首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local, rhythmic, subsarcolemmal Ca2+ releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na(+)-Ca2+ exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of beta-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca2+ cycling and beating rate is also present in vivo, as the regulation of beating rate by local beta-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca2+ cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca2+ balance and spontaneous SR Ca2+ cycling, ie, phospholamban and L-type Ca2+ channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na(+)-Ca2+ exchanger current and is crucial for both basal and reserve cardiac pacemaker function.  相似文献   

2.
Stochastic but roughly periodic LCRs (Local subsarcolemmal ryanodine receptor-mediated Ca(2+) Releases) during the late phase of diastolic depolarization (DD) in rabbit sinoatrial nodal pacemaker cells (SANCs) generate an inward current (I(NCX)) via the Na(+)/Ca(2+) exchanger. Although LCR characteristics have been correlated with spontaneous beating, the specific link between LCR characteristics and SANC spontaneous beating rate, ie, impact of LCRs on the fine structure of the DD, have not been explicitly defined. Here we determined how LCRs and resultant I(NCX) impact on the DD fine structure to control the spontaneous SANC firing rate. Membrane potential (V(m)) recordings combined with confocal Ca(2+) measurements showed that LCRs impart a nonlinear, exponentially rising phase to the DD later part, which exhibited beat-to-beat V(m) fluctuations with an amplitude of approximately 2 mV. Maneuvers that altered LCR timing or amplitude of the nonlinear DD (ryanodine, BAPTA, nifedipine or isoproterenol) produced corresponding changes in V(m) fluctuations during the nonlinear DD component, and the V(m) fluctuation response evoked by these maneuvers was tightly correlated with the concurrent changes in spontaneous beating rate induced by these perturbations. Numerical modeling, using measured LCR characteristics under these perturbations, predicted a family of local I(NCX) that reproduced V(m) fluctuations measured experimentally and determined the onset and amplitude of the nonlinear DD component and the beating rate. Thus, beat-to-beat V(m) fluctuations during late DD phase reflect the underlying LCR/I(NCX) events, and the ensemble of these events forms the nonlinear DD component that ultimately controls the SANC chronotropic state in tight cooperation with surface membrane ion channels.  相似文献   

3.
For almost half a century it has been thought that the initiation of each heartbeat is driven by surface membrane voltage-gated ion channels (M clocks) within sinoatrial nodal cells. It has also been assumed that pacemaker cell automaticity is initiated at the maximum diastolic potential (MDP). Recent experimental evidence based on confocal cell imaging and supported by numerical modelling, however, shows that initiation of cardiac impulse is a more complex phenomenon and involves yet another clock that resides under the sarcolemma. This clock is the sarcoplasmic reticulum (SR): it generates spontaneous, but precisely timed, rhythmic, submembrane, local Ca(2+) releases (LCR) that appear not at the MDP but during the late, diastolic depolarization (DD). The Ca(2+) clock and M clock dynamically interact, defining a novel paradigm of robust cardiac pacemaker function and regulation. Rhythmic LCRs during the late DD activate inward Na(+)/Ca(2+) exchanger currents and ignite action potentials, which in turn induceCa(2+) transients and SR depletions, resetting the Ca(2+) clock. Both basal and reserve protein kinaseA-dependent phosphorylation of Ca(2+) cycling proteins control the speed and amplitude of SR Ca(2+) cycling to regulate the beating rate by strongly coupled Ca(2+) and M clocks.  相似文献   

4.
Localized, subsarcolemmal Ca2+ release (LCR) via ryanodine receptors (RyRs) during diastolic depolarization of sinoatrial nodal cells augments the terminal depolarization rate. We determined whether LCRs in rabbit sinoatrial nodal cells require the concurrent membrane depolarization, or are intrinsically rhythmic, and whether rhythmicity is linked to the spontaneous cycle length. Confocal linescan images revealed persistent LCRs both in saponin-permeabilized cells and in spontaneously beating cells acutely voltage-clamped at the maximum diastolic potential. During the initial stage of voltage clamp, the LCR spatiotemporal characteristics did not differ from those in spontaneously beating cells, or in permeabilized cells bathed in 150 nmol/L Ca2+. The period of persistent rhythmic LCRs during voltage clamp was slightly less than the spontaneous cycle length before voltage clamp. In spontaneously beating cells, in both transient and steady states, LCR period was highly correlated with the spontaneous cycle length; and regardless of the cycle length, LCRs occurred predominantly at a constant time, ie, 80% to 90% of the cycle length. Numerical model simulations incorporating LCRs reproduce the experimental results. We conclude that diastolic LCRs reflect rhythmic intracellular Ca2+ cycling that does not require the concomitant membrane depolarization, and that LCR periodicity is closely linked to the spontaneous cycle length. Thus, the biological clock of sinoatrial nodal pacemaker cells, like that of many other rhythmic functions occurring throughout nature, involves an intracellular Ca2+ rhythm.  相似文献   

5.
Spontaneous, localized, rhythmic ryanodine receptor (RyRs) Ca(2+) releases occur beneath the cell membrane during late diastolic depolarization in cardiac sinoatrial nodal cells (SANCs). These activate the Na(+)/Ca(2+) exchanger (NCX1) to generate inward current and membrane excitation that drives normal spontaneous beating. The morphological background for the proposed functional of RyR and NCX crosstalk, however, has not been demonstrated. Here we show that the average isolated SANC whole cell labeling density of RyRs and SERCA2 is similar to atrial and ventricle myocytes, and is similar among SANCs of all sizes. Labeling of NCX1 is also similar among SANCs of all sizes and exceeds that in atrial and ventricle myocytes. Submembrane colocalization of NCX1 and cardiac RyR (cRyR) in all SANCs exceeds that in the other cell types. Further, the Cx43 negative primary pacemaker area of the intact rabbit sinoatrial node (SAN) exhibits robust positive labeling for cRyR, NCX1, and SERCA2. Functional studies in isolated SANCs show that neither the average action potential (AP) characteristics, nor those of intracellular Ca(2+) releases, nor the spontaneous cycle length vary with cell size. Chelation of intracellular [Ca(2+)], or disabling RyRs or NCX1, markedly attenuates or abolishes spontaneous SANC beating in all SANCs. Thus, there is dense labeling of SERCA2, RyRs, and NCX1 in small-sized SANCs, thought to reside within the SAN center, the site of impulse initiation. Because normal automaticity of these cells requires intact Ca(2+) cycling, interactions of SERCA, RyR2 and NCX molecules are implicated in the initiation of the SAN impulse.  相似文献   

6.
Defective excitation-contraction coupling in heart failure is generally associated with both a reduction in sarcoplasmic reticulum (SR) Ca(2+) uptake and a greater dependence on transsarcolemmal Na(+)-Ca(2+) exchange (NCX) for Ca(2+) removal. Although a relative increase in NCX is expected when SR function is impaired, few and contradictory studies have addressed whether there is an absolute increase in NCX activity. The present study examines in detail NCX density and function in left ventricular midmyocardial myocytes isolated from normal or tachycardic pacing-induced failing canine hearts. No change of NCX current density was evident in myocytes from failing hearts when intracellular Ca(2+) ([Ca(2+)](i)) was buffered to 200 nmol/L. However, when [Ca(2+)](i) was minimally buffered with 50 micromol/L indo-1, Ca(2+) extrusion via NCX during caffeine application was doubled in failing versus normal cells. In other voltage-clamp experiments in which SR uptake was blocked with thapsigargin, both reverse-mode and forward-mode NCX currents and Ca(2+) transport were increased >2-fold in failing cells. These results suggest that, in addition to a relative increase in NCX function as a consequence of defective SR Ca(2+) uptake, there is an absolute increase in NCX function that depends on [Ca(2+)](i) in the failing heart.  相似文献   

7.
Recent perspectives on sinoatrial nodal cell (SANC)? function indicate that spontaneous sarcoplasmic reticulum (SR) Ca2+ cycling, i.e. an intracellular “Ca2+ clock,” driven by cAMP-mediated, PKA-dependent phosphorylation, interacts with an ensemble of surface membrane electrogenic molecules (“surface membrane clock”) to drive SANC normal automaticity. The role of AC-cAMP-PKA-Ca2+ signaling cascade in mouse, the species most often utilized for genetic manipulations, however, has not been systematically tested. Here we show that Ca2+ cycling proteins (e.g. RyR2, NCX1, and SERCA2) are abundantly expressed in mouse SAN and that spontaneous, rhythmic SR generated local Ca2+ releases (LCRs) occur in skinned mouse SANC, clamped at constant physiologic [Ca2+]. Mouse SANC also exhibits a high basal level of phospholamban (PLB) phosphorylation at the PKA-dependent site, Serine16. Inhibition of intrinsic PKA activity or inhibition of PDE in SANC, respectively: reduces or increases PLB phosphorylation, and markedly prolongs or reduces the LCR period; and markedly reduces or accelerates SAN spontaneous firing rate. Additionally, the increase in AP firing rate by PKA-dependent phosphorylation by β-adrenergic receptor (β-AR) stimulation requires normal intracellular Ca2+ cycling, because the β-AR chronotropic effect is markedly blunted when SR Ca2+ cycling is disrupted. Thus, AC-cAMP-PKA-Ca2+ signaling cascade is a major mechanism of normal automaticity in mouse SANC.  相似文献   

8.
Objective: Decay kinetics of the voltage-gated L-type Ca(2+) current (I(CaL)) control the magnitude of Ca(2+) influx during the cardiac action potential. We investigated the influence of changes in diastolic membrane potential on I(CaL) decay kinetics in cardiac cells. Methods: Cells were isolated enzymatically from rat ventricles, human right atrial appendages obtained during corrective heart surgery and left ventricles from end-stage failing hearts of transplant recipients. The whole-cell patch-clamp technique was used to evoke I(CaL) by a 100-ms depolarizing test pulse to -10 mV. Conditioning potentials between -80 and 0 mV were applied for 5 s prior to the test pulse. Results: Depolarizing the cells between -80 and -50 mV prior to the test pulse slowed the early inactivation of I(CaL) both in rat ventricular and human atrial cells. This slowing resulted in a significant increase of Ca(2+) influx. This type of facilitation was not observed when the sarcoplasmic reticulum (SR) Ca(2+) content was depleted using ryanodine which reduced the rate of inactivation of I(CaL), or when Ba(2+) replaced Ca(2+) as the permeating ion. Facilitation was favored by intracellular cAMP-promoting agents that, in addition to increasing current peak amplitude, enhanced the fast Ca(2+)-dependent inactivation of I(CaL). Facilitation was impaired in atrial and ventricular human failing hearts. Conclusion: Decay kinetics of I(CaL) are regulated by the diastolic membrane potential in rat and human cardiomyocytes. This regulation, which associates slowing of I(CaL) inactivation with reduced SR Ca(2+) release and underlies facilitation of Ca(2+) channels activity, may have profound physiological relevance for catecholamines enhancement of Ca(2+) influx. It is impaired in failing hearts, possibly due to lowered SR Ca(2+) release.  相似文献   

9.
n-3 polyunsaturated fatty acids (PUFAs) can prevent life-threatening arrhythmias but the mechanisms responsible have not been established. There is strong evidence that part of the antiarrhythmic action of PUFAs is mediated through inhibition of the Ca(2+)-release mechanism of the sarcoplasmic reticulum (SR). It has also been shown that PUFAs activate protein kinase A (PKA) and produce effects in the cardiac cell similar to beta-adrenergic stimulation. We have investigated whether the inhibitory effect of PUFAs on the Ca(2+)-release mechanism is caused by direct inhibition of the SR Ca(2+)-release channel/ryanodine receptor (RyR) or requires activation of PKA. Experiments in intact cells under voltage-clamp show that the n-3 PUFA eicosapentaenoic acid (EPA) is able to reduce the frequency of spontaneous waves of Ca(2+)-release while increasing SR Ca(2+) content even when PKA activity is inhibited with H-89. This suggests that the EPA-induced inhibition of SR Ca(2+)-release is not dependent on activation of PKA. Consistent with this, single-channel studies demonstrate that EPA (10-100 microM), but not saturated fatty acids, reduce the open probability (Po) of the cardiac RyR incorporated into phospholipid bilayers. EPA also inhibited the binding of [3H]ryanodine to isolated heavy SR. Our results indicate that direct inhibition of RyR channel gating by PUFAs play an important role in the overall antiarrhythmic properties of these compounds.  相似文献   

10.
The rate of spontaneous diastolic depolarization (DD) of sinoatrial nodal cells (SANCs) that triggers recurrent action potentials (APs) is a fundamental aspect of the heart's pacemaker. Here, in experiments on isolated SANCs, using confocal microscopy combined with a patch clamp technique, we show that ryanodine receptor Ca(2+) release during the DD produces a localized subsarcolemmal Ca(2+) increase that spreads in a wavelike manner by Ca(2+)-induced Ca(2+) release and produces an inward current via the Na(+)-Ca(2+) exchanger (NCX). Ryanodine, a blocker of the sarcoplasmic reticulum Ca(2+) release channel, in a dose-dependent manner reduces the SANC beating rate with an IC(50) of 2.6 micromol/L and abolishes the local Ca(2+) transients that precede the AP upstroke. In voltage-clamped cells in which the DD was simulated by voltage ramp, 3 micromol/L ryanodine decreased an inward current during the voltage ramp by 1.6+/-0.3 pA/pF (SEM, n=4) leaving the peak of L-type Ca(2+) current unchanged. Likewise, acute blockade of the NCX (via rapid substitution of bath Na(+) by Li(+)) abolished SANC beating and reduced the inward current to a similar extent (1.7+/-0.4 pA/pF, n=4), as did ryanodine. Thus, in addition to activation/inactivation of multiple ion channels, Ca(2+) activation of the NCX, because of localized sarcoplasmic reticulum Ca(2+) release, is a critical element in a chain of molecular interactions that permits the heartbeat to occur and determines its beating rate.  相似文献   

11.
The contribution of sarcoplasmic reticulum (SR) Ca2+ release to evoked tension in rat arterial rings was studied by comparing the effects of ryanodine (an SR Ca2+ channel opener) and thapsigargin and cyclopiazonic acid (CPA) (two Ca(2+)-ATPase inhibitors). Isometric tension was evoked by serotonin (5-HT), 30-50 mM external K+, and 10 mM caffeine in rings of aorta and a small (second-order) branch of the superior mesenteric artery (SMA). Resting tension was unaffected by 10 microM ryanodine or 1-5 microM thapsigargin, but 20 microM CPA raised resting tension in aortic rings and evoked spontaneous contractions in some SMA rings. Ryanodine (10 microM) or 1-5 microM thapsigargin partially depleted the SR Ca2+ stores (indicated by reduced caffeine-evoked contractions) and attenuated 5-HT- and high K(+)-evoked contractions in aortic rings but augmented 5-HT- and high K(+)-evoked contractions in SMA. Caffeine completely emptied the SR Ca2+ stores in the presence of ryanodine but not thapsigargin in both the aorta and SMA; thus, thapsigargin may selectively affect one component of a heterogeneous SR. When the aortic Ca2+ stores were empty (i.e., caffeine contractions were abolished), the 5-HT- and high K(+)-evoked contractions in the aorta were also augmented. CPA rapidly emptied the SR Ca2+ stores in both the aorta and SMA. CPA augmented the 5-HT-evoked contractions in the SMA and in five of nine aortic rings but attenuated evoked contractions in the remaining aortic rings. The attenuation or abolition of the caffeine contractions implies that ryanodine, thapsigargin, and CPA all deplete the SR Ca2+ stores. The attenuated responses to 5-HT and high K+ observed when the aortic SR Ca2+ stores were only partially depleted are consistent with the idea that evoked SR Ca2+ release is a large component of the Ca2+ transient in the aorta. The augmentation of 5-HT- and high K(+P)-evoked responses after partial (SMA) or complete (aorta) depletion of the SR Ca2+ stores suggests that evoked release of SR Ca2+ normally regulates Ca2+ entry by negative feedback and/or that the SR normally buffers the evoked rise in cytosolic Ca2+.  相似文献   

12.
The Na(+)/Ca(2+)-exchanger (NCX) is the main mechanism by which Ca(2+) is transported out of the ventricular myocyte. NCX levels are raised in failing human heart, and the consequences of this for excitation-contraction coupling are still debated. We have increased NCX levels in adult rabbit myocytes by adenovirally-mediated gene transfer and examined the effects on excitation-contraction coupling after 24 and 48 h. Infected myocytes were identified through expression of green fluorescent protein (GFP), transfected under a separate promoter on the same viral construct. Control experiments were done with both non-infected myocytes and those infected with adenovirus expressing GFP only. Contraction amplitude was markedly reduced in NCX-overexpressing myocytes at either time point, and neither increasing frequency nor raising extracellular Ca(2+) could reverse this depression. Resting membrane potential and action potential duration were largely unaffected by NCX overexpression, as was peak Ca(2+) entry via the L-type Ca(2+) channel. Systolic and diastolic Ca(2+) levels were significantly reduced, with peak systolic Ca(2+) in NCX-overexpressing myocytes lower than diastolic levels in control cells at 2 m m extracellular Ca(2+). Both cell relengthening and the decay of the Ca(2+) transient were significantly slowed. Sarcoplasmic reticulum (SR) Ca(2+) stores were completely depleted in a majority of myocytes, and remained so despite increasingly vigorous loading protocols. Depressed contractility following NCX overexpression is therefore related to decreased SR Ca(2+) stores and low diastolic Ca(2+) levels rather than reduced Ca(2+) entry.  相似文献   

13.
OBJECTIVES: Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of cardiac excitation-contraction coupling (ECC) as well as in apoptotic signaling and adverse remodeling. The goal of the present study is to investigate the role of CaMKII in irreversible ischemia and reperfusion (I/R) injury. METHODS: Isovolumic Langendorff perfused rat hearts were subjected to global no-flow I/R (45 min/120 min), and isolated myocytes were subjected to a protocol of simulated I/R (45 min simulated ischemia/60 min reoxygenation) either in the absence or presence of CaMKII inhibition [KN-93 (KN) or the CaMKII inhibitory peptide (AIP)]. RESULTS: In I/R hearts, an increase in CaMKII activity at the beginning of reperfusion was confirmed by the significantly increased phosphorylation of the Thr(17) site of phospholamban. In the presence of KN, contractile recovery at the end of reperfusion was almost double that of I/R hearts. This recovery was associated with a significant decrease in the extent of infarction, lactate dehydrogenase release (necrosis), TUNEL-positive cells, caspase-3 activity, and an increase in the Bcl-2/Bax ratio (apoptosis). In isolated myocytes, both KN and AIP prevented simulated I/R-induced spontaneous contractile activity and cell mortality. Similar results were obtained when inhibiting the reverse mode Na(+)/Ca(2+) exchanger (NCX) with KB-R7943, sarcoplasmic reticulum (SR) function with ryanodine and thapsigargin, or SR Ca(2+) release with tetracaine. In contrast, overexpression of CaMKII decreased cell viability from 52+/-3% to 26+/-2%. CONCLUSIONS: Taken together, the present findings are the first to establish CaMKII as a fundamental component of a cascade of events integrating the NCX, the SR, and mitochondria that promote cellular apoptosis and necrosis in irreversible I/R injury.  相似文献   

14.
Atrial fibrillation, the most common sustained arrhythmia, is believed to be triggered by ectopic electrical activity originating in the myocardial sleeves surrounding the pulmonary veins (PVs). It has been reported that myocardial sleeves have the potential to generate automaticity in response to norepinephrine. This study investigated the cellular mechanisms underlying norepinephrine-induced automaticity in PV cardiomyocytes isolated from rats. Application of 10 μM norepinephrine to PV cardiomyocytes induced repetitive and transient increases in intracellular Ca(2+) concentrations. The Ca(2+) transient was accompanied by depolarization, and induced automatic rhythmic action potentials at approximately 4Hz in perforated patch clamp preparations in 27% of myocytes were observed. When the recording mode was switched from current-clamp to voltage-clamp mode during the continuous presence of automaticity, an oscillatory current was observed. The oscillatory current was always inward, irrespective of the membrane potential, indicating that the current was derived mainly from the Na(+)-Ca(2+) exchanger (NCX). The norepinephrine-induced automaticity was suppressed by blocking either the β(1)- or α(1)-adrenoceptor. Additionally, this automaticity was blocked by inhibitors of phospholipase C and the inositol 1,4,5-triphosphate receptor (IP(3)R) but not by a protein kinase C inhibitor. We observed that the transverse-tubule system was enriched in cardiomyocytes in the PV, in contrast to those of the atrium, and that the NCX and IP(3)R were co-localized along transverse tubules. These findings suggest that a functional coupling between the NCX and IP(3)R causes arrhythmic excitability of the PV during the presence of combined β(1)- and α(1)-adrenoceptor stimulation.  相似文献   

15.
Block of Na/Ca exchange (NCX) has potential therapeutic applications, in particular, if a mode-selective block could be achieved, but also carries serious risks for disturbing the normal Ca2+ balance maintained by NCX. We have examined the effects of partial inhibition of NCX by SEA-0400 (1 or 0.3 micromol/L) in left ventricular myocytes from healthy pigs or mice and from mice with heart failure (MLP-/-). During voltage clamp ramps with [Ca2+](i) buffering, block of reverse mode block was slightly larger than of forward mode (by 25+/-5%, P<0.05). In the absence of [Ca2+](i) buffering and with sarcoplasmic reticulum (SR) fluxes blocked, rate constants for Ca2+ influx and Ca2+ efflux were reduced to the same extent (to 36+/-6% and 32+/-4%, respectively). With normal SR function the reduction of inward NCX current (I(NCX)) was 57+/-10% (n=10); during large caffeine-induced Ca2+ transients, it was larger (82+/-3%). [Ca2+](i) transients evoked during depolarizing steps increased (from 424+/-27 to 994+/-127 nmol/L at +10 mV, P<0.05), despite a reduction of I(CaL) by 27%. Resting [Ca2+](i) increased; there was a small decrease in the rate of decline of [Ca2+](i). SR Ca2+) content increased more than 2-fold. Contraction amplitude of field-stimulated myocytes increased in healthy myocytes but not in myocytes from MLP-/- mice, in which SR Ca2+ content remained unchanged. These data provide proof-of-principle that even partial inhibition of NCX results in a net gain of Ca2+. Further development of NCX blockers, in particular, for heart failure, must balance potential benefits of I(NCX) reduction against effects on Ca2+ handling by refining mode dependence and/or including additional targets.  相似文献   

16.
Sorcin is a 21.6-kDa Ca(2+) binding protein of the penta-EF hand family. Several studies have shown that sorcin modulates multiple proteins involved in excitation-contraction (E-C) coupling in the heart, such as the cardiac ryanodine receptor (RyR2), L-type Ca(2+) channel, and Na(+)-Ca(2+) exchanger, while it has also been shown to be phosphorylated by cAMP-dependent protein kinase (PKA). To elucidate the effects of sorcin and its PKA-dependent regulation on E-C coupling in the heart, we identified the PKA-phosphorylation site of sorcin, and found that serine178 was preferentially phosphorylated by PKA and dephosphorylated by protein phosphatase-1. Isoproterenol allowed sorcin to translocate to the sarcoplasmic reticulum (SR). In addition, adenovirus-mediated overexpression of sorcin in adult rat cardiomyocytes significantly increased both the rate of decay of the Ca(2+) transient and the SR Ca(2+) load. An assay of oxalate-facilitated Ca(2+) uptake showed that recombinant sorcin increased Ca(2+) uptake in a dose-dependent manner. These data suggest that sorcin activates the Ca(2+)-uptake function in the SR. In UM-X7. 1 cardiomyopathic hamster hearts, the relative amount of sorcin was significantly increased in the SR fraction, whereas it was significantly decreased in whole-heart homogenates. In failing hearts, PKA-phosphorylated sorcin was markedly increased, as assessed using a back-phosphorylation assay with immunoprecipitated sorcin. Our results suggest that sorcin activates Ca(2+)-ATPase-mediated Ca(2+) uptake and restores SR Ca(2+) content, and may play critical roles in compensatory mechanisms in both Ca(2+) homeostasis and cardiac dysfunction in failing hearts.  相似文献   

17.
Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity, although the activity was lower than that of the wild-type SR Ca(2+)-ATPase. Moreover, this Ca(2+)-sensitive ATPase activity was inhibited by ouabain. The chimera NCC, in which Met1-Gly354 of the SR Ca(2+)-ATPase were replaced with the corresponding portion of the Na+,K(+)-ATPase, lost the thapsigargin-sensitive Ca(2+)-ATPase activity seen in CCC and [n/c]CC. [3H]Ouabain binding to [n/c]CC and NCC demonstrated that the affinity for this inhibitor seen in the wild-type chicken Na+,K(+)-ATPase was restored in these chimeric molecules. Thus, the ouabain-binding domains are distinct from the thapsigargin sites; ouabain binds to the amino-terminal portion (Met1 to Asp200) of the Na+,K(+)-ATPase alpha 1 subunit, whereas thapsigargin interacts with the regions after Asp162 of the Ca(2+)-ATPase. Moreover, the amino-terminal 200 amino acids of the Na+,K(+)-ATPase alpha 1 subunit are sufficient to exert ouabain-dependent inhibition even after incorporation into the corresponding portion of the Ca(2+)-ATPase, and the segment Ile163 to Gly354 of the SR Ca(2+)-ATPase is critical for thapsigargin- and Ca(2+)-sensitive ATPase activity.  相似文献   

18.
The effect of S100A1 protein on cardiac excitation-contraction (E-C) coupling was studied using recombinant human S100A1 protein (0.01-10 microM) introduced into single rabbit ventricular cardiomyocytes via a patch pipette. Voltage clamp experiments (20 degrees C) indicated that 0.1 microM S100A1 increased Ca(2+) transient amplitude by approximately 41% but higher or lower S100A1 concentrations had no significant effect. L-type Ca(2+) current amplitude or Ca(2+) efflux rates via the Na(+)/Ca(2+) exchanger (NCX) were unaffected. The rate of Ca(2+) uptake associated with the SR Ca(2+)-ATPase (SERCA2a) was increased by approximately 22% with 0.1 microM S100A1, but not at other S100A1 concentrations. Based on the intracellular Ca(2+) and I(NCX) signals in response to 10 mM caffeine, no significant change in SR Ca(2+) content was observed with S100A1 (0.01-10 microM). Therefore, 0.1 microM S100A1 appeared to increase the fractional Ca(2+) release from the SR. This result was confirmed by measurements of Ca(2+) transient amplitude at a range of SR Ca(2+) contents. The hyperbolic relationship between these two parameters was shifted to the left by 0.1 microM S100A1. [(3)H]-ryanodine binding studies indicated that S100A1 increased ryanodine receptor (RyR) activity at 0.1 and 0.3 microM Ca(2). As with the effects on E-C coupling, 0.1 microM S100A1 produced the largest effect. Co-immunoprecipitation studies on a range of Ca(2+)-handling proteins support the selective interaction of S100A1 on SERCA2a and RyR. In summary, S100A1 had a stimulatory action on RyR2 and SERCA2a in rabbit cardiomyocytes. Under the conditions of this study, the net effect of this dual action is to enhance the Ca(2+) transient amplitude without significantly affecting the SR Ca(2+) content.  相似文献   

19.
Cardiac Na/Ca exchange (NCX, NCX1.1) is critical in cardiac myocyte Ca regulation, and its altered function contributes to inotropic state, systolic dysfunction in heart failure and arrhythmogenesis. Regulation of NCX is multifaceted, but protein kinase A (PKA) effects on NCX function are controversial. Here, we use three different and complementary approaches to compare NCX function +/-1 microM isoproterenol (ISO) in intact rabbit cardiac myocytes (in paired comparisons). First, in field-stimulated intact cells we inferred the cytosolic [Ca] ([Ca](i)) dependence of NCX function from the decay rate of caffeine-induced [Ca](i) transients. Second, we measured caffeine-induced [Ca](i) and inward I(NCX) simultaneously (perforated patch voltage clamp), to measure directly the [Ca](i) dependence of NCX rate. Third, using whole cell ruptured patch with [Ca](i) heavily buffered to 100 nM, [Na](i)=10 mM, and I(Ca), SR Ca release and Na/K pump all blocked, we recorded I(NCX) ramps at 37 degrees C. We find that NCX function is not altered by PKA activation under any of these three protocols, where intracellular conditions ranged from near-physiological to highly controlled. This does not rule out NCX modulation by PKA under all conditions, or in species other than rabbit. However, such effects are likely to be either minor (vs. other PKA actions on myocyte Ca handling) or indirect, such as secondary effects dependent on altered local [Ca](i) and [Na](i).  相似文献   

20.
Earlier studies have demonstrated that palmitoyl carnitine (PC), a long chain acyl carnitine, accumulates in the ischemic myocardium. Although perfusion of hearts with PC is known to induce contractile dysfunction which resembles ischemic contracture, the mechanisms underlying this derangement are not clear. In this study, we examined the effect of exogenous PC on the intracellular concentration of calcium ([Ca(2+)](i)) in freshly isolated cardiomyocytes from adult rat hearts. The results showed that PC elevated [Ca(2+)](i)in a dose-dependent (5-20 microm) manner; 15 microm PC evoked a marked and reversible increase in [Ca(2+)](i)without having any significant action on cell viability. The PC (15 microm)-induced increase in [Ca(2+)](i)was slightly depressed but delayed in the absence of extracellular Ca(2+). Pre-incubation of cardiomyocytes with sarcolemmal (SL) l -type Ca(2+)-channel blockers, verapamil or diltiazem, and inhibitors of SL Na(+)-Ca(2+)exchanger such as Ni(2+)or amiloride, depressed the PC-evoked increase in [Ca(2+)](i)significantly. Ouabain, a Na(+)-K(+)ATPase inhibitor, and low concentrations of extracellular Na(+)enhanced the PC-induced increase in [Ca(2+)](i). Depletion of the sarcoplasmic reticulum (SR) Ca(2+)stores by low micromolar concentrations of ryanodine (a SR Ca(2+)-release channel activator) or by thapsigargin (a SR Ca(2+)-pump ATPase inhibitor) depressed the PC-mediated increase in [Ca(2+)](i). Combined blockade of the l -type Ca(2+)channel, Na(+)-Ca(2+)exchanger and the SR Ca(2+)-pump had an additive inhibitory effect on the PC response. These observations suggest that the PC-induced increase in [Ca(2+)](i)is dependent on both Ca(2+)-influx from the extracellular space and Ca(2+)-release from the SR stores. Thus, the accumulation of PC in the myocardium may be partly responsible for the occurrence of intracellular Ca(2+)overload in ischemic heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号