首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axons in WldS mutant mice are protected from Wallerian degeneration by overexpression of a chimeric Ube4b/Nmnat (Wld) gene. Expression of Wld protein was independent of age in these mice. However we identified two distinct neuromuscular synaptic responses to axotomy. In young adult Wlds mice, axotomy induced progressive, asynchronous synapse withdrawal from motor endplates, strongly resembling neonatal synapse elimination. Thus, five days after axotomy, 50–90 % of endplates were still partially or fully occupied and expressed endplate potentials (EPPs). By 10 days, fewer than 20 % of endplates still showed evidence of synaptic activity. Recordings from partially occupied junctions indicated a progressive decrease in quantal content in inverse proportion to endplate occupancy. In Wlds mice aged > 7 months, axons were still protected from axotomy but synapses degenerated rapidly, in wild-type fashion: within three days less than 5 % of endplates contained vestiges of nerve terminals. The axotomy-induced synaptic withdrawal phenotype decayed with a time constant of ∼30 days. Regenerated synapses in mature Wlds mice recapitulated the juvenile phenotype. Within 4–6 days of axotomy 30–50 % of regenerated nerve terminals still occupied motor endplates. Age-dependent synapse withdrawal was also seen in transgenic mice expressing the Wld gene. Co-expression of Wld protein and cyan fluorescent protein (CFP) in axons and neuromuscular synapses did not interfere with the protection from axotomy conferred by the Wld gene. Thus, Wld expression unmasks age-dependent, compartmentally organised programmes of synapse withdrawal and degeneration.  相似文献   

2.
Neuromuscular synapse elimination, Wallerian degeneration and peripheral neuropathies are not normally considered as related phenomena. However, recent studies of mutant and transgenic mice, particularly the Wld(S) mutant-in which orthograde degeneration is delayed following axotomy-suggest that re-evaluation of possible links between natural, traumatic and pathogenic regression of synapses may be warranted. During developmental synapse elimination from polyneuronally innervated junctions, some motor nerve terminals progressively and asynchronously vacate motor endplates. A form of asynchronous synapse withdrawal, strongly resembling synapse elimination, also occurs from mononeuronally-innervated motor endplates following axotomy in young adult Wld(S) mutant mice. A similar pattern is observed in skeletal muscles of several neuropathic mutants, including mouse models of dying-back neuropathies, motor neuron disease and-remarkably-models of neurodegenerative diseases such as Huntington's and Alzheimer's diseases. Taken together with recent analysis of synaptic remodelling at neuromuscular junctions in Drosophila, a strong candidate for a common regulatory mechanism in these diverse conditions is one based on protein ubiquitination/deubiquitination. Axotomised neuromuscular junctions in Wld(S) mutant mice offer favourable experimental opportunities for examining developmental mechanisms of synaptic regression, that may also benefit our understanding of how degeneration in the synaptic compartment of a neuron is initiated, and its role in progressive, whole-cell neuronal degeneration.  相似文献   

3.
Motor nerve terminals are known to be vulnerable to a wide range of pathological stimuli. To further characterize this vulnerability, we have developed a novel model system to examine the response of mouse motor nerve terminals in ex vivo nerve/muscle preparations to 2 h hypoxia followed by 2 h reperfusion. This insult induced a rapid loss of neurofilament and synaptic vesicle protein immunoreactivity at pre-synaptic motor nerve terminals but did not appear to affect post-synaptic endplates or muscle fibres. The severity of nerve terminal loss was dependent on the age of the mouse and muscle type: in 8–12-week-old mice the predominantly fast-twitch lumbrical muscles showed an 82.5% loss, whereas the predominantly slow-twitch muscles transversus abdominis and triangularis sterni showed a 57.8% and 27.2% loss, respectively. This was contrasted with a > 97% loss in the predominantly slow-twitch muscles from 5–6-week-old mice. We have also demonstrated that nerve terminal loss occurs by a mechanism distinct from Wallerian degeneration, as the slow Wallerian degeneration ( Wlds ) gene did not modify the extent of nerve terminal pathology. Together, these data show that our new model of hypoxia–reperfusion injury is robust and repeatable, that it induces rapid, quantitative changes in motor nerve terminals and that it can be used to further examine the mechanisms regulating nerve terminal vulnerability in response to hypoxia–reperfusion injury.  相似文献   

4.
The synaptic vesicle cycle is vital for sustained neurotransmitter release. It has been assumed that functional synaptic vesicles are replenished autonomously at individual presynaptic terminals. Here we tested this assumption by using FM dyes in combination with fluorescence recovery after photobleaching and correlative light and electron microscopy in cultured rat hippocampal neurons. After photobleaching, synapses acquired recently recycled FM dye-labeled vesicles originating from nonphotobleached synapses by a process requiring dynamic actin turnover. The imported vesicles entered the functional pool at their host synapses, as revealed by the exocytic release of the dye upon stimulation. FM1-43 photoconversion and ultrastructural analysis confirmed the incorporation of imported vesicles into the presynaptic terminal, where they mixed with the native vesicle pools. Our results demonstrate that synaptic vesicle recycling is not confined to individual presynaptic terminals as is widely believed; rather, a substantial proportion of recycling vesicles are shared constitutively between boutons.  相似文献   

5.
This study was designed to evaluate whether the vesicular acetylcholine transporter (VAChT), which packages acetylcholine into synaptic vesicles, can be used as a marker for regenerating motor axon terminal. We examined motor axon regeneration in the tongue after hypoglossal nerve axotomy, using an anterograde tracer biotin-dextran (BD), retrograde tracer Fluoro-Gold (FG), electron microscopic (EM) observation, and VAChT immunocytochemistry. BD study demonstrated that outgrowth of thin regenerating axons into the frontal area of the tongue was firstly observed at 14 post-operative days, and presynaptic formation of neuromuscular junction (NMJ) was observed from 21 post-operative days. Under electron microscopic observation, reconstruction of new NMJs was observed within the interval between 21 and 28 days. VAChT-immunoreactive nerve terminals disappeared by 3 days after axotomy, slightly appeared at 14 post-operative days, and thereafter gradually increased in number from 21 to 28 post-operative days. The re-expression of VAChT positive presynaptic terminal was almost the same as those obtained in BD, FG and EM studies. Regenerating axons tip in the crush model of the hypoglossal nerve exhibited prominent VAChT immunoreactivity in growing tip of regenerating axons. These indicate that VAChT is an excellent morphological indicator for regenerating nerve terminals of motor neurons.  相似文献   

6.
The facial nerve was unilaterally crushed at its exit from the stylomastoid foramen in three 3-month old male rats. After 10 days survival, before the regenerating axons had reinnervated their target muscles, the facial nucleus was examined to determine central patterns of response in material prepared to demonstrate the presence of GABA-like immunoreactivity with postembedding procedures using gold-labeled secondary antibody. The uninjured nucleus served as a control. In both control and injured nuclei, the GABAergic terminals synapse with all parts of the motor neurons, except the axon, and exhibit diverse morphologies. GABAergic axon terminals vary in their size and in the electron density of their axoplasm and the majority of the terminals contain pleomorphic vesicle profiles that display a range in their packing density and size. In both control and injured facial nuclei, only ~40% of the axon terminal profiles with pleomorphic vesicles exhibit GABA immunoreactivity. A morphometric analysis of the synaptic vesicle profiles in the GABA-positive terminals reveals that following axotomy there is no change in the mean number of synaptic vesicle profiles per GABAergic terminal profile. However, the mean size of the synaptic vesicle profiles in these terminals shows an axotomy-induced 50% increase, without change in the shapes of the enlarged vesicle profiles. Also, the numerical density of gold particles associated with the GABA-positive terminals is consistently greater in the injured than the control axon terminals. In the control animals quantitative analysis of the relative distribution of all axon terminal profiles in the neuropil categorized by the shape of their vesicle profiles as round, pleomorphic, or flat is 57:37:6. Ten days after axotomy the ratio of these categories in the injured nucleus has shifted to 35:60:5. This study demonstrates that the functional state of a postsynaptic target can influence the morphology of vesicle profiles in presynaptic elements as well as patterns of its afferent input. © 1994 Wiley-Liss, Inc.  相似文献   

7.
1. Electrophysiological and electron microscope studies were done on cells in the ciliary ganglion of chickens which had been axotomized on the day of hatching. 2. By the third day after post-ganglionic axotomy both electrical and chemical transmission through the ganglion were severely depressed; by the fifth day ganglionic transmission had disappeared. 3. Action potential initiation and conduction in axotomized cells and in their associated presynaptic nerve terminals were unimpaired 3-4 days after axotomy. 4. Depression of ganglionic transmission in 3-4 day axotomized preparations was due to a reduction in amplitude of both the excitatory post-synaptic potential (e.p.s.p.) and the electrical coupling potential in individual ganglion cells. 5. In addition to being reduced in amplitude, e.p.s.p.s in axotomized cells were more subject to fatigue during low frequency (1/sec) stimulation. 6. The reduction in e.p.s.p. amplitude was due to a reduction in both the mean quantal content of the e.p.s.p.s and the calculated depolarization produced by an individual quantum of transmitter. On the average the e.p.s.p. was reduced by a factor of about 4, the mean quantum content to about two thirds normal and the quantal size to about a third normal, compared with responses in unaxotomized cells of the same age. 7. Ultrastructural studies revealed a progressive maturation of pre-synaptic terminals in normal ganglia between 0 and 9 days after hatching. Over this period the content of synaptic vesicles and mitochondria in the terminals increased and the background matrix became more dense. 8. After axotomy these signs of maturation was abolished or reversed, particularly from the third day onward. In addition there was an increase in the number of cell sections in which no synaptic terminals were observed. 9. It was concluded that loss of synaptic transmission was due to at least three factors: a reduction in release of transmitter from presynaptic terminals, a reduction in quantal size, probably due to a loss of post-synaptic sensitivity, and a partial loss of presynaptic contact.  相似文献   

8.
Summary A quantitative study of the ultrastructural changes occurring at degenerating motor axon terminals of the mouse hemidiaphragm in the first 26 h following unilateral phrenicotomy has been made. Several ultrastructural characteristics of axon terminals from normal diaphragms and phrenicotomized and control hemidiaphragms of phrenicotomized preparations were analyzed. Considerable swelling and disruption of mitochondria occurred in terminals of control hemidiaphragms at 3, 6 and 9 h post-phrenicotomy after which no more damage than that seen in normal terminals after fixation for electron microscopy was observed. At terminals of the phrenicotomized hemidiaphragm, much mitochondrial damage was observed from 3 h post-phrenicotomy onwards. In phrenicotomized hemidiaphragms all terminals had completely degenerated by 26 h post-phrenicotomy. Reduced synaptic vesicle population densities occurred during degeneration. At many axon terminals on phrenicotomized hemidiaphragms the population densities of synaptic vesicles were reduced compared with controls and vesicle aggregates were noted in many engulfed or partially engulfed nerve terminals.These results are discussed with respect to the vesicle hypothesis for nerve-muscle transmission. The mechanisms underlying Schwann cell hyperactivity are also considered.  相似文献   

9.
Summary The effect of purified Naja nigricollis phospholipase A on slices from motor cortex from rat brain was analysed at an ultrastructural level. Samples stabilized directly with glutaraldehyde were compared with samples incubated in buffer with or without enzyme.Plasma membranes of nerve terminals, synaptic contact regions and synaptic vesicles were the main parameters studied. As judged by the electron microscopic technique the synaptic areas show a high resistance to the enzyme treatment. The intercellular space of the synaptic cleft seems unaltered. At the highest concentrations of the enzyme an increased density is noticed at the presynaptic part of the membrane. The extracellular space widens and nerve terminals and mitochondria become distended with increasing enzyme concentrations. The membranes all through the tissue appear ruptured to small pieces and at the highest enzyme concentrations used, altered in their structural organization. Quantitative analysis shows that the number of synaptic vesicles per unit surface area decreases, while ruptures of the plasma membranes of nerve terminals increase in number with increasing enzyme concentrations.This investigation was supported by grants No. B71-40X-3282-01 and No. B72-12X-3282-02 from the Swedish Medical Research Council.  相似文献   

10.
Both spinal hemisection (SH) at C2 and tetrodotoxin (TTX) phrenic nerve blockade result in diaphragm muscle paralysis and inactivity of the phrenic axon terminals. However, phrenic motoneuron somata are inactive with SH but remain active with TTX phrenic nerve blockade. Neuromuscular transmission failure with repeated activation decreases following SH and increases following TTX phrenic nerve blockade, suggesting that matching (or mismatching) of somal and synaptic inactivities of phrenic motoneurons differentially regulates synaptic vesicle pools at diaphragm neuromuscular junctions. At individual type-identified rat diaphragm presynaptic terminals, the size of the releasable pool of synaptic vesicles was analyzed by fluorescence confocal microscopy of N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl) pyridinium dibromide (FM4-64) uptake and synaptic vesicle density at active zones was determined using transmission electron microscopy. After 14 days of SH and TTX-induced diaphragm muscle inactivity, neuromuscular junction size was not different at type I or IIa fibers, but increased at type IIx and/or IIb fibers (by 51% in SH and 35% in TTX) compared with control. With SH, synaptic vesicle pool size and density increased at presynaptic terminals innervating type I or IIa fibers (17 and 63%, respectively; P<0.001) and type IIx and/or IIb fibers (41 and 31%, respectively; P<0.001) when compared with controls. Following TTX, synaptic vesicle pool size and density decreased by 64 and 17%, respectively, at presynaptic terminals innervating type I or IIa fibers, and by 50 and 36%, respectively, at type IIx and/or IIb fibers (P<0.001, for all comparisons). Thus, matching motoneuron soma and axon terminal inactivity (SH) increases the size and density of releasable synaptic vesicle pools at adult rat diaphragm neuromuscular junctions. Mismatching motoneuron soma and axon terminal inactivities (TTX) results in converse presynaptic adaptations. Inactivity-induced neuromuscular plasticity reflects specific adaptations in the size and density of synaptic vesicle pools that depend on motoneuron soma rather than axon terminal (or muscle fiber) inactivity.  相似文献   

11.
Wallerian degeneration and dying‐back pathology are two well‐known cellular pathways capable of regulating the breakdown and loss of axonal and synaptic compartments of neurons in vivo. However, the underlying mechanisms and molecular triggers of these pathways remain elusive. Here, we show that loss of translation elongation factor eEF1A2 expression in lower motor neurons and skeletal muscle fibres in homozygous Wasted mice triggered a dying‐back neuropathy. Synaptic loss at the neuromuscular junction occurred in advance of axonal pathology and by a mechanism morphologically distinct from Wallerian degeneration. Dying‐back pathology in Wasted mice was accompanied by reduced expression levels of the zinc finger protein ZPR1, as found in other dying‐back neuropathies such as spinal muscular atrophy. Surprisingly, experimental nerve lesion revealed that Wallerian degeneration was significantly delayed in homozygous Wasted mice; morphological assessment revealed that ~80% of neuromuscular junctions in deep lumbrical muscles at 24 h and ~50% at 48 h had retained motor nerve terminals following tibial nerve lesion. This was in contrast to wild‐type and heterozygous Wasted mice where < 5% of neuromuscular junctions had retained motor nerve terminals at 24 h post‐lesion. These data show that eEF1A2 expression is required to prevent the initiation of dying‐back pathology at the neuromuscular junction in vivo. In contrast, loss of eEF1A2 expression significantly inhibited the initiation and progression of Wallerian degeneration in vivo. We conclude that loss of eEF1A2 expression distinguishes mechanisms underlying dying‐back pathology from those responsible for Wallerian degeneration in vivo and suggest that eEF1A2‐dependent cascades may provide novel molecular targets to manipulate neurodegenerative pathways in lower motor neurons.  相似文献   

12.
The distribution of synaptophysin, a major protein of the synaptic vesicle membrane, was immunocytochemically examined in the rat cerebellar cortex. A monoclonal antibody against synaptophysin recognized the epitope to be present in the presynaptic membranous structures including synaptic vesicles, presynaptic membrane, coated vesicles, and vacuoles of endocytotic origin. In the nerve terminal as well as preterminal areas, the antibody labeled the smooth-surfaced tubular membranes which were located in the relatively interior parts of these areas and consistent in size and appearance with the short tubules comprising the thinner parts of the axonal reticulum. However, the antibody did not stain the short tubular membranes, though similar in appearance to the above, which existed right below the axolemma in the preterminal and nerve terminal areas. The results are discussed with special reference to the precursor membrane compartments of synaptic vesicles.  相似文献   

13.
While vesicle transport is one of the principal functions of myosin motors in neurones, the role played by specific myosin subtypes in discrete vesicle trafficking is poorly understood. We conducted electrophysiological and morphological experiments to determine whether myosin isoforms II and V might be involved in the transport of small synaptic vesicles in presynaptic nerve terminals of a model cholinergic synapse. Electron microscopy revealed the presence of normal synaptic architecture and synaptic vesicle density in presynaptic terminals of cultured superior cervical ganglion neurones (SCGNs) from myosin Va null rats ( dilute-opisthotonus , dop ). Similarly, electrophysiological analyses of synaptic transmission and synaptic vesicle cycling at paired SCGN synapses failed to uncover any significant differences in synaptic development and function between normal and dop rats. Immunocytochemistry and in situ localization of green fluorescent protein (GFP)-fusion proteins in wild-type synapses revealed that myosins IIB and Va were distributed throughout the cell soma and processes of SCGNs, while myosins IIA and Vb were not detected in SCGNs. Myosin Va was conspicuously absent in presynaptic nerve terminals, but myosin IIB alone was found to be expressed. Furthermore, synaptic transmission was inhibited by introduction of myosin IIB heavy chain fragments into presynaptic terminals of SCGNs. Together these results suggest that only myosin IIB isoform participates in vesicle trafficking in presynaptic nerve terminals of cultured SCGNs.  相似文献   

14.
The cerebellar cortex of normal and Purkinje cell degeneration mutant mice was examined by electron microscopy after fixation with potassium permanganate for the demonstration of small granular vesicles in monoaminergic nerve terminals. In control mice, monoaminergic terminals were found mainly in apposition to Purkinje cell dendrites. After the degeneration of Purkinje cells, which constitute the major target for monoaminergic fibres in the cerebellum, monoaminergic terminals persisted in the cerebellar cortex of Purkinje cell degeneration mutant mice. They were ensheathed by astroglial processes in most of the instances. They were also apposed to boutons that contained agranular vesicles, and to stellate cells in the molecular layer. Clear synaptic specializations in the form of thickening of the synaptic membranes were not observed in either control or mutant mice. It is hypothesized that the survival of monoaminergic axons following loss of their target cells may be attributed to the lack of intimate adhesion to their target elements, to a possible functional interaction with the glia, or to the integrity of the extracerebellar terminal fields of the monoamine axon collaterals.  相似文献   

15.
Summary The neuronal response to axonal injury may relate to the type of insult incurred. Recently, neuritic and presynaptic varicosity regeneration by isolated adult salamander photoreceptors was demonstrated. We have used this system to compare the rod photoreceptor response to two types of injury:denervation/detargeting, the removal of pre-and postsynaptic partners from the axon terminal, andaxotomy, the removal of the axon terminal itself. Cells were followed with time-lapse video microscopy for 24–48h in culture and immunolabelled for SV2 or synaptophysin to identify synaptic vesicle-containing varicosities. Although all injured cells responded with regenerative growth, denervated/detargeted photoreceptors (i.e. neurons which retain their axon terminal) grew 80% more processes and fourfold more presynaptic varicosities than axotomized neurons. In cells which retained their original axon and terminal, varicosity formation generally began with axon retraction. Retraction was followed by elaboration of a lamellipodium and, by 48 h, development of varicosity-bearing neurites from the lamellipodium. Synaptic vesicle protein localization in denervated/detargeted cells paralleled axon terminal reorganization. Axotomized cells, in contrast, lacked synaptic vesicle protein immunoreactivity during this period. To detect synaptic protein synthesis, photoreceptors were examined for colocalization of synaptic vesicle protein with rab6, a Golgi marker, by confocal microscopy. As expected, synaptic vesicle protein staining was present in the Golgi complex during regeneration; however, in cells with an axon, new synaptic vesicle protein-labelled varicosities were found at early stages, prior to the appearance of immunolabel in the Golgi complex. The data demonstrate remarkable plasticity in the ribbon synapse, and suggest that in adult rod cells with an intact axon terminal, synaptic vesicle protein synthesis is not a prerequisite for the formation of new presynaptic-like terminals. We propose that preexisting axonal components are reutilized to expedite presynaptic renewal as an early response to denervation/detargeting.  相似文献   

16.
Summary Motor nerve terminals in cutaneous pectoris muscles of the frogRana pipiens release more transmitter and form synapses with higher levels of effectiveness than do those in sartorius muscles. Neuromuscular junctions from these two muscles were compared in the electron microscope to search for ultrastructural correlates of differences in transmitter release and synaptic effectiveness. The following measurements were made from cross-sections of junctions with known levels of effectiveness: (a) the presence of active zones, the presumed sites of transmitter release, (b) active zone size, (c) the perimeter, cross-sectional area, height and width of nerve terminals, (d) number of mitochondria, (e) vesicle density, and (f) the extent to which Schwann cells wrap terminals. Nerve terminals in the two muscles did not differ in size, shape or vesicle density. The more strongly releasing cutaneous pectoris terminals did, however, have significantly larger active zones due to deeper invagination of the terminal into the postsynaptic gutter and lesser interposition of Schwann cell processes between presynaptic and postsynaptic membranes. Cutaneous pectoris terminals also contained more mitochondria, presumably to supply the greater energy demand imposed by high release levels.  相似文献   

17.
Permanent transection of a peripheral motor nerve induces a gradual elimination of whole axon collateral systems in the axotomized spinal motoneurons. There is also an initial concurrent decrease in the amount of recurrent inhibition exerted by these arbors in the spinal cord for up to 6 weeks after the injury, whereas the same reflex action returns to normal by the 12-week postoperative state. The aim of the present investigation was to study the fine structure of the intramedullary axonal arbors of axotomized α-motoneurons in the adult cat spinal cord following a permanent peripheral motor nerve lesion. For this purpose, single axotomized α-motoneurons were labeled intracellularly with horseradish peroxidase at 12 weeks after permanent transection of their peripheral motor nerve. The intramedullary portions of their motor axon and axon collateral arbors were first reconstructed at the light microscopic level and subsequently studied ultrastructurally. This study shows that the synaptic contacts made by the intramedullary axon collateral arbors of axotomized motoneurons have undergone a change in synaptic vesicle ultrastructure from spherical and clear vesicles to spherical and dense-cored vesicles at 12 weeks after the transection of their peripheral axons. We suggest that the present transformation in synaptic vesicle fine structure may also correspond to a change in the contents of these boutons. This may, in turn, be responsible for the strengthening and recovery of the recurrent inhibitory reflex action exerted by the axotomized spinal motoneurons following a prolonged permanent motor nerve injury. Electronic Publication  相似文献   

18.
The high-affinity choline transporter CHT1 works for choline uptake in the presynaptic terminals of cholinergic neurons. We examined its expression in the hypoglossal nucleus after unilateral hypoglossal nerve transection in mice by fluorescent in situ hybridization. One week after axotomy, CHT1 mRNA expression was lost in all hypoglossal motoneurons in the lesioned side. Two weeks after axotomy, CHT1 mRNA started to be re-expressed in a few motoneurons that recovered connections to tongue muscles as revealed by retrograde labeling with Fast Blue. After 4 weeks, most of axotomized hypoglossal motoneurons were reconnected and re-expressed CHT1 mRNA as strongly as control neurons, and the regenerating cholinergic axons established mature neuromuscular junctions. These results suggest that the establishment of motor innervation is critical for CHT1 mRNA expression in hypoglossal neurons after axotomy.  相似文献   

19.
Ikeda R  Kato F 《Neuroscience》2005,134(3):889-899
Section of motor nerve fibers (axotomy) elicits a variety of morphofunctional responses in the motoneurons in the motor nuclei. Later than the fifth post-operational day after section of the facial nerve, synapse elimination occurs in the facial motoneuron pool, leading to gradual abolishment of synaptic input-driven activities of the axotomized motoneurons. However, it remains unknown how the amount of synaptic input changes during this period between the axotomy and the synaptic elimination. Here we examined a hypothesis that axotomy of the motoneurons itself modifies the synaptic inputs to the motoneurons. One day after axotomy, the postsynaptic currents, mostly mediated by non-N-methyl-D-aspartic acid (non-NMDA) receptors, recorded from the axotomized facial motoneurons in the acute slice preparations of the rats were of higher frequency and larger amplitude than those in the intact motoneurons. This difference was not observed after the third post-operational day and appeared earlier than the changes in the electrophysiological properties and increase in the number of dead neurons in the axotomized motor nucleus. The larger postsynaptic current frequency of the axotomized motoneurons was observed both in the absence and in the presence of tetrodotoxin citrate, suggesting that increased excitability and facilitated release underlie the postsynaptic current frequency increase. These results suggest that synaptic re-organization occurs in the synapses of motoneurons at an early stage following axotomy.  相似文献   

20.
We report here original data on the biological basis of prolonged neuromuscular paralysis caused by the toxic phospholipase A2 beta-bungarotoxin. Electron microscopy and immunocytochemical labeling with anti-synaptophysin and anti-neurofilament have been used to show that the early onset of paralysis is associated with the depletion of synaptic vesicles from the motor nerve terminals of skeletal muscle and that this is followed by the destruction of the motor nerve terminal and the degeneration of the cytoskeleton of the intramuscular axons. The postjunctional architecture of the junctions were unaffected and the binding of fluorescein-isothiocyanate-conjugated alpha-bungarotoxin to acetylcholine receptor was not apparently affected by exposure to beta-bungarotoxin. The re-innervation of the muscle fiber was associated by extensive pre- and post-terminal sprouting at 3 to 5 days but was stable by 7 days. Extensive collateral innervation of adjacent muscle fibers was a significant feature of the re-innervated neuromuscular junctions. These findings suggest that the prolonged and severe paralysis seen in victims of envenoming bites by kraits (elapid snakes of the genus Bungarus) and other related snakes of the family Elapidae is caused by the depletion of synaptic vesicles from motor nerve terminals and the degeneration of the motor nerve terminal and intramuscular axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号