首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. Tomato plants grown in greenhouses in Thailand developed typical symptoms of a tomato yellow leaf curl Thailand virus (TYLCTHV) infection. After confirmation by ELISA, a Phi29 DNA polymerase approach was chosen for further molecular analysis of TYLCTHV. Total DNA purified from infected tomato leaves was subjected to rolling-circle amplification (RCA) of DNA-A and DNA-B of TYLCVTHV. In addition, a new monopartite geminivirus with a putative recombinant background was identified by RCA and tentatively named tobacco leaf curl Thailand virus (TbLCTHV). To confirm the composition of both geminiviruses, full-length clones were established and used for inoculation of Nicotiana benthamiana by particle bombardment or agroinfection. When TYLCTHV DNA-A and DNA-B were applied together by particle bombardment or agroinfection, severe stunting, yellowing, and leaf curling were observed. Whereas TYLCTHV DNA-A and TbLCTHV revealed no infection after'particle bombardment, similar symptoms in N. benthamiana, like leaf upward curling and yellowing were observed following agroinfection. DNA components of TYLCTHV DNA-A and DNA-B were excised from their respective plasmids, ligated, and amplified by Phi29 DNA polymerase. The ability of viral concatamere inoculation was evaluated in particle co-bombardment experiments on N. benthamiana. Thus, particle bombardment of RCA-derived multimeric products proved to be at least as effective as inoculation with a partial repeat construct and tenfold as effective as inoculation with excised unit-lengths of DNA-A and DNA-B of TYLCVTHV when using each DNA component in an amount of 5 ng.  相似文献   

2.
Tomato leaf curl is a serious malady in the state of Maharashtra, India, causing nearly 100 % yield loss. An extensive survey was done in the affected fields of tomato in the year 2008, and members of three species of begomoviruses were identified as causing the disease. More than 60 % of the samples from diseased plants were infected with tomato leaf curl Gujarat virus (ToLCGuV). Isolates collected from these fields differed from the Varanasi isolate of ToLCGuV in not having a DNA B component. Instead, they were like typical Old World monopartite begomoviruses in that they were associated with only one betasatellite, tomato yellow leaf curl Thailand betasatellite (TYLCTHB). ToLCGuV alone is readily infectious, expressing systemic symptoms in Nicotiana benthamiana and tomato. Co-inoculation of ToLCGuV with TYLCTHB, increased symptom severity and reduced the incubation time required for symptom expression. ToLCGuV successfully interacted with heterologous DNA B component of ToLCNDV [IN:Pun:JID:08], and co-inoculation of these two resulted in yellow mottling symptoms that were typical of DNA B.  相似文献   

3.
The complete genome sequence of a distinct variant of tomato yellow leaf curl virus-Israel (TYLCV-IL) and the DNA-A sequence of a new strain of tomato severe leaf curl virus (ToSLCV) isolated in San Luis Potosi, Mexico, are described and analyzed. The TYLCV-IL[MX:SLP:11] variant differs from all TYLCV-IL isolates described so far by a unique 42-nt duplicated sequence comprising a part of the conserved stem-loop element of the virion-strand replication origin and adjacent regulatory sequences. TYLCV-IL[MX:SLP:11] was associated with tomato chino La Paz virus (ToChLPV-B[MX:SLP:11]) in a Solanum pimpinellifolium plant, and with pepper huasteco yellow vein virus (PHYVV-[MX:SLP:11]) and ToSLCV-GT[MX:SLP:11] in a Solanum lycopersicum plant. In addition, a distinct ToSLCV exhibiting low sequence identity (<89?%) to other ToSLCV isolates from Mexico was found in a tomato plant collected in the same field. Sequence analysis of this new ToSLCV strain indicates that it is a recombinant of close relatives of ToSLCV-GT[MX:SLP:11] and ToChLPV-B[MX:SLP:11] found in mixed infections with TYLCV-IL[MX:SLP:11].  相似文献   

4.
Summary To determine the effects of plant age on the expression of genetic resistance to tomato yellow leaf curl virus (TYLCV), six TYLCV-resistant and two susceptible tomato varieties were inoculated at 14, 28 or 45 days after sowing (DAS). Inoculation at 14 and 28 DAS was performed in the greenhouse, and the plants were transplanted to the field at 30 DAS. Inoculation at 45 DAS was performed in the field, by covering the target plants with polypropylene (“Agril”) sheets and releasing viruliferous whiteflies under them. Resistance was assayed mainly by comparing yield components of inoculated plants to those of control, non-inoculated plants of the same variety. Symptom severity and plant height were also followed. Plant age at inoculation had no effect on disease-severity scores of the susceptible varieties, and little or no effect on those of the resistant varieties. In contrast, plant age at inoculation had a significant effect on the yield of all varieties tested. All varieties suffered a significant yield reduction due to inoculation with TYLCV; the lowest yield was produced by plants inoculated at 14 DAS. A smaller TYLCV-induced yield reduction (yield increase of 50 to 100%, depending on the variety’s resistance level), was achieved following inoculation at 28 DAS. A further reduction in yield loss (yield increase of 30 to 40%) was achieved following inoculation at 45 DAS. Our results clearly demonstrate the occurrence of age-related (or mature-plant) resistance in tomato plants to TYLCV. Correspondence: Moshe Lapidot, Volcani Center, Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Bet Dagan 50250, Israel  相似文献   

5.
The complete nucleotide sequence was determined for a begomovirus isolated from tomato exhibiting leaf curling and yellowing symptoms in Tochigi Prefecture in Japan. The genome organization of this virus was similar to those of other Old World monopartite begomoviruses. Neither a DNA betasatellite nor a DNA-B component was detected. It had the highest total nucleotide sequence identity (99%) with tomato yellow leaf curl virus-Israel[Japan:Tosa:2005] (TYLCV-IL[JR:Tos:05]) and TYLCV-Israel[Japan:Haruno:2005] (TYLCV-IL[JR:Han:05]). Its coat protein V1 also showed an identical amino acid sequence with those of TYLCV-IL[JR:Tos:05] and TYLCV-IL[JR:Han:05]. Thus, the begomovirus was determined to be an isolate of TYLCV-IL designated as TYLCV-Israel[Japan:Tochigi:2007] (TYLCV-IL[JR:Toc:07]). We investigated the interaction of TYLCV-IL[JR:Toc:07] with two known satellites associated with tomato yellow dwarf disease in Japan, tobacco leaf curl Japan betasatellite [Japan:Ibaraki:2006] and honeysuckle yellow vein mosaic betasatellite [Japan:Nara:2006], as well as with tomato leaf curl Philippines betasatellite [Philippines:Laguna1:2008], in tomato and Nicotiana benthamiana plants. TYLCV-IL[JR:Toc:07] trans-replicated these betasatellites, inducing more severe tomato yellow leaf curl disease-related symptoms than TYLCV-IL[JR:Toc:07] alone.  相似文献   

6.
Soybean dwarf virus (SbDV), a member of the genus Luteovirus, has been transmitted only by aphid vectors. The possibility of using a biolistic procedure of transmitting SbDV to soybean plants without relying on aphid vectors was investigated. Biolistic inoculation using the Helios Gene Gun System with RNA transcribed in vitro from a full-length cDNA clone of the DS strain of SbDV (pSV-DS) resulted in 1/12 to 3/13 soybean plants infected systemically. The infected soybean plants showed the characteristic symptoms of SbDV-DS within 6 weeks after inoculation and the accumulation of SbDV-specific RNA species such as genomic and subgenomic RNAs in the upper non-inoculated leaves. The progeny virus derived from RNA transcribed in vitro from pSV-DS could be transmitted by aphid vectors, as is the case with native SbDV-DS. This is the first report of direct inoculation of soybean plants with SbDV without using aphid vectors.  相似文献   

7.
The genomic DNA molecule of tomato yellow leaf curl virus (TYLCV), a whitefly-transmitted geminivirus, was amplified from total DNA extracts of TYLCV-infected tomato (Lycopersicon esculentum) by the use of loop-mediated isothermal amplification (LAMP). The procedure was also used to amplify TYLCV DNA from total DNA extracts of individual whiteflies (Bemisia tabaci) that had fed on TYLCV-infected plants. One of the characteristics of the LAMP method is its ability to synthesize an extremely large amount of DNA. Accordingly, a large amount of by-product, pyrophosphate ion, is produced yielding a white precipitate of magnesium pyrophosphate in the reaction mixture. The presence or absence of this white precipitate allows easy detection of amplification of TYLCV genomic DNA without gel electrophoresis.  相似文献   

8.
Several tomato production regions in China were surveyed for tomato yellow leaf curl disease (TYLCD), and 31 tomato leaf samples showing TYLCD-like symptoms were collected. The partial or full-length genomes of these isolates were sequenced and tomato yellow leaf curl virus (TYLCV) was detected in Shanghai, Zhejiang, Jiangsu Shandong and Hebei provinces of China. The TYLCV isolates found in China share high sequence identity (>98%) and have more than 97% sequence identity with TYLCV-IL[IL:Reo] (X15656). Phylogenetic relationship analysis reveals that although with little genetic variability, they can form two groups and all the TYLCV isolates in China belong to the group I. An infectious clone of TYLCV-[CN:SH2] (AM282874) was constructed and agro-inoculated into Nicotiana benthamiana, N. tabacum Samsun, N. glutinosa, Solanum lycopersicum, Petunia hybrida, Cucumis sativus, Gossypium hirsutum, S. melongena, and Capsicum annuum. TYLCV-[CN:SH2] can induce severe leaf curling and stunting symptoms in these plants except C. sativus, G. hirsutum, S. melongena and C. annuum. We verified that TYLCV can trans-replicate tomato yellow leaf curl China virus DNA-β in N. benthamiana and S. lycopersicum and induced more severe symptoms with distortion and yellow vein.  相似文献   

9.
Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, has a single-stranded DNA genome. TYLCV can induce severe disease symptoms on tomato plants, but other hosts plants such as cucurbits and peppers are asymptomatic. A full-length DNA clone of a Korean TYLCV isolate was constructed by rolling-circle amplification from TYLCV-infected tomatoes in Korea. To assess relative susceptibility of sweet pepper varieties to TYLCV, 19 cultivars were inoculated with cloned TYLCV by agro-inoculation. All TYLCV-infected sweet peppers were asymptomatic, even though Southern hybridization and polymerase chain reaction analysis showed TYLCV genomic DNA accumulation in roots, stems, and newly produced shoots. Southern hybridization indicated that TYLCV replicated and moved systemically from agro-inoculated apical shoot tips to roots or newly produced shoots of sweet peppers. Whitefly-mediated inoculation experiments showed that TYLCV can be transmitted to tomatoes from TYLCV-infected sweet peppers. Taken together, these results indicate that sweet pepper can be a reservoir for TYLCV in nature.  相似文献   

10.
A worldwide survey of tomato yellow leaf curl viruses   总被引:5,自引:0,他引:5  
Summary.  The name tomato yellow leaf curl virus (TYLCV) has been given to several whitefly-transmitted geminiviruses affecting tomato cultures in many tropical and subtropical regions. Hybridization tests with two DNA probes derived from a cloned isolate of TYLCV from Israel (TYLCV-ISR) were used to assess the affinities of viruses in naturally infected tomato plants with yellow leaf curl or leaf curl symptoms from 25 countries. Probe A which included most of the intergenic region was expected to detect only isolates closely related to TYLCV-ISR, especially after high stringency washes. In contrast probe B, which included the full-length genome, was expected to detect a wide range of whitefly-transmitted geminiviruses. Tomato samples from six countries in the Middle East, from Cuba or the Dominican Republic proved to be closely related to TYLCV-ISR and probably were infected by strains of the same virus. Samples from Senegal and Cape Verde Islands were also related to the Middle Eastern virus. Samples from nine other countries in the western Mediterranean area, Africa, or South-East Asia were more distantly related and probably represent one or more additional geminivirus species. Samples from five countries in Africa, Central or South America gave hybridization signals with the full-length viral genome, only after low stringency wash, indicating that these samples were infected by remote viruses. These results were supported by DNA and protein sequence comparison, which indicate that tomato geminiviruses fall into three main clusters representing viruses from 1) the Mediterranean/Middle East/African region, 2) India, the Far East and Australia, and 3) the Americas. Within the first cluster, two sub-clusters of viruses from the western Mediterranean or from the Middle East/Caribbean Islands were distinguished. The incidence of tomato yellow leaf curl diseases has increased considerably between 1990 and 1996. Accepted January 28, 1997; Received April 19, 1996  相似文献   

11.
12.
To investigate the infectivity of Euphorbia leaf curl virus (EuLCV), an infectious clone was constructed and tested by agroinoculation and whitefly inoculation. EuLCV infected Nicotiana benthamiana, N. glutinosa, Solanum lycopersicum, Petunia hybrida efficiently upon agroinoculation and induced leaf curling, vein swelling and stunting in these plants but no symptoms in N. tabacum. Co-inoculation of EuLCV with a betasatellite DNA from an unrelated begomovirus enhanced symptoms in N. benthamiana, N. glutinosa, N. tabacum, S. lycopersicum and P. hybrida plants but had no effect on the accumulation of EuLCV DNA. Euphorbia pulcherrima plants were only infectable by insect transmission from agro-infected P. hybrida as a source. This is the first report about a monopartite begomovirus that has been reintroduced into a plant of the genus Euphorbia.  相似文献   

13.
Tomato yellow leaf curl Sardinia virus (TYLCSV) (Geminiviridae) is an important pathogen severely affecting tomato production in the Mediterranean basin. Although diagnostic protocols are available for its detection in plants and its vector Bemisia tabaci (Gennadius), suitable tools for estimating and comparing viral loads in plant and insect tissues are needed. In this paper, real-time PCR methods are described for quantitation of TYLCSV in both tomato plant and whitefly extracts. The DNA extraction method was optimised on TYLCSV-infected tomato tissue. The amount of virus was determined using specific primers and probe and standardised to the amount of DNA present in each sample, using selected endogenous tomato or Bemisia genes as internal references. The distribution of TYLCSV was relatively quantified within the four uppermost leaves of plants. An absolute estimation of the amount of TYLCSV in the first leaf below the apex was obtained. The kinetics of virus retention within different batches of viruliferous whiteflies was also analysed. The real-time PCR was 2200-fold more sensitive than membrane hybridisation, allowing detection of as few as 10 viral copies in a sample. These methods are potentially suitable for several applications, such as plant breeding for resistance, analysis of virus replication, and virus-vector interaction studies.  相似文献   

14.
Blawid R  Van DT  Maiss E 《Virus research》2008,136(1-2):107-117
The genomes of two tomato-infecting begomoviruses from Vietnam were cloned and sequenced. A new variant of Tomato leaf curl Vietnam virus (ToLCVV) consisting of a DNA-A component and associated with a DNAbeta molecule as well as an additional begomovirus tentatively named Tomato yellow leaf curl Vietnam virus (TYLCVV) consisting also of a DNA-A component were identified. To verify if monopartite viruses occurring in Vietnam and Thailand are able to transreplicate the DNA-B component of Tomato yellow leaf curl Thailand virus-[Asian Institute of Technology] (TYLCTHV-[AIT]) infectivity assays were performed via agroinoculation and mechanically. As result, the DNA-B component of TYLCTHV-[AIT] was transreplicated by different DNA-A components of viruses from Vietnam and Thailand in Nicotiana benthamiana and Solanum lycopersicum. Moreover, the TYLCTHV-[AIT] DNA-B component facilitated the mechanical transmission of monopartite viruses by rub-inoculation as well as by particle bombardment in N. benthamiana and tomato plants. Finally, defective DNAs ranging from 735 to 1457 nucleotides were generated in N. benthamiana from those combinations containing TYLCTHV-[AIT] DNA-B component.  相似文献   

15.
Ogawa T  Sharma P  Ikegami M 《Virus research》2008,137(2):235-244
The complete nucleotide sequences of two begomoviruses (Nara virus-1 and Nara virus-2), a satellite DNA (DNAbeta-Nara) and defective DNAs were obtained from honeysuckle (Lonicera japonica) showing characteristic yellow vein mosaic symptoms in Nara Prefecture, Japan. One begomovirus (Ibaraki virus) and a satellite DNA (DNAbeta-Ibaraki) was isolated and cloned from honeysuckle plants exhibited typical yellowing of veins and small elliptical shaped enations along veins on the under side of the leaves in Ibaraki Prefecture, Japan. The genome organization of the three viruses is the same as those of other Old World monopartite begomoviruses. Nara virus-1 had overall nucleotide sequence identity with Nara virus-2 of 94% and Ibaraki virus of 90%. DNAbeta-Nara had overall nucleotide sequence identity with DNAbeta-Ibaraki of 83%. Comparison of the nucleotide sequences with other begomoviruses revealed that Nara virus-1 and Nara virus-2 are strains of Honeysuckle yellow vein mosaic virus (HYVMV), hence named as HYVMV-Nara1 and HYVMV-Nara2, whereas Ibaraki virus was a strain of Tobacco leaf curl Japan virus (TbLCJV), designated as TbLCJV-Hs[Iba]. HYVMV-Nara1 and HYVMV-Nara2 have hybrid genomes, which are likely to have formed recombination between HYVMV and TbLCJV. TbLCJV-Hs[Iba] or HYVMV-Nara2 could infect and cause yellowing, leaf crinkling and stunting symptoms when partial tandem dimeric constructs were agroinoculated on tomato plants. However, in the presence of DNAbeta, both TbLCJV-Hs[Iba] or HYVMV-Nara2 produced more severe stunting symptoms in tomato plants. Therefore, these viruses along with their satellites are causal agents of tomato yellow dwarf disease in Japan, and honeysuckle acts as a potential reservoir host. Previously available evidence indicated that DNAbeta elements do not contain iteron sequences of their helper viruses; hence this is the first evidence that DNAbeta satellites have the iteron of their helper virus.  相似文献   

16.
A begomovirus causing mottling and leaf deformation in tomato from the State of Mérida was cloned and sequenced. The virus has a bipartite genome comprised of a DNA-A (2,572 nucleotides) and a DNA-B (2,543 nucleotides) with a genome organization typical of New World begomoviruses. Both components share a common region of 115 nucleotides with 98 % sequence identity. Phylogenetic analysis indicated that while no virus sequences were closely related, the A component was distantly related to those of two other tomato-infecting viruses, tomato leaf deformation virus and Merremia mosaic virus; and the DNA-B, to those of pepper huasteco yellow vein virus and Rhynchosia golden mosaic Yucatan virus. The DNA-A and DNA-B sequences were submitted to GenBank (accession no. AY508993 and AY508994, respectively) and later accepted by the International Committee on Taxonomy of Viruses as the genome of a member of a unique virus species with the name Tomato yellow margin leaf curl virus (TYMLCV). Tomato (Solanum lycopersicum L. ‘Fl. Lanai’) plants inoculated with cloned TYMLCV DNA-A and DNA-B became systemically infected and showed chlorotic margins and leaf curling. The distribution of TYMLCV in tomato-producing states in Venezuela was determined by nucleic acid spot hybridization analysis of 334 tomato leaf samples collected from ten states using a TYMLCV-specific probe and confirmed by PCR and sequencing of the PCR fragment. TYMLCV was detected in samples from the states of Aragua, Guárico, and Mérida, suggesting that TYMLCV is widely distributed in Venezuela.  相似文献   

17.
Summary Symptom development in tomato plants following whitefly-mediated inoculation with tomato yellow leaf curl virus (TYLCV) was related to the occurrence of viral DNA using a specific DNA probe. Although disease symptoms were first observed 15 days post-inoculation, viral DNA could be detected 7 days earlier. TYLCV-DNA concentrations reached an optimum 4 days before symptoms appeared. The highest concentrations of TYLCV-DNA were found in rapidly growing tissues (shoot apex, young leaves, roots) and in the stems; the lowest concentrations were found in the older leaves and cotyledons. Plants were also inoculated on specific sites. Young leaves and apices were the best targets for virus inoculation. In these tissues, the viral DNA replicated at the site of inoculation and was transported first to the roots, then to the shoot apex and to the neighboring leaves and the flowers. Inoculation through the oldest leaves was inefficient.  相似文献   

18.
19.
Ueda S  Onuki M  Yamashita M  Yamato Y 《Virus genes》2012,44(2):338-344
Tomato yellow leaf curl virus (TYLCV) and Ageratum yellow vein betasatellite (AYVB) are members of the genus Begomovirus (family Geminiviridae). TYLCV and AYVB have been found in Japan over the last 15 years, and are associated with tomato leaf curl and the tomato yellow leaf curl diseases (TYLCD). AYVB is also associated with some monopartite begomoviruses. We have cloned both TYLCV and AYVB and demonstrated that TYLCV can trans-replicate with AYVB in Nicotiana benthamiana and tomato plants. A mixed infection of TYLCV and AYVB induced more severe symptoms of upward leaf curl, stunting, vein thickening, and swelling compared with TYLCV infection alone. The symptoms induced by infection of AYVB included a rise in abnormal cell proliferation, and pigmentation around leaf vein tissues. This is the first study to show that a complex of TYLCV and AYVB can be transmitted by vector insects among tomato plants. These results indicate that TYLCV possesses the potential to induce severe TYLCD by associating with AYVB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号