共查询到18条相似文献,搜索用时 82 毫秒
1.
卷积神经网络(CNN)是目前计算机视觉和模式识别中效果最为突出的算法。CNN拥有强大的空间识别能力,可以从图像中提取高阶的空间特征,同时通过共用卷积核的方式大幅减少参数量,从而在提升网络性能的同时保持总参数量在一个合理的、可运算的范畴。部分采用无监督学习的CNN算法可以在没有先验知识的条件下实现一定程度的图像语义分割,大幅减少人工读图的负担。本研究就CNN在医学图像分割中的研究进展和使用CNN时的具体技巧及其效果进行综述。以使用CNN为核心的深度学习工具解决医学图像分割的课题为中心,展示了CNN在有监督学习、半监督学习及无监督学习中的巨大潜力,分析比较了现有方案的优点与不足,探讨了未来CNN在医学图像领域的前进方向。 相似文献
2.
医学图像分割是医学图像定量分析的关键步骤之一,因此病灶分割对临床诊断有重要意义。针对传统分割方法中存在的过多依赖医学领域的先验知识和人为评估错误等问题,提出了基于深度学习的病灶分割方法。本文总结了卷积神经网络算法应用于医学图像病灶分割的研究进展。首先,论述卷积神经网络的基本结构及其常用架构;其次介绍深度学习在医学图像病灶分割中的应用,其中包括肺结节的检测和分类,脑肿瘤分割和乳腺病灶的分割;最后,分析了目前该研究中存在的优缺点并对深度学习的发展方向进行展望。 相似文献
3.
U-Net网络在医学图像分割任务中取得了很好的成绩。近年来,众多学者针对U-Net结构不断地进行研究和扩展,比如编、解码器的改进和跳跃连接的改进。本文针对基于U-Net网络结构改进的医学图像分割技术从以下角度进行总结:首先,阐述U-Net网络在医学图像分割领域中的应用;然后,总结U-Net的七大改进机制:密集连接机制、残差连接机制、多尺度机制、集成机制、膨胀机制、注意力机制以及Transformer机制;最后,探讨U-Net结构改进的思路和方法,为相关研究提供参考,对U-Net的进一步发展具有一定的积极意义。 相似文献
4.
肝脏肿瘤严重危害着全人类的生命健康。近年来,随着深度学习的快速发展,涌现了许多使用腹部计算机断层扫描(computed tomography,CT)图像进行肝脏肿瘤分割的深度学习方法,这些方法的应用对于临床上实现肝脏肿瘤的计算机辅助诊断具有十分重要的意义。为此,本文对深度学习方法在肝脏肿瘤CT图像分割中的应用进行了归纳,将各种卷积神经网络(convolutional neural networks,CNN)分为二维(two-dimensional,2D)、三维(three-dimensional,3D)和2.5维(2.5-dimensional,2.5D)卷积神经网络。此外,本文总结了各类网络的优缺点以及改进方法,为深度学习在肝脏肿瘤分割中的应用提供了有益参考。 相似文献
5.
医学图像是医生对患者进行病情诊断和治疗规划的有力工具。现今对于医学图像的分割不再局限于手工分割方法,通过传统方法与深度学习方法来实现医学图像分割已经取得更好、更准确的结果。本文基于近年来一些较为出众的医学图像创新分割方法进行综述,通过阐述深度学习方法如SAM、SegNet、Mask R-CNN和U-NET以及传统方法如活动轮廓模型、阈值分割模型创新等,对比各种图像分割方法的异同点,对医学图像分割方法做出总结与展望。以此来帮助学者们更好地了解目前的研究进展与未来的发展趋势。 相似文献
6.
遗传算法在医学图像分割中的应用 总被引:1,自引:0,他引:1
图像分割(lmage Segmentation)是图像处理中的主要问题,同时也是一个学术难题,长期以来人们在努力寻找进行图像分割的算法,到目前为止还没有一个普遍认可的算法。1973年,美国教授J.Holland提出了遗传算法(Genetic Algorithm,GA)在很多领域获得进展,并在90年代被学引入图像分割领域。本简要介绍了图像分割及遗传算法的基本原理,着重探讨了近年来遗传算法在图像分割一个重要的应用领域-医学图像分割领域中的应用。 相似文献
7.
基于深度学习的医学图像分割方法已经成为了医学图像处理领域的强大工具。由于医学图像的特殊性质,基于深度学习的图像分割算法面临样本不平衡、边缘模糊、假阳性、假阴性等问题,针对这些问题,研究人员大多对网络结构进行改进,而很少从非结构化方面做出改进。损失函数是基于深度学习的分割方法中重要的组成部分,对损失函数的改进可以从根源上提高网络的分割效果,并且损失函数与网络结构无关,可以即插即用地运用在各种网络模型和分割任务中。本文从医学图像分割任务中的困难出发,首先介绍了解决样本不平衡、边缘模糊、假阳性、假阴性问题的损失函数及改进策略;然后对目前损失函数改进过程中所遇到的困难进行分析;最后对未来的研究方向进行了展望。本文将为损失函数的合理选择、改进或创新提供参考,并为损失函数的后续研究指引方向。 相似文献
8.
目的 基于多尺度融合注意力机制,提出改进Attention U-Net的胆囊自动分割模型,提高胆囊自动分割模型的性能,以辅助医生进行临床诊断.方法 首先选取2017年1月—2019年12月上海交通大学医学院附属新华医院普外科、吉林大学白求恩第一医院肝胆胰外一科和吉林大学中日联谊医院普外科收治的88例病理诊断明确的胆囊癌患者、28例慢性胆囊炎胆囊结石患者和29例健康对照,构建胆囊分割数据集,然后通过对医学常用深度学习图像分割方法U-Net和Attention U-Net进行分析,提出基于多尺度融合注意力机制改进的Attention U-Net方法,并设计实验对3种方法进行对比评估.结果 提出的改进Attention U-Net方法在验证集上的交并比阈值(IoU)分数、Dice系数、检测精度(Precision)和召回率(Recall)分别为0.72、0.84、0.92、0.79,全部优于传统U-Net和Attention U-Net方法.结论 本文提出了基于多尺度融合注意力机制改进的Attention U-Net模型,其性能优于U-Net和Attention U-Net,证明了本方法中改进的注意力机制可以很好地改善U-Net模型在胆囊影像上的分割结果. 相似文献
9.
CT成像已成为检测新型冠状病毒肺炎(COVID-19)最重要的步骤之一。针对手动分割患者胸部CT图像中毛玻璃混浊区域繁琐的问题提出了一种自注意力循环残差U型网络模型来实现COVID-19患者肺部CT图像的自动分割,辅助医生诊断。在U-Net模型的基础上引入了循环残差模块和自注意力机制来加强对特征信息的抓取从而提升分割精度。在公开数据集上的分割实验结果显示,该算法的Dice系数、敏感度和特异度分别达到了85.36%、76.64%和76.25%,与其他算法相比具有良好的分割效果。 相似文献
10.
针对电子显微(EM)成像存在边界有损、模糊不均匀以及神经元结构本身轮廓纹理复杂难以定位的问题,提出一种深层卷积神经网络模型Group-Depth U-Net,以实现EM图像中神经元结构的自动分割。该模型采用更加深层的U-Net架构作为骨架网络,以获取更加丰富的图像特征信息;同时采用分组卷积网络结构,使模型更加高效、防止过拟合,从而提高分割的准确性与效率。公开的数据集实验表明该模型相比U-Net达到了更好的分割准确率。 相似文献
11.
针对传统图像分割方法抗噪性弱、容易漏检的问题,提出基于U-Net模型的T细胞斑点分割算法。通过中值滤波器平滑消除噪声,灰度化处理降低背景干扰,采用Adam算法优化损失函数,能有效提高分割准确率。实验结果表明,与基于区域生长的传统分割方法对比,U-Net方法在少量斑点和较多斑点两种情况下F1分别提升9%和6%,验证了其有效性。 相似文献
12.
医学显微图像分割方法研究进展 总被引:1,自引:1,他引:1
医学显微图像分割是医学图像处理中的一个经典难题.针对近年来出现的新方法、新理论,对各种分割方法进行了系统论述,主要包括基于数学形态学方法、神经网络分割、模糊分割、小波分析、遗传算法、统计方法和基于特定模型等方法的图像分割.由于显微图像的复杂性,采用单一方法很难准确分割,故对混合方法也作了一定论述.文中还简要讨论了各种方法的特点和局限性.同时对分割的评价体系也做了简要论述. 相似文献
13.
针对医学图像背景复杂、边界模糊、局部不均匀等特点,提出了一种基于相对模糊连接度的联合主动轮廓模型,并将其应用于医学图像分割。首先介绍主动轮廓模型的曲线演化方程和模糊连接度的相关理论,然后将相对模糊连接度作为曲线演化驱动力引入曲线演化方程,最后用实验证明该方法对多目标医学图像和复杂医学图像的有效性。由于模糊连接度方法综合了局部信息和全局信息,因此可以克服Li方法容易陷入局部最优的问题和Chan-Vese方法不能越过局部伪边界的问题,从而使联合主动轮廓模型的演化曲线最终收敛于全局最优边界。 相似文献
14.
首先利用全局与局部注意力对肿瘤进行定位,然后在模型中加入反注意力机制,将显著特征从原特征图中消除,并保留肿瘤的边缘轮廓信息。此外还在模型中使用深度监督,监督各个深度解码层的训练,有效抑制模型梯度消失现象,提高分割的准确性。本研究使用的是上海长征医院的胃部CT数据集,并将提出的模型与U-Net、Attention U-Net和ET-Net的实验对比。研究结果表明,相较于传统的U-Net网络模型,基于反注意力机制的U-Net模型在胃部肿瘤分割中性能得到了较大的提高,证明了该网络模型的有效性。 相似文献
15.
结肠镜检查广泛应用于结直肠癌的早期筛查和诊疗,但仅靠人工判读结肠息肉漏检率较高,有研究统计可达25%.基于深度学习的计算机辅助技术有助于提高息肉检测率,但目前深度学习的主流分割网络U-Net存在着两个局限:一是编解码的输出特征图之间存在着语义鸿沟;二是U-Net的双层卷积单元无法学习多尺度信息;割裂地看待容易使模型陷入... 相似文献
16.
基于level sets的医学图像分割 总被引:3,自引:0,他引:3
医学图像分割是一个非常重要的研究领域.它主要应用于病人诊断、图像引导手术,以及医学数据可视化.解决这个问题的一个常用方法就是利用活动轮廓或"snake"来分割感兴趣的物体.文中给出两种活动轮廓模型,其中一种基于边缘停止函数,而另一种是一个能量最小化算法.两种方法都采用level-sets模型,利用一个Lipschitz函数φ来进行自动拓扑变化.实验表明第一种方法仅仅只能检测边缘梯度较大的物体,而第二种方法没有这样的限制. 相似文献
17.
医学超声图像分割的一种新方法 总被引:1,自引:1,他引:1
有效地实现超声图像的分割依然是临床疾病诊断亟待解决的一个难题。本研究将图像树型框架小波变换、尺度共生矩阵、KL变换主分量分析和自组织神经网络聚类相结合应用于医学超声图像,提出一种分割新方法。实验表明,对于不同的医学超声图像,应用本研究方法均可得到比较清晰的分割结果,且显著地提高了分割图像的对比度,这对于固有对比度较低的医学超声图像来说不啻一种很有效的图像分割新方法,为临床诊断提供新的借鉴。 相似文献
18.
基于CUDA的快速三维医学图像分割 总被引:1,自引:0,他引:1
目的:三维分割是医学图像分析和可视化中的重要组成部分,也是医学图像分割中的一个难点。水平集方法在三维医学图像分割中有很广阔的应用前景,但是该算法的计算量大,不能达到实时处理的要求。针对这个问题,提出了一种基于CUDA的并行加速方法。方法:采用NVIDIA公司的GPGPU模型CUDA,利用图像像素的独立性和偏微分方程求解的并发性,提高C-V水平集算法的分割速度。给出了并行计算的流程图,并对C-V水平集算法在CUDA上的实现进行了详细介绍。结果:实现了C-V水平集并行加速算法,该方法在保证分割效果的前提下,具有更快的分割速度。结论:所提出的方法是切实可行的,实现了快速的三维医学图像分割。 相似文献