首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recombinant aminopeptidase (90 kDa) of Lactobacillus rhamnosus S93 produced by E. coli was encapsulated in alginate or chitosan-treated alginate beads prepared by an extrusion method. This study investigated the effects of alginate, CaCl2, chitosan concentrations, hardening time, pH and alginate/enzyme ratios on the encapsulation efficiency (EE) and the enzyme release (ER). Chitosan in the gelling solution significantly increased the EE from 30.2% (control) to 88.6% (coated). This polycationic polymer retarded the ER from beads during their dissolution in release buffer. An increase in alginate and chitosan concentrations led to greater EE and lesser ER from the beads. The greatest EE was observed in a pH 5.4 solution (chitosan-CaCl2) during bead formation. Increasing the CaCl2 concentration over 0.1 M neither affected the EE nor the ER. Increasing hardening time beyond 10 min led to a decrease in EE and the alginate:enzyme ratio (3 : 1) was optimal to prevent the ER.  相似文献   

2.
The aim of this study is to reveal how the release behavior of a model drug (brilliant blue, BB) from chitosan coating calcium-alginate gel beads (CCAGB) was influenced by the preparation methods. The CCAGB were prepared by dropping alginate solution into CaCl(2)/chitosan solution (method 1(a)), or into chitosan solution then gelled by CaCl(2) (method 1(b)), or into CaCl(2) solution then coated by chitosan (method 2). Scanning electron microscopy was used for morphology observation, and elemental analysis was applied to determine the chitosan content bound on calcium-alginate gel beads (CAGB). Compared to CAGB, the dried CCAGB had poorer shape and rougher surface morphology especially in methods 1(a) and (b); moreover, CCAGB was found to be more instable in 0.9% NaCl and serious burst of beads occurred when high concentration of alginate (3.0 and 5.0% w/v) was used. The influence on BB release from the beads by chitosan coating was not only related to the chitosan density on bead surface, but also preparation method and other factors. Under un-dried bead state in method 1(a), the increase of chitosan content prolonged BB release in 0.9% (w/v) NaCl; while in method 2, the increase of chitosan concentration over 0.1% (w/v) (3.0% (w/v) alginate concentration was used) resulted in more serious burst of beads and hence facilitated BB release. Furthermore, in both methods 1(a) and 2, the increase of alginate from 1.5 to 3.0 or 5.0% (w/v) usually resulted in the significant burst of beads and accelerated BB release when 0.3 or 0.5% (w/v) chitosan was used for coating. Drying process greatly influenced BB release profile due to the destroying of alginate-chitosan film. The acceleration of BB release from CCAGB by drying process was more significant in the case of method 1 than of method 2.  相似文献   

3.
The present work explores, using response surface methodology, the main and interaction effects of some process variables on the preparation of a reversed chitosan-alginate polyelectrolyte complex (PEC) with entrapped alpha-amylase for stability improvement. A 3(3) full factorial design was used to investigate the effect of the chitosan and alginate concentrations and hardening time on the percent entrapment, time required for 50% (T(50)) and 90% (T(90)) enzyme release, and particle size. The beads were prepared by dropping chitosan containing alpha-amylase into a sodium alginate solution without any salt. The in vitro enzyme release profile of the beads was fitted to various release kinetics models to study the release mechanism. A topographical characterization was carried out using scanning electron microscopy (SEM), and the entrapment was confirmed using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Stability testing was carried out according to the International Conference on Harmonization (ICH) guidelines for zones III and IV. Beads prepared using 2.5%w/v chitosan and 3%w/v sodium alginate with a hardening time of 60 min had more than 90% entrapment and a T(90) value greater than 48 min. Moreover, the shelf-life of the enzyme-loaded beads was found to increase to 3.68 years, compared with 0.99 years for the conventional formulation. It can be inferred that the proposed methodology can be used to prepare a reversed PEC of chitosan and alginate with good mechanical strength, provided both the reactants are in a completely ionized form at the time of the reaction. Proper selection of the reaction pH, polymer concentration and hence charge density, and hardening time is important and determines the characteristics of the PEC.  相似文献   

4.
The aim of this paper was to investigate the possible applicability of chitosan treated alginate beads as a controlled release system of small molecular drugs with high solubility. Timolol maleate (mw 432.49) was used as a model drug. The beads were prepared by the ionotropic gelation method and the effect of various factors (alginate, chitosan, drug and calcium chloride concentrations, the volume of external and internal phases and drying methods) on bead properties were also investigated. Spherical beads with 0.78-1.16 mm diameter range and 10.8-66.5% encapsulation efficiencies were produced. Higher encapsulation efficiencies and retarded drug release were obtained with chitosan treated alginate beads. Among the different factors investigated such as alginate, drug, chitosan and CaCl2 concentrations, the volumes of the external and internal phases affected bead properties. The drying technique has an importance on the bead properties also. The release data was kinetically evaluated. It appeared that chitosan treated alginate beads may be used for a potential controlled release system of small molecular drugs with high solubility, instead of alginate beads.  相似文献   

5.
海藻酸钙凝胶微丸作为口服缓释给药载体的研究   总被引:8,自引:0,他引:8  
将海藻酸钠溶液滴入胶凝剂氯化钙溶液中制备了海藻酸钙凝胶微丸。以胶凝过程中凝胶微丸重量变化 (失水量 )研究了胶凝速率及不同浓度海藻酸钠溶液 ( 1 %~ 4 % )与氯化钙溶液 ( 0 0 5~0 2 0mol/L)对胶凝速率的影响 ,结果是 6h前胶凝速率快 ,随后减慢 ,约 70h胶凝完全 ,氯化钙溶液的浓度≥ 0 1mol/L对胶凝速率无明显影响。干燥的凝胶微丸在不同水性介质中溶胀试验结果表明 :在温度约 37℃时 ,微丸在蒸馏水和 0 1mol/L盐酸 ( pH1 0 )中几乎不溶胀 ,而在磷酸盐缓冲溶液( pH6 8)中1h溶胀 ,溶胀后的微丸直径是干燥前湿微丸直径的 1 80 %。海藻酸钙凝胶微丸这种溶胀的 pH敏感性 ,使它能成为口服药物缓释制剂的载体。以硝苯地平为模型药物制备的海藻酸钙凝胶微丸 ,其体外释放试验结果 ,2h累积释放量为 2 0 %~ 30 % ,6h为 6 0 %~ 80 % ,1 2h时大于85 %。药物从微丸中的释放是以扩散和骨架溶蚀相结合的方式。由此可见 ,硝苯地平的海藻酸钙凝胶微丸具有缓释作用  相似文献   

6.
Calcium-alginate beads coated with quaternized chitosan were prepared in a neutral environment, and morphologies were observed by SEM. Optimum conditions for the encapsulation and retention of a model drug (brilliant blue, BB) in acid were obtained from studies of preparation conditions, including alginate and quaternized chitosan concentration, calcium chloride (CaCl2) concentration in the gelling medium and by comparing one-step and two-step preparation methods. Results showed that very high BB encapsulation efficiency (99%, w/w) and low leakage in acid (8%, w/w) was achieved from dry beads when 2.0% (w/v) alginate was dropped into 1.0% (w/v) CaCl2 containing 0.3% (w/v) quaternized chitosan by a one-step method. The release of BB in 0.9% (w/v) NaCl was modulated by coating calcium-alginate with different weight average molecule weight (Mw) and degree of substitution (DS) of quaternized chitosan. A decreased of Mw accelerated the release of BB and a high DS value significantly decreased the release in 0.9% (w/v) NaCl.  相似文献   

7.
In this study, periodate oxidation of sodium alginate was controlled such that the oxidized alginate could form isolatable beads with Ca+2 ions. The beads of oxidized alginate having a degree of oxidation 1 mol%, entrapped 89% flurbiprofen and released almost all of its content within 1.5 h in pH 7.2 phosphate buffer solution. The beads were covalently crosslinked with adipic dihydrazide (ADH) in addition to ionic crosslinks and were characterized. Scanning electron microscopy revealed that the beads were spherical having smooth surfaces. The drug entrapment efficiency decreased (90–86%) with increasing concentration of ADH (2–6% w/v) in the gelation medium. However, the beads prolonged the drug release in alkaline dissolution medium up to 8 h depending upon the concentration of ADH. The beads prepared with 2% ADH swelled more rapidly and led to faster drug release in either pH 1.2 HCl solution or pH 7.2 phosphate buffer solution. The swelling tendencies were reduced and the drug release became slower with higher concentrations in either fluid. The drug diffusion from the beads followed super case II transport mechanism. FTIR spectroscopy indicated stable nature of flurbiprofen in the beads and therefore had potential as sustained oral delivery system for the drug.  相似文献   

8.
To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.  相似文献   

9.
The aim of this paper was to investigate the possible applicability of chitosan treated alginate beads as a controlled release system of small molecular drugs with high solubility. Timolol maleate (mw 432.49) was used as a model drug. The beads were prepared by the ionotropic gelation method and the effect of various factors (alginate, chitosan, drug and calcium chloride concentrations, the volume of external and internal phases and drying methods) on bead properties were also investigated. Spherical beads with 0.78-1.16mm diameter range and 10.8-66.5% encapsulation efficiencies were produced. Higher encapsulation efficiencies and retarded drug release were obtained with chitosan treated alginatebeads. Amongthedifferentfactors investigatedsuchas alginate, drug, chitosan and CaCl2 concentrations, the volumes of the external and internal phases affected bead properties. The drying technique has an importance on the bead properties also. The release data was kinetically evaluated. It appeared that chitosan treated alginate beads may be used for a potential controlled release system of small molecular drugs with high solubility, instead of alginate beads.  相似文献   

10.
Alginate and chitosan treated alginate beads were prepared and compared as an oral controlled release system for macromolecular drugs. Dextran (M.W. 70,000) was used as a model substance. The beads were prepared by the ionotropic gelation method and the effect of various factors (alginate, chitosan, drug and calcium chloride concentrations, the volume of external and internal phases and drying methods) on bead properties were investigated. The addition of chitosan increased the drug loading capacity of the beads, and larger beads were obtained in the presence of chitosan. On the other hand, addition of chitosan in the gel structure reduced the drug release from beads. The erosion of the beads was suppressed by chitosan treatment. The drying method was important to the properties of the chitosan-alginate beads. It is proposed that chitosan treated alginate beads may be used as a potential controlled release system of such macromolecules.  相似文献   

11.
To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer–Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosan-alginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastro-intestinal tract and prolong the drug's action time.  相似文献   

12.
The work investigates the development and optimization of chitosan-alginate beads containing Losartan potassium (LP) through ionotropic/external gelation technique using 32 factorial design. The effect of polymer-blend concentrations i.e. chitosan and sodium alginate on the drug encapsulation efficiency (DEE%), and cumulative drug release after 20 h (R20h %) was optimized. The DEE% of all these beads was within the range of 67.12 ± 1.97–89.81 ± 1.52 % with sustained in vitro drug release of 80.98–97.13 % over 20 h. The in vitro drug release from these beads was followed first order kinetic model. The beads were also characterized by FE-SEM, FTIR and XRD analysis. The swelling of chitosan–alginate beads containing LP were influenced by the pH of the test medium. Chitosan coated alginate beads were developed as oral sustained delivery carriers for LP in order to improve patient compliance, to reduce side effects associated with it and also to reduce the dose/dosing frequency in the management of hypertension.  相似文献   

13.
The aim of the present work was to investigate the swelling behavior and the in vitro release of the antihypertensive drug verapamil hydrochloride from calcium alginate and chitosan treated calcium alginate beads. Calcium-alginate beads, chitosan-coated alginate beads and alginate-chitosan mixed beads were synthesized and their morphology was investigated by scanning electron microscopy. The swelling ability of the beads in different media was found to be dependent on the presence of the polyelectrolyte complex between alginate and chitosan, the pH of the aqueous media and the initial physical state of the beads. The results revealed that the encapsulation of verapamil in both calcium-alginate and calcium alginate-chitosan mixed beads exceeded 80%. Considering the in vitro stability of verapamil encapsulating beads, 70% of the drug released from wet and dry plain calcium alginate beads within 1 and 3h, respectively. The presence of chitosan was found to retard significantly the release from wet beads. However, in the case of dry beads the presence of chitosan had no significant effect on the initial release stage and significantly increased the release on the later stage. The results were analyzed by using a semi-empirical equation and it was found that the drug release mechanisms were either "anomalous transport" or "case-II transport".  相似文献   

14.
酮康唑海藻酸钙凝胶小球的制备工艺研究   总被引:1,自引:0,他引:1  
目的:考察酮康唑海藻酸钙凝胶小球的制备工艺和最优处方。方法:采用滴制法制备海藻酸钙凝胶小球,以酮康唑的包封率和载药量作为制备工艺优化指标,设计正交试验优选最佳处方;测定最佳处方所制制剂的包封率(EE)和载药量(LD)并与原料药比较体外释放作用。结果:最优处方为海藻酸钠浓度2.0%,海藻酸钠与酮康唑质量比2∶1,氯化钙浓度0.3mol.L-1;EE和LD平均值分别为(90.53±2.32)%、(31.51±2.08)%,与原料药比较缓释性较好。结论:本法工艺简单、可行、稳定,重现性好。  相似文献   

15.
A novel approach was developed to improve the mechanical strength of tripolyphosphate (TPP)/chitosan beads prepared under coagulation condition at 4 degrees C in the presence of gelatin. Cross-sectional analysis indicated that the beads had a homogeneous crosslinked structure, as a result the beads were strengthened greatly (the mechanical strength increased more than ten times). Furthermore sodium alginate (a polyanion) can interact with cationic chitosan on the surface of these TPP/chitosan beads to form polyelectrolyte complex film for the improvement of the drug sustained release performances. The loading efficiency of model drugs (brilliant blue and FITC-dextran) in these beads was very high (more than 90%). Crosslinking time, TPP solution pH and other preparation factors had an effect on the drug release performance of beads. The release period of brilliant blue (a poor water soluble dye) was more than 2-months at a fairly constant rate in 0.9% NaCl, 10 mM PBS pH 7.4. However, for FITC-dextran (a water soluble polysaccharide) only 1-2 days in the same conditions. It seems that TPP/chitosan bead prepared by the novel method is a promising formulation for drug delivery.  相似文献   

16.
Attempts to determine conditions or processes within alginate gel beads often suffer from inaccuracies due to an improper roundness of the analysed beads. Therefore, a novel solvent-based method for the preparation of alginate beads with improved shape was developed: An aqueous solution of 2% (w/v) alginate in water was injected into a solvent layering consisting of hexane, n-butanol, n-butanol with 1% (w/v) CaCl2 and finally 2% (w/v) CaCl2 in water. Beads of up to 3.5 mm in diameter obtained with this method had a roundness which was approximately 5% better than comparable beads prepared by dropping an alginate solution into a CaCl2-hardening bath. This was determined by a software supported quantitative analysis of bead size and shape. Additionally, the novel solvent-based method allows for highly reproducible preparation of alginate beads with exactly predictable sizes. The biggest beads obtained with this method were 9 mm in diameter. Thus, with the solvent-based preparation of alginate beads it is now possible to easily obtain beads of exactly the type needed for a specific analytical purpose.  相似文献   

17.
In the present study, we addressed the factors modifying ciprofloxacin release from multiple coated beads. Beads were prepared by simple ionic cross-linking with sodium tripolyphoshate and coated with alginate and/or chitosan to prepare single, double, or multilayered beads. The water uptake capacity depended on the nature of beads (coated or uncoated) and pH of test medium. The number of coatings given to the beads influenced ciprofloxacin release rate. The coating significantly decreased the drug release from the beads in comparison to uncoated beads (p < 0.001). When the beads were given three coatings, viz., alginate, chitosan, and again alginate, the drug release appeared to follow the pattern exhibited by colon-targeted drug delivery systems with time dependent release behavior. The increase in coating formed a barrier for easy ingress of dissolution medium into the bead matrix, reducing the diffusion of drug.  相似文献   

18.
The purpose of this research was to develop and evaluate multiparticulates of alginate and chitosan hydrogel beads exploiting pH sensitive property for colon-targeted delivery of theophylline. Alginate and chitosan beads were prepared by ionotropic gelation method followed by enteric coating with Eudragit S100. All formulations were evaluated for particle size, encapsulation efficiency, swellability and in vitro drug release.In vitro dissolution studies performed following pH progression method demonstrated that the drug release from coated beads depends on coat weights applied and pH of dissolution media. Mechanism of drug release was found to be swelling and erosion-dependent. The studies showed that formulated alginate and chitosan beads can be used effectively for the delivery of drug to colon and a coat weight of 20% weight gain was sufficient to impart an excellent gastro resistant property to the beads for effective release of drug at higher pH values.  相似文献   

19.
Release of albumin from chitosan-coated pectin beads in vitro   总被引:4,自引:0,他引:4  
The release behavior of albumin from chitosan-coated pectin beads in vitro was investigated. The factors, such as concentration of CaCl2, molecular weight of chitosan, pH of chitosan solution, and pH of release medium, which can have a significant effect on the release behavior from the beads, were discussed in this study. The loading efficiency (LE) of albumin showed maximum value when the concentration of CaCl2 and the weight ratio of pectin to albumin were 2 wt.% and 2, respectively. The release of albumin from pectin beads could be retarded by coating with chitosan at various pH medium. The increase of the concentration of CaCl2 induced the decrease of albumin release for uncoated-pectin beads, but not much difference of release for coated-pectin ones. The higher molecular weight of chitosan showed less albumin release than the lower one. The release of albumin from the chitosan-coated pectin beads was dependent on pH of coating solution and release medium, which might affect the degree of swelling of pectin beads.  相似文献   

20.
Spherical alginate gel beads containing pindolol were prepared using three types of sodium alginate with different molecular size. The rate of gelation of sodium alginate in calcium chloride solution was in the range of 1.0 to 1.3 h-1 among the used three alginates, but the amount of water squeezed from the alginate gel beads during gelation increased from 5 to 40% with increasing molecular size of the alginate. The beads prepared were similar in diameter (1.2 mm after drying), weight (0.9 mg/bead), calcium content (27-29 micrograms/bead) and pindolol content (40-45%). Pindolol was rapidly released from all the alginate gel beads at pH 1.2 owing to the high solubility of pindolol, in spite of non-swelling of beads. On the other hand, pindolol release from alginate gel beads at pH 6.8 was dependent on the swelling of the beads and was significantly depressed compared to drug powder. Interestingly, the release rate of pindolol and the swelling rate of beads were markedly slow for gel beads prepared by low molecular size alginate. However, when the alginate gel beads were administered orally to beagle dogs, the serum levels of pindolol showed sustained-release profiles, depending on the molecular size of the alginate. The in vivo absorption of pindolol from alginate gel beads did not reflect their in vitro release profiles, because of a physical strength of beads in the intestinal tract. Furthermore, the in vivo and in vitro release of pindolol from alginate gel beads were compared with a commercial sustained-release tablet, Carvisken showed a rapid release of 50% of content in pH 1.2 fluid and residual 50% of pindolol were easily dissolved at pH 6.8. Although the release characteristics of pindolol from Carvisken and the alginate gel beads were completely different, the serum levels of pindolol in human volunteers were comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号