CONCLUSION: We have developed an automated, high-throughput technique capable of detecting carriers of fragile X syndrome with 100% sensitivity and at least 99.5% specificity. This should allow population-based carrier detection for the most commonly inherited form of mental retardation.  相似文献   

18.
We have studied the patterns of mutation and X inactivation in female carriers of a fragile X mutation, to try to correlate them with various phenotypic features. We used a simple assay, which shows simultaneously the size of the mutation, its methylation status, and DNA fragments that represent the normal active and inactive X chromosomes. We have observed an age dependent process, whereby the 'full' fragile X mutation is found preferentially on the inactive X in leucocytes in adult females, but not in younger ones. This phenomenon was not observed in female carriers of a 'premutation', who have little phenotypic expression. Preliminary data suggest that young females who show preferential presence of a full mutation on the active X in leucocytes may be at increased risk for mental retardation. We have also obtained preliminary evidence for an age dependent decrease in the somatic heterogeneity of full mutations, possibly owing to selection for smaller mutated fragments. If confirmed, the latter phenomenon might account for the known decrease with age of the expression of the fragile site. Our observations suggest that a gene whose expression is affected by the presence of a full mutation (possibly the FMR-1 gene) has a cell autonomous function in leucocytes, leading to a slowly progressive selection for cells where the mutation is on the inactive X chromosome.  相似文献   

19.
Fragile X Syndrome (FXS) is a genetic disease due to a CGG trinucleotide expansion, named full mutation (greater than 200 CGG repeats), in the fragile X mental retardation 1 gene locus Xq27.3; which leads to an hypermethylated region in the gene promoter therefore silencing it and lowering the expression levels of the fragile X mental retardation 1, a protein involved in synaptic plasticity and maturation. Individuals with FXS present with intellectual disability, autism, hyperactivity, long face, large or prominent ears and macroorchidism at puberty and thereafter. Most of the young children with FXS will present with language delay, sensory hyper arousal and anxiety. Girls are less affected than boys, only 25% have intellectual disability. Given the genomic features of the syndrome, there are patients with a number of triplet repeats between 55 and 200, known as premutation carriers. Most carriers have a normal IQ but some have developmental problems. The diagnosis of FXS has evolved from karyotype with special culture medium, to molecular techniques that are more sensitive and specific including PCR and Southern Blot. During the last decade, the advances in the knowledge of FXS, has led to the development of investigations on pharmaceutical management or targeted treatments for FXS. Minocycline and sertraline have shown efficacy in children.  相似文献   

20.
It is now recognized that female carriers of fragile X premutations are at increased risk of premature ovarian failure. We have studied 51 premenopausal women from fragile X families, to determine whether premutation carriers have variations in the hormonal markers of menopause, compared to full mutations and controls. We found a significant increase in serum follicle stimulating hormone in premutation carriers, suggesting that as a group they will enter menopause before full mutation carriers and unaffected controls. These results have important implications for fertility in these women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号