首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian neocortex is functionally subdivided into architectonically distinct regions that process various types of information based on their source of afferent input. Yet, the modularity of neocortical organization in terms of cell type and intrinsic circuitry allows afferent drive to continuously reassign cortical map space. New aspects of cortical map plasticity include dynamic turnover of dendritic spines on pyramidal neurons and remodeling of interneuron dendritic arbors. While spine remodeling occurs in multiple cortical regions, it is not yet known whether interneuron dendrite remodeling is common across primary sensory and higher-level cortices. It is also unknown whether, like pyramidal dendrites, inhibitory dendrites respect functional domain boundaries. Given the importance of the inhibitory circuitry to adult cortical plasticity and the reorganization of cortical maps, we sought to address these questions by using two-photon microscopy to monitor interneuron dendritic arbors of thy1-GFP-S transgenic mice expressing GFP in neurons sparsely distributed across the superficial layers of the neocortex. We find that interneuron dendritic branch tip remodeling is a general feature of the adult cortical microcircuit, and that remodeling rates are similar across primary sensory regions of different modalities, but may differ in magnitude between primary sensory versus higher cortical areas. We also show that branch tip remodeling occurs in bursts and respects functional domain boundaries.  相似文献   

2.
In this work, through a detailed literature review, data‐mining, and extensive calculations, we provide a current, quantitative estimate of the cellular and synaptic constituents of the CA1 region of the rat hippocampus. Beyond estimating the cell numbers of GABAergic interneuron types, we calculate their convergence onto CA1 pyramidal cells and compare it with the known input synapses on CA1 pyramidal cells. The convergence calculation and comparison are also made for excitatory inputs to CA1 pyramidal cells. In addition, we provide a summary of the excitatory and inhibitory convergence onto interneurons. The quantitative knowledge base assembled and synthesized here forms the basis for data‐driven, large‐scale computational modeling efforts. Additionally, this work highlights specific instances where the available data are incomplete, which should inspire targeted experimental projects toward a more complete quantification of the CA1 neurons and their connectivity. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Hippocampal oscillations reflect coordinated neuronal activity on many timescales. Distinct types of GABAergic interneuron participate in the coordination of pyramidal cells over different oscillatory cycle phases. In the CA3 area, which generates sharp waves and gamma oscillations, the contribution of identified GABAergic neurons remains to be defined. We have examined the firing of a family of cholecystokinin-expressing interneurons during network oscillations in urethane-anesthetized rats and compared them with firing of CA3 pyramidal cells. The position of the terminals of individual visualized interneurons was highly diverse, selective, and often spatially coaligned with either the entorhinal or the associational inputs to area CA3. The spike timing in relation to theta and gamma oscillations and sharp waves was correlated with the innervated pyramidal cell domain. Basket and dendritic-layer-innervating interneurons receive entorhinal and associational inputs and preferentially fire on the ascending theta phase, when pyramidal cell assemblies emerge. Perforant-path-associated cells, driven by recurrent collaterals of pyramidal cells fire on theta troughs, when established pyramidal cell assemblies are most active. In the CA3 area, slow and fast gamma oscillations occurred on opposite theta oscillation phases. Perforant-path-associated and some COUP-TFII-positive interneurons are strongly coupled to both fast and slow gamma oscillations, but basket and dendritic-layer-innervating cells are weakly coupled to fast gamma oscillations only. During sharp waves, different interneuron types are activated, inhibited, or remain unaffected. We suggest that specialization in pyramidal cell domain and glutamatergic input-specific operations, reflected in the position of GABAergic terminals, is the evolutionary drive underlying the diversity of cholecystokinin-expressing interneurons.  相似文献   

4.
Following transient cerebral ischemia, pyramidal cells within area CA1 of the hippocampus exhibit delayed neuronal death. While interneurons within this sector continue to survive long-term, there is evidence that some interneurons in area CA1 are vulnerable to damage. To determine the nature of vulnerability in a neurochemically heterogeneous population of interneurons throughout area CA1, we examined the labeling of γ-aminobutyric acid (GABA)ergic interneurons with an antibody to the GABAA receptor α1-subunit 1–35 days following cerebral ischemia in the Mongolian gerbil. Unlike some other GABA interneuron markers, this antibody labels both the dendrites and soma of interneurons, allowing dendritic structure to be examined. Three to four days following ischemia, the pyramidal cells in area CA1 had degenerated, and the α1-subunit–positive interneurons in all layers of area CA1 had developed severely beaded dendrites. At longer survival times (21–35 days), the α1-subunit–immunolabeled dendrites of these interneurons had a fragmented appearance. In contrast, interneurons bordering str. oriens and alveus typically exhibited normal dendritic morphology. Despite the pathologic changes, there was no evidence of interneuron loss in area CA1 up to 35 days post-ischemia. Normal interneuron morphology was also observed in area CA3 and dentate gyrus, regions where neither pyramidal neurons nor granule cells, respectively, die following 5 min of cerebral ischemia. To determine if the ischemia-induced changes in interneuron morphology could be prevented, diazepam was administered 30 and 90 min following ischemia. Diazepam produces long-term neuroprotection of area CA1 pyramidal neurons. In gerbils sacrificed 35 days after ischemia, diazepam markedly attenuated the dendritic beading of the area CA1 interneurons. In addition, the dendrites did not display the fragmented labeling by the α1-subunit antibody. Thus, despite their long-term survival, CA1 hippocampal interneurons in the gerbil can express severe structural abnormalities after transient cerebral ischemia coincident with pyramidal cell degeneration, and the injury to the dendrites can be prevented by the neuroprotectant diazepam. Hippocampus 1997; 7:511–523. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The specific connectivity among principal cells and interneurons determines the flow of activity in neuronal networks. To elucidate the connections between hippocampal principal cells and various classes of interneurons, CA3 pyramidal cells were intracellularly labelled with biocytin in anaesthetized rats and the three-dimensional distribution of their axon collaterals was reconstructed. The sections were double-stained for substance P receptor (SPR)- or metabotropic glutamate receptor 1alpha (mGluR-1alpha)-immunoreactivity to investigate interneuron targets of the CA3 pyramidal cells. SPR-containing interneurons represent a large portion of the GABAergic population, including spiny and aspiny classes. Axon terminals of CA3 pyramidal cells contacted SPR-positive interneuron dendrites in the hilus and in all hippocampal strata in both CA3 and CA1 regions (7.16% of all boutons). The majority of axons formed single contacts (87.5%), but multiple contacts (up to six) on single target neurons were also found. CA3 pyramidal cell axon collaterals innervated several types of morphologically different aspiny SPR-positive interneurons. In contrast, spiny SPR-interneurons or mGluR-1alpha-positive interneurons in the hilus, CA3 and CA1 regions were rarely contacted by the filled pyramidal cells. These findings indicate a strong target selection of CA3 pyramidal cells favouring the activation of aspiny classes of interneurons.  相似文献   

6.
In adult female, but not male, Sprague Dawley rats, chronic immobilization stress (CIS) increases mossy fiber (MF) Leu‐Enkephalin levels and redistributes delta‐ and mu‐opioid receptors (DORs and MORs) in hippocampal CA3 pyramidal cells and GABAergic interneurons to promote excitation and learning processes following subsequent opioid exposure. Here, we demonstrate that CIS females, but not males, acquire conditioned place preference (CPP) to oxycodone and that CIS “primes” the hippocampal opioid system in females for oxycodone‐associated learning. In CA3b, oxycodone‐injected (Oxy) CIS females relative to saline‐injected (Sal) CIS females exhibited an increase in the cytoplasmic and total densities of DORs in pyramidal cell dendrites so that they were similar to Sal‐ and Oxy‐CIS males. Consistent with our earlier studies, Sal‐ and Oxy‐CIS females but not CIS males had elevated DOR densities in MF‐CA3 dendritic spines, which we have previously shown are important for opioid‐mediated long‐term potentiation. In the dentate gyrus, Oxy‐CIS females had more DOR‐labeled interneurons than Sal‐CIS females. Moreover, Sal‐ and Oxy‐CIS females compared to both groups of CIS males had elevated levels of DORs and MORs in GABAergic interneuron dendrites, suggesting capacity for greater synthesis or storage of these receptors in circuits important for opioid‐mediated disinhibition. However, more plasmalemmal MORs were on large parvalbumin‐containing dendrites of Oxy‐CIS males compared to Sal‐CIS males, suggesting a limited ability for increased granule cell disinhibition. These results suggest that low levels of DORs in MF‐CA3 synapses and hilar GABAergic interneurons may contribute to the attenuation of oxycodone CPP in males exposed to CIS.  相似文献   

7.
The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long‐Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron‐selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin‐immunoreactive (‐ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron‐selective calretinin‐ir cells in the dentate gyrus of hippocampal‐kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67‐cells in caudate‐kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield‐selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389–406, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
A subpopulation of GABAergic cells in cortical structures expresses CB1 cannabinoid receptors (CB1) on their axon terminals. To understand the function of these interneurons in information processing, it is necessary to uncover how they are embedded into neuronal circuits. Therefore, the proportion of GABAergic terminals expressing CB1 and the morphological and electrophysiological properties of CB1‐immunoreactive interneurons should be revealed. We investigated the ratio and the origin of CB1‐expressing inhibitory boutons in the CA3 region of the hippocampus. Using immunocytochemical techniques, we estimated that ~40% of GABAergic axon terminals in different layers of CA3 also expressed CB1. To identify the inhibitory cell types expressing CB1 in this region, we recorded and intracellularly labeled interneurons in hippocampal slices. CB1‐expressing interneurons showed distinct axonal arborization, and were classified as basket cells, mossy‐fiber‐associated cells, dendritic‐layer‐innervating cells or perforant‐path‐associated cells. In each morphological category, a substantial variability in axonal projection was observed. In contrast to the diverse morphology, the active and passive membrane properties were found to be rather similar. Using paired recordings, we found that pyramidal cells displayed large and fast unitary postsynaptic currents in response to activating basket and mossy‐fiber‐associated cells, while they showed slower and smaller synaptic events in pairs originating from interneurons that innervate the dendritic layer, which may be due to dendritic filtering. In addition, CB1 activation significantly reduced the amplitude of the postsynaptic currents in each cell pair tested. Our data suggest that CB1‐expressing interneurons with different axonal projections have comparable physiological characteristics, contributing to a similar proportion of GABAergic inputs along the somato‐dendritic axis of CA3 pyramidal cells. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Intracellular recordings were obtained from nonpyramidal neurons (interneurons) in stratum lacunosum-moleculare (L-M) of the CA1 region of guinea pig hippocampal slices. These interneurons had response characteristics that distinguish them from pyramidal cells and other interneuron types: the L-M neurons had relatively broad action potentials with large spike afterhyperpolarizations, high input resistance and little spike-firing adaptation, and low spontaneous activity. Lucifer Yellow (LY) and horseradish peroxidase (HRP) were injected intracellularly into physiologically identified L-M interneurons, and the cells were characterized morphologically using light and electron microscopy. L-M somata were fusiform-shaped (15 x 25 micron), had multiple processes, and were located at the border between stratum (str.) lacunosum-moleculare and str. radiatum. L-M dendrites coursed through str. lacunosum-moleculare and projected into str. radiatum. L-M axons made axodendritic synaptic contacts primarily in str. lacunosum-moleculare and str. radiatum, but also in str. moleculare of the dentate gyrus. These axodendritic synaptic contacts were made onto spiny dendritic processes (presumably pyramidal cell and granule cell dendrites) and onto aspinous dendrites (presumably interneuron dendrites), and appeared to be of the symmetric type (type 2), characteristic of inhibitory synapses. In separate groups of animals, selective lesions were made of afferents to the CA1 and dentate regions of hippocampus, and subsequent degeneration of contacts and L-M interneuron somata and dendrites was examined at the ultrastructural level. Fibers originating from contralateral and ipsilateral CA3 region, and from ipsilateral entorhinal cortex, were found to make synaptic contact onto presumed L-M interneurons. Degenerating terminals appeared to be of the asymmetric type (type 1), characteristic of excitatory synapses. These morphological data are consistent with electrophysiological results showing that L-M interneurons can mediate feedforward inhibition of CA1 pyramidal cells.  相似文献   

10.
To assess the position of interneurons in the hippocampal network, fast spiking cells were recorded intracellularly in vitro and filled with biocytin. Sixteen non-principal cells were selected on the basis of 1) cell bodies located in the pyramidal layer and in the middle of the slice, 2) extensive labeling of their axons, and 3) a branching pattern of the axon indicating that they were not axo-axonic cells. Examination of their efferent synapses (n = 400) demonstrated that the cells made synapses on cell bodies, dendritic shafts, spines, and axon initial segments (AIS). Statistical analysis of the distribution of different postsynaptic elements, together with published data (n = 288) for 12 similar cells, showed that the interneurons were heterogeneous with regard to the frequency of synapses given to different parts of pyramidal cells. When the cells were grouped according to whether they had less or more than 40% somatic synaptic targets, each population appeared homogeneous. The population (n = 19) innervating a high proportion of somata (53 ± 10%, SD) corresponds to basket cells. They also form synapses with proximal dendrites (44 ± 12%) and rarely with AISs and spines. One well-filled basket cell had 8,859 boutons within the slice, covering an area of 0.331 mm2 of pyramidal layer tangentially and containing 7,150 pyramidal cells, 933 (13%) of which were calculated to be innervated, assuming that each pyramidal cell received nine to ten synapses. It was extrapolated that the intact axon probably had about 10,800 boutons innervating 1,140 pyramids. The proportion of innervated pyramidal cells decreased from 28% in the middle to 4% at the edge of the axonal field. The other group of neurons, the bistratified cells (n = 9), showed a preference for dendritic shafts (79 ± 8%) and spines (17 ± 8%) as synaptic targets, rarely terminating on somata (4 ± 8%). Their axonal field was significantly larger (1,250 ± 180 μm) in the medio-lateral direction than that of basket cells (760 ± 130 μm). The axon terminals of bistratified cells were smaller than those of basket cells. Furthermore, in contrast to bistratified cells, basket cells had a significant proportion of dendrites in stratum lacunosum-moleculare suggesting a direct entorhinal input. The results define two distinct types of GABAergic neuron innervating pyramidal cells in a spatially segregated manner and predict different functions for the two inputs. The perisomatic termination of basket cells is suited for the synchronization of a subset of pyramidal cells that they select from the population within their axonal field, whereas the termination of bistratified cells in conjunction with Schaffer collateral/commissural terminals may govern the timing of CA3 input and/or voltage-dependent conductances in the dendrites. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Physical exercise enhances adult neurogenesis in the hippocampus. Running induces the uptake of blood insulin‐like growth factor‐I (IGF‐I) into the brain. A causal link between these two phenomena has been reported; running‐induced increases in adult neurogenesis can be blocked by peripheral infusion of anti‐IGF‐I. Running also alters other aspects of hippocampal structure, including dendritic spine density. It remains unclear, however, whether these effects are also mediated through an IGF‐I mechanism. To examine this possibility, we blocked peripheral IGF‐I and examined adult neurogenesis and dendritic spine density in treadmill running mice. Two weeks of running resulted in an increase in cell proliferation in the dentate gyrus (DG) as well as an increase in dendritic spine density on DG granule cells and basal dendrites of CA1 pyramidal neurons, while having no effect on apical or basal dendritic spine density of CA3 pyramidal neurons. IGF‐I blockade reduced cell proliferation in both sedentary and running mice, but by contrast, this treatment had no effect on granule cell or CA3 pyramidal cell dendritic spine density in sedentary or running mice. However, IGF‐I antibody treatment seemed to prevent the running‐induced increase in spine density on basal dendrites of CA1 pyramidal cells. These results suggest that IGF‐I exerts a complex influence over hippocampal structure and that its effects are not restricted to those induced by running. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Long‐range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O‐LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin‐labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave‐ripples, most projection cells, including a novel SOM+ GABAergic back‐projecting cell, increased their activity similar to bistratified cells, but unlike O‐LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O‐LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior‐ and network state‐dependent binding of neuronal assemblies amongst functionally‐related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

13.
GABAergic inhibitory interneurons control fundamental aspects of neuronal network function. Their functional roles are assumed to be defined by the identity of their input synapses, the architecture of their dendritic tree, the passive and active membrane properties and finally the nature of their postsynaptic targets. Indeed, interneurons display a high degree of morphological and physiological heterogeneity. However, whether their morphological and physiological characteristics are correlated and whether interneuron diversity can be described by a continuum of GABAergic cell types or by distinct classes has remained unclear. Here we perform a detailed morphological and physiological characterization of GABAergic cells in the dentate gyrus, the input region of the hippocampus. To achieve an unbiased and efficient sampling and classification we used knock‐in mice expressing the enhanced green fluorescent protein (eGFP) in glutamate decarboxylase 67 (GAD67)‐positive neurons and performed cluster analysis. We identified five interneuron classes, each of them characterized by a distinct set of anatomical and physiological parameters. Cross‐correlation analysis further revealed a direct relation between morphological and physiological properties indicating that dentate gyrus interneurons fall into functionally distinct classes which may differentially control neuronal network activity. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

14.
Long term synaptic plasticity has been more extensively studied in excitatory synapses, but it is also a property of inhibitory synapses. Many inhibitory synapses target hippocampal pyramidal neurons of the CA1 region. They originate from several interneuron classes that subdivide the surface area that they target on the pyramidal cell. Thus, many interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Methods to preferentially activate dendritic or somatic inhibitory synapses onto pyramidal neurons have been devised. By using these methods, the present work demonstrates that a stimulation pattern that induces long term potentiation (LTP) in excitatory synapses of the Schaffer collaterals is also capable of inducing distinct types of long term plastic changes in different classes of inhibitory synapses: Induction of long term depression (LTD) was seen in dendritic inhibitory synapses whereas LTP was observed in somatic inhibitory synapses. These findings suggest that inhibitory synapses arising from different interneuron classes may respond to the same stimulus according to their specific plastic potential enabling a spatial combinatorial pattern of inhibitory effects onto the pyramidal cell.  相似文献   

15.
Electrophysiological and anatomical techniques were used to determine the role, in the hippocampal circuitry, of local circuit neurons located at the oriens/alveus border (O/A interneurons). Intracellular recording from these cells showed that their response characteristics were clearly nonpyramidal: high input resistance, short membrane time constant, short-duration action potential, pronounced, brief afterhyperpolarizations (AHP), and nondecremental firing during intrasomatic depolarizing current pulses. Intracellular Lucifer yellow (LY) injection and subsequent fluorescence microscopy confirmed their nonpyramidal nature. O/A interneuron somata were bipolar or multipolar; their dendrites projected mostly parallel to the alveus, except for 1 or 2 processes that turned perpendicularly, and ascended through stratum oriens and pyramidale and into radiatum. Their axons were seen to branch profusely in stratum oriens and pyramidale. Simultaneous intracellular recordings from O/A interneurons and CA 1 pyramidal cells showed that pyramidal cells directly excite these interneurons. Major hippocampal afferents also directly excited the O/A interneurons. In a small number of interneuron-pyramidal pairs, stimulation of the O/A interneuron directly inhibited pyramidal cells. In one case, reciprocal connections were observed: The pyramidal cell excited the interneuron, and the interneuron inhibited the pyramidal cell. In 1 interneuron-to-interneuron pair, an inhibitory connection from O/A interneuron to stratum pyramidale interneuron was also observed. With intracellular HRP injections into O/A interneurons and subsequent electron microscopy, we observed that O/A interneuron axons made contacts with pyramidal and nonpyramidal cells. HRP-filled symmetric synaptic contacts were found on pyramidal cell dendrites and somata. HRP-filled axons also made contacts with pyramidal cell initial segments. HRP-filled O/A interneuron axon contacts were also found on nonpyramidal cell dendrites in stratum oriens. These electrophysiological and anatomical results suggest that O/A interneurons make synaptic contact with pyramidal cells and may mediate feedforward and feedback inhibition onto CA 1 pyramidal cells.  相似文献   

16.
The two main glutamatergic pathways to the CA1 area, the Schaffer collateral/commissural input and the entorhinal fibers, as well as the local axons of CA1 pyramidal cells innervate both pyramidal cells and interneurons. To determine whether these inputs differ in their weights of activating GABAergic circuits, we have studied the relative proportion of pyramidal cells and interneurons among their postsynaptic targets in serial electron microscopic sections. Local axons of CA1 pyramidal cells, intracellularly labeled in vitro or in vivo, innervated a relatively high proportion of interneuronal postsynaptic targets (65.9 and 53.8%, in vitro and in vivo, respectively) in stratum (str.) oriens and alveus. In contrast, axons of in vitro labeled CA3 pyramidal cells in str. oriens and str. radiatum of the CA1 area made synaptic junctions predominantly with pyramidal cell spines (92.9%). The postsynaptic targets of anterogradely labeled medial entorhinal cortical boutons in CA1 str. lacunosum-moleculare were primarily pyramidal neuron dendritic spines and shafts (90.8%). The alvear group of the entorhinal afferents, traversing str. oriens, str. pyramidale, and str. radiatum showed a higher preference for innervating GABAergic cells (21.3%), particularly in str. oriens/alveus. These data demonstrate that different glutamatergic pathways innervate CA1 GABAergic cells to different extents. The results suggest that the numerically smaller CA1 local axonal inputs together with the alvear part of the entorhinal input preferentially act on GABAergic interneurons in contrast to the CA3, or the entorhinal input in str. lacunosum-moleculare. The results highlight differences in the postsynaptic target selection of the feed-forward versus recurrent glutamatergic inputs to the CA1 and CA3 areas.  相似文献   

17.
Dendrites of pyramidal neurons are complex, electrically active structures that can produce local and global Ca(2+) compartments. Recent studies indicate that dendrites of cortical GABAergic interneurons are also highly specialized, and that different subtypes vary in their morphology, in their intrinsic and synaptic conductances and in the Ca(2+) signals they generate. Because interneurons play a major role in oscillations, understanding their dendrites could offer key insights into rhythmogenesis. Different interneuron subtypes have different synaptic integration properties and generate differentially timed inhibition at distinct sites of the pyramidal neuraxis. In addition, interneuron dendrites generate diverse Ca(2+) signals that reflect this circuit function and probably also implement subclass-specific plasticity and homeostasis.  相似文献   

18.
Using the in vitro hippocampal slice preparation, we have investigated the effects of gamma-aminobutyric acid (GABA) and its analogue beta-(p-chlorophenyl)-GABA (baclofen) on CA1 and CA3 pyramidal cells in the developing rabbit hippocampus. Somatic applications: both GABA and baclofen, when applied to CA1 pyramidal cells from immature tissue, led to cell depolarization from resting membrane potential; this baclofen depolarization may be indirectly mediated. In contrast, CA3 pyramidal cells at the same age were primarily hyperpolarized by both drugs. In mature tissue, both GABA and baclofen applied at the soma induce cell hyperpolarizations. Dendritic applications: immature CA1 cells responded to dendritic GABA and baclofen application with depolarizations associated with increased cell excitability; here, too, the baclofen depolarization may be due to indirect 'disinhibition'. Both depolarizing and hyperpolarizing responses were recorded in immature tissue when GABA was applied to CA3 pyramidal cell dendrites: baclofen produced only hyperpolarizations. In mature CA1 cells, dendritic GABA application produced membrane depolarization, but dendritic baclofen application produced hyperpolarizations. In mature CA3 cells, dendritic GABA and baclofen application produced predominant hyperpolarizations. Mature CA1 pyramidal cells appear to retain some of the GABA-induced depolarizations characteristic of immature tissue. In contrast, mature CA3 neurons show only hyperpolarizing responses to GABA and baclofen application. In all cases, responses to GABA and baclofen are associated with a decrease in cell input resistance. We conclude that the GABAergic receptor/channel complexes mature differently in the CA1 and CA3 regions of the hippocampus.  相似文献   

19.
20.
Buckmaster PS 《Epilepsia》2012,53(Z1):9-17
Mossy cells are likely to contribute to normal hippocampal function and to the pathogenesis of neurologic disorders that involve the hippocampus, including epilepsy. Mossy cells are the least well-characterized excitatory neurons in the hippocampus. Their somatic and dendritic morphology has been described qualitatively but not quantitatively. In the present study rat mossy cells were labeled intracellularly with biocytin in vivo. Somatic and dendritic structure was reconstructed three-dimensionally. For comparison, granule cells, CA3 pyramidal cells, and CA1 pyramidal cells were labeled and analyzed using the same approach. Among the four types of hippocampal neurons, granule cells had the smallest somata, fewest primary dendrites and dendritic branches, and shortest total dendritic length. CA1 pyramidal cells had the most dendritic branches and longest total dendritic length. Mossy cells and CA3 pyramidal cells both had large somata and similar total dendritic lengths. However, mossy cell dendrites branched less than CA3 pyramidal cells, especially close to the soma. These findings suggest that mossy cells have dendritic features that are not identical to any other type of hippocampal neuron. Therefore, electrotonic properties that depend on soma-dendritic structure are likely to be distinct in mossy cells compared to other neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号