首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: Rho-kinase plays a crucial role in various cellular functions. To elucidate molecular mechanisms of Rho-kinase-mediated cardiovascular remodeling in vivo, we evaluated whether a signaling pathway through Rho is involved, and whether Y-27632, a specific Rho-kinase inhibitor, stimulates endothelial nitric oxide synthase (eNOS) and suppresses the oxidative stress and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) pathway in the left ventricle of Dahl salt-sensitive hypertensive (DS) rats. METHODS: Y-27632 (3 mg/kg per day) or vehicle were given for 5 weeks, from age 6 weeks to a stage of left ventricular hypertrophy (11 weeks). Age-matched Dahl salt-resistant (DR) rats fed the same diet served as a control group. RESULTS: Increased left ventricular weight in the hypertrophy stage was significantly ameliorated by Y-27632. Upregulated RhoA protein, Rho-kinase gene expression and myosin light-chain phosphorylation in the hypertrophy stage were suppressed by Y-27632. Increased expression of NAD(P)H oxidase p22phox, p47phox, gp91phox and LOX-1 in DS rats were inhibited by Y-27632. Upregulated protein kinase Cepsilon and p65 nuclear factor-kappaB phosphorylation in DS rats was reduced by Y-27632. In contrast, downregulated eNOS expression in hypertrophy stage was upregulated by Y-27632. Y-27632 effectively inhibited vascular lesion formation, such as medial thickness and perivascular fibrosis, and suppressed transforming growth factor-beta1, type I and III collagen, and fibronectin gene expression. CONCLUSIONS: Inhibiting the Rho-kinase pathway may play a key role in the cardioprotective effect on cardiovascular remodeling associated with eNOS and the oxidative stress-LOX-1 pathway in DS rats, and may be at least a potential therapeutic strategy for hypertension with cardiac hypertrophy.  相似文献   

2.
OBJECTIVES: The interactions between eNOS or oxidative stress and bradykinin under long-term treatment of angiotensin II type 1 receptor antagonists (ATRA) remain unknown. To elucidate the molecular mechanisms of the cardioprotective effect of ATRA, we evaluated whether valsartan affects the bradykinin-eNOS and nicotinamide adenine dinucleotide (NAD(P)H) oxidase pathway. METHODS: After 5 weeks of feeding an 8% NaCl diet to 6-week-old Dahl salt-sensitive hypertensive (DS) rats, a distinct stage of concentric left ventricular hypertrophy (LVH) was noted. Six-week-old DS rats were treated with one of the following drug combinations for 5 weeks until the onset of LVH: vehicle; bradykinin B2 receptor antagonist FR172,357 alone; high-dose hydralazine; low-dose hydralazine; high-dose valsartan; low-dose valsartan; high and low-dose valsartan plus FR172,357. Age-matched Dahl salt-resistant rats fed the same diet served as controls. RESULTS: eNOS expression and activity, which was decreased in hypertrophy, was increased by high or low-dose valsartan, but not by high and low-dose valsartan plus FR172,357 or FR172,357 alone or high and low-dose hydralazine. The increased expression of NAD(P)H oxidase p22phox, p47phox, p67phox, and gp91phox in DS rats was suppressed by high or low-dose valsartan, but not by high or low-dose valsartan plus FR172,357 or FR172,357 alone or high and low-dose hydralazine. Valsartan effectively inhibited vascular lesion formation and suppressed the expression of transforming growth factor-beta1, connective tissue growth factor, and type I collagen, but not valsartan plus FR172,357 or FR172,357 alone or high and low-dose hydralazine. CONCLUSION: These findings suggest that valsartan may have cardioprotective effects in this model, partly associated with the bradykinin-eNOS and oxidative stress pathway.  相似文献   

3.
Aim: Apart from its angiotensin receptor blocker (ARB) activity, telmisartan is also a partial agonist of peroxisome proliferator‐activated receptor gamma (PPAR‐γ). Therefore, we assessed whether telmisartan treatment attenuates myocardial ischaemia/reperfusion (I/R) injury in diabetic rats through PPAR‐γ pathway. Methods: Diabetic rats were randomized to receive vehicle (sham and I/R), telmisartan (10 mg/kg/day, orally), PPAR‐γ antagonist GW9662 (1 mg/kg/day, intraperitoneally) or both for 14 days. On 15th day, excluding sham group, left anterior descending coronary artery occlusion was performed for 45 min followed by 1 h of reperfusion. Haemodynamic, biochemical, histopathological, ultrastructural, immunohistochemical (Bax and Bcl‐2 protein), TUNEL positivity, infarct size and western blot studies were performed. Results: Telmisartan treatment significantly improved cardiac function by normalizing mean arterial pressure, left ventricular pressure (±LVdP/dtmax, a marker of myocardial contraction and relaxation), by decreasing left ventricular end‐diastolic pressure (a marker of preload, 3.7 ± 0.41 vs. 7.3 ± 0.89, p < 0.001) and percent infarct area (37.52 ± 5.83 vs. 46.27 ± 3.20, p < 0.01) as compared to diabetic I/R group. Interestingly, GW9662 worsens the I/R injury (percent infarct area, 54.38 ± 6.48 vs. 46.27 ± 3.20, p < 0.01), whereas telmisartan with GW9662 (percent infarct area, 41.16 ± 8.23 vs. 46.27 ± 3.20, p < 0.05) showed lesser significant results as compared to telmisartan alone. Additionally, telmisartan significantly ameliorates activities of endogenous antioxidants, creatine kinase‐MB isoenzyme, lactate dehydrogenase and prevented the increase of tumour necrosis factor‐alpha and malondialdehyde in myocardium. Furthermore, telmisartan also decreased Bax expression (4.45 ± 1.24% vs. 10.25 ± 0.96%, p < 0.01), number of TUNEL‐positive cells (6.2 ± 0.98% vs. 13.0 ± 1.6, p < 0.01), inflammation, myonecrosis and increased Bcl‐2 expression (5.45 ± 0.15% vs. 1.24 ± 0.3%, p < 0.01). On the other hand, GW9662 treatment alone increased the Bax expression, TUNEL positivity and decreased Bcl‐2 expression. Telmisartan protective effects were partially attenuated by a co‐administration with GW9662. Western blot analysis showed that telmisartan treatment enhanced PPAR‐γ expression, whereas GW9662 decreased it in myocardium. Conclusions: In addition to the class effect of ARBs, telmisartan has a beneficial effect in I/R injury in diabetic rats in part because of activation of PPAR‐γ.  相似文献   

4.
BACKGROUND: Previous studies demonstrated that adrenomedullin (AM) is metabolized by neutral endopeptidases and that the renal effect of AM is augmented by the inhibition of neutral endopeptidases. We have recently shown that the long-term administration of AM has renoprotective effects. OBJECT: This study assessed the chronic renoprotective effects of AM combined with a vasopeptidase inhibitor in hypertensive rats and attempted to elucidate the mechanism involved. METHODS: We studied the following four groups: control Dahl salt-resistant (DR) rats, untreated Dahl salt-sensitive (DS) rats, omapatrilat (35 mg/kg per day)-treated DS rats; and human AM (500 ng/h) plus omapatrilat-treated DS rats. After 7 weeks' treatment, blood pressure, renal function, neurohumoral factors, gene expression levels, and histological findings were examined. RESULTS: DS rats were characterized by increased blood pressure, decreased renal function, abnormal histological findings, and increased gene expression of collagen I and III, transforming growth factor beta (TGF-beta), and NADPH oxidase subunits (p40phox, p47phox, and gp91phox) in the renal cortex compared with DR rats. Compared with DS rats, omapatrilat significantly decreased systolic blood pressure (-26 mmHg), improved renal function, histological findings, and messenger RNA expression levels of collagen I, collagen III, and TGF-beta. Combined treatment with omapatrilat and AM further improved renal function, histological findings, and mRNA expression levels of collagen I, collagen III, and TGF-beta, without a further reduction in blood pressure. Only combined treatment decreased mRNA levels of p40phox, p47phox, and gp91phox. There were no differences in plasma AM or atrial natriuretic peptide levels among three DS groups. CONCLUSION: Our results suggest that combined treatment with omapatrilat and AM provides additional renoprotective effects independent of blood pressure-lowering activity partly via inhibition of gene expressions of oxidative stress and extracellular matrix.  相似文献   

5.
BACKGROUND: We have known that endothelial nitric-oxide synthase (eNOS) and oxidative stress may play a key role in cardiac performance in failing rat hearts. However, the interactions between eNOS or oxidative stress and bradykinin (BK) under treatment of calcium channel blockers (CCBs) remain unknown. To elucidate the mechanism underlying the cardioprotective effect of long-acting dihydropyridine CCBs, we evaluated the effect of benidipine on the BK-eNOS and NAD(P)H oxidase pathway in Dahl salt-sensitive (DS) rats with heart failure. METHODS: 11-week-old DS rats were treated with one of the following drug combinations for 7 weeks until the onset of the failing stage: vehicle, BK B2 receptor antagonist (FR172357 (FR)) alone, hydralazine, benidipine, and benidipine plus FR. The left ventricular end-systolic pressure-volume relationship (ESPVR) (contractility: Ees) was evaluated using a conductance catheter. RESULTS: Downregulated Ees and per cent of fractional shortening (%FS) assessed by echocardiography and eNOS expression in the failing stage were both significantly increased by using benidipine; this result was not found, however, when using FR alone or hydralazine or benidipine plus FR. Upregulated expression of NAD(P)H oxidase p22phox and p47phox and lectin-like oxidized low-density lipoprotein receptor-1, and downregulated superoxide dismutase-1 (SOD-1) were significantly ameliorated by benidipine, but not by FR alone or by hydralazine or benidipine plus FR. Benidipine effectively inhibited vascular lesion formation and suppressed atrial natriuretic peptide (ANP) and transforming growth factor-beta1 (TGF-beta1), but this was not the case when using FR alone or hydralazine or benidipine plus FR. CONCLUSIONS: These results suggest that benidipine may be useful for cardioprotective agents in preventing the cardiac dysfunction and remodeling associated with the BK-eNOS and oxidative stress pathway.  相似文献   

6.
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) may play an important role in atherosclerosis by inducing leukocyte adhesion molecules, such as intercellular and vascular cell adhesion molecule-1 (intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]). We hypothesized that eplerenone, a novel selective aldosterone blocker, produces inhibition of LOX-1-mediated adhesion molecules, suppresses mitogen-activated protein (MAP) kinase and its downstream effector p90 ribosomal S6 kinase (p90RSK) through the protein kinase Cepsilon (PKCepsilon) pathway, and improves endothelial function by inhibition of Rho-kinase in the renal cortex of Dahl salt-sensitive hypertensive (DS) and salt-resistant (DR) rats. Eplerenone (10, 30, and 100 mg/kg per day) was given from the age of 6 weeks to the left ventricular hypertrophy stage (11 weeks) for 5 weeks. At 11 weeks, expression levels of LOX-1, ICAM-1, VCAM-1, and Rho-kinase were higher in DS rats than in DR rats and were decreased by eplerenone. Similarly, upregulated phosphorylation of PKCepsilon, MAP kinase, and p90RSK in DS rats was also inhibited by eplerenone. In contrast, downregulated endothelial nitric oxide synthase mRNA was increased by eplerenone to a similar degree as after treatment with Y-27632, a selective Rho-kinase inhibitor. Eplerenone administration resulted in significant improvement in glomerulosclerosis (eplerenone 10 mg, -61%; 30 mg, -78%; and 100 mg, -84% versus DS; P<0.01, respectively) and urinary protein (10 mg, -78%; 30 mg, -87%; and 100 mg, -88% versus DS; P<0.01, respectively). These results suggest that the renoprotective effects of eplerenone may be partly caused by inhibition of LOX-1-mediated adhesion molecules and PKCepsilon-MAP kinase-p90RSK pathway, and improvement in endothelial function.  相似文献   

7.
OBJECTIVE: Telmisartan is a unique angiotensin II (Ang II) receptor blocker (ARB) with selective peroxisome proliferator-activated receptor-gamma (PPAR gamma). We therefore investigated the effects of telmisartan on endothelial function and atherosclerotic change in genetically hyperlipidemic rabbits, compared with candesartan, an ARB without PPAR gamma activity. METHODS: A total of 30 Watanabe heritable hyperlipidemic (WHHL) rabbits equally derived (n = 6 each) were treated with (1) vehicle (control), (2) GW9662, a PPAR gamma antagonist (0.5 mg/kg per day), (3) telmisartan (5 mg/kg per day), (4) telmisartan + GW9662, (5) candesartan (5 mg/kg per day) for 8 weeks. After treatment, acetylcholine (ACh)-induced nitric oxide production was measured as a surrogate for endothelium protective function, and vascular nitrotyrosine (a product of superoxide and nitric oxide) was measured for assessing dysfunctional endothelial nitric oxide synthase activity. Plaque area was quantified by histology. RESULTS: Telmisartan increased ACh-induced nitric oxide by 5.5 nmol/l, significantly more than control. Interestingly, cotreatment with GW9662 significantly attenuated telmisartan-induced ACh-induced nitric oxide almost to the levels observed with candesartan. Vascular nitrotyrosine concentration was 1.4 pmol/mg protein in the control group and significantly higher than that in the telmisartan or candesartan group. The lowest nitrotyrosine concentration was observed in the telmisartan group, which was significantly lower than that in the candesartan or telmisartan + GW9662 group. Histology of the thoracic aorta revealed that the plaque area was more significantly decreased in the telmisartan group than in the candesartan or telmisartan + GW9662 group. CONCLUSION: In addition to a class effect of ARBs, telmisartan may have additional effects on nitric oxide bioavailability and atherosclerotic change through its PPAR gamma-mediated effects in genetically hyperlipidemic rabbits.  相似文献   

8.
Aldosterone may play a pivotal role in the pathophysiology of heart failure. To elucidate the beneficial cardioprotective mechanism of eplerenone, a novel selective aldosterone blocker, we hypothesized that eplerenone stimulates endothelial NO synthase (eNOS) through Akt and inhibits inducible NO synthase (iNOS) via nuclear factor kappaB (NF-kappaB) after the development of oxidative stress and activation of the lectin-like, oxidized, low-density lipoprotein receptor 1 (LOX-1) pathway in Dahl salt-sensitive rats with heart failure. Eplerenone (10, 30, and 100 mg/kg per day) was given from the age of the left ventricular hypertrophy stage (11 weeks) to the failing stage (18 weeks) for 7 weeks. The left ventricular end-systolic pressure-volume relationship was evaluated using a conductance catheter. Decreased percentage of fractional shortening by echocardiography and end-systolic pressure-volume relationship in failing rats was significantly ameliorated by eplerenone. Downregulated eNOS expression, eNOS and Akt phosphorylation, and NOS activity in failing rats were increased by eplerenone. Upregulated expression of the mineralocorticoid receptor aldosterone synthase (CYP11B2); NAD(P)H oxidase p22phox, p47phox, gp91phox, iNOS, and LOX-1; and activated p65 NF-kappaB, protein kinase CbetaII, c-Src, p44/p42 extracellular signal-regulated kinase, and p70S6 kinase phosphorylation were inhibited by eplerenone. Eplerenone administration resulted in significant improvement of cardiac function and remodeling and upregulation of sarcoplasmic reticulum Ca(2+)-ATPase expression. These findings suggest that eplerenone may have significant therapeutic potential for heart failure, and these cardioprotective mechanisms of eplerenone may be mediated in part by stimulating eNOS through Akt and inhibiting iNOS via NF-kappaB after activation of the oxidative stress-LOX-1 pathway and signal transduction pathway.  相似文献   

9.
OBJECTIVE: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and vascular endothelial growth factor (VEGF) may play key roles in atherosclerosis, and have been shown to regulate nitric oxide (NO) production. However, the molecular mechanisms by which betaxolol, a specific beta 1-antagonist, stimulates endothelial NO synthase (eNOS) expression associated with LOX-1 and VEGF are unclear. We hypothesized that in the left ventricle of Dahl salt-sensitive (DS) rats, betaxolol reduces production of LOX-1 by suppressing NAD(P)H oxidase p47phox expression; betaxolol stimulates eNOS production associated with expression of VEGF and LOX-1; and betaxolol inhibits adhesion molecule and signal transduction, which may be involved in cardiovascular remodeling. METHODS: After 5 weeks of feeding an 8% NaCl diet to 6-week-old DS rats (i.e. at 11 weeks of age), a distinct stage of concentric left ventricular hypertrophy was noted. Betaxolol (0.9 mg/kg per day) was administered to 6-week-old DS rats for 5 weeks until the onset of left ventricular hypertrophy stage. RESULTS: Decreased expression of eNOS and VEGF in DS rats was increased by betaxolol. Upregulated LOX-1, NAD(P)H oxidase p47phox, intercellular and vascular cell adhesion molecule-1 expression and phosphorylations of p38 mitogen-activated protein kinase and p65 nuclear factor-kappa B activity were inhibited by betaxolol. Betaxolol administration resulted in significant improvement of cardiovascular remodeling and suppression of transforming growth factor-beta 1 and type I collagen expression. CONCLUSIONS: These results suggest that cardioprotective effects of betaxolol may stimulate eNOS production associated with VEGF and LOX-1, and inhibit adhesion molecule and signal transduction in DS rats.  相似文献   

10.
Vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species play critical roles in early atherogenesis, and nitric oxide (NO) is an important regulator of the cardiovascular system. Although celiprolol, a specific beta1-antagonist with weak beta2-agonistic action, stimulates endothelial nitric oxide synthase (eNOS) production, the mechanisms remain to be determined. Because it was recently reported that phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt are implicated in the activation of eNOS and that regulation of VCAM-1 expression is mediated via nuclear factor-kappaB (NF-kappaB), we hypothesized that celiprolol activates phosphorylation of eNOS through the PI3K-Akt signaling pathway; that celiprolol modulates VCAM-1 expression, which is associated with inhibiting NF-kappaB phosphorylation; and that celiprolol suppresses NAD(P)H oxidase p22phox, p47phox, gp91phox, and nox1 expression in the left ventricle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. eNOS and Akt phosphorylation upregulated by celiprolol alone were suppressed by treatment with celiprolol plus wortmannin. Increased expression of VCAM-1, p22phox, p47phox, gp91phox, nox1, activated p65 NF-kappaB, c-Src, p44/p42 extracellular signal-regulated kinases, and their downstream effector p90 ribosomal S6 kinase phosphorylation in DOCA rats was inhibited by celiprolol. Celiprolol administration resulted in a significant improvement in cardiovascular remodeling and suppression of transforming growth factor-beta1 gene expression. In conclusion, celiprolol suppresses VCAM-1 expression because of inhibition of oxidative stress, NF-kappaB, and signal transduction, while increasing eNOS via stimulation of the PI3K-Akt signaling pathway and improving cardiovascular remodeling.  相似文献   

11.
Reactive oxygen species have an important pathogenic role in organ damage. We investigated the role of oxidative stress via nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the kidney of the Dahl salt-sensitive (DS) rats with heart failure (DSHF). Eleven-week-old DS rats fed an 8%-NaCl diet received either vehicle or imidapril (1 mg/kg per day) for 7 weeks. The renal expression of the NAD(P)H oxidase p47phox and endothelial NO synthase were evaluated. In DSHF rats, associated with increased renal angiotensin II, mRNA and protein expression of NAD(P)H oxidase p47phox were enhanced with an increase in renal lipid peroxidation production (0.33+/-0.03 versus 0.22+/-0.01 nmol/mg protein, P<0.05) and urinary excretion of hydrogen peroxide (26.9+/-6.6 versus 9.5+/-2.1 U/mg creatinine, P<0.01) compared with levels in Dahl salt-resistant rats. The endothelial NO synthase expression was decreased in the kidney. Treatment with imidapril reduced renal angiotensin II and NAD(P)H oxidase expression and the oxidative products (kidney lipid peroxidation product: 0.16+/-0.02, P<0.001; urinary hydrogen peroxide: 3.1+/-0.2, P<0.01 versus DSHF rats). Imidapril significantly decreased albuminuria and reduced glomerulosclerosis without changes in the blood pressure. In conclusion, DSHF rats showed increased oxidative stress in the kidney via NAD(P)H oxidase. Blockade of local angiotensin II with subpressor dose of imidapril inhibited NAD(P)H oxidase and prevented renal damage.  相似文献   

12.
Telmisartan, in addition to blocking angiotensin (Ang) II type 1 receptor (AT(1)R), activates peroxisome proliferator activated receptor gamma (PPARgamma) signaling that interferes with nitric oxide (NO) system. Because aging of endothelial cells (ECs) is hallmarked by a reduction in NO synthesis, we hypothesized that telmisartan increases NO formation by regulated asymmetrical dimethylarginine (ADMA)-dimethylarginine dimethylaminohydrolase (DDAH)-system through blocking AT(1)R and activating PPARgamma signaling. To test this hypothesis, ECs were cultured with telmisartan, eprosartan, Ang II, and GW9662 (PPARgamma antagonist) until the twelfth passage. During the process of aging, PPARgamma protein expression decreased significantly, whereas the expression of AT(1)R increased. Telmisartan reversed these effects and dose-dependently decreased reactive oxygen species and 8-iso-prostaglandin (PG) F(2alpha) formation. This effect was associated with an upregulated activity and protein expression of DDAH, accompanied by a decrease in ADMA concentration, an increase in NO metabolites, and delayed senescence. Blockade of PPARgamma signaling by GW9662 or PPARgamma small-interference RNA prevented the effect of telmisartan on ADMA-DDAH-NO system. Coincubation with Ang II did not affect the effect of telmisartan-delayed senescence, whereas Ang II itself accelerated endothelial aging. Moreover, AT(1)R blocker eprosartan that did not influence PPARgamma protein expression had no effect on ADMA system and senescence. We have demonstrated that telmisartan mainly by activating PPARgamma signaling can alter the catabolism and release of ADMA as an important cardiovascular risk factor. We therefore propose that telmisartan translationally and posttranslationally upregulated DDAH expression via activation of PPARgamma signaling, causing ADMA to diminish and increase NO synthesis sufficient to delay senescence.  相似文献   

13.
目的 比较缬沙坦与替米沙坦对离体人主动脉平滑肌细胞(HASMCs)增殖及对血管紧张素受体表达的影响.方法 HASMCs 复苏、传代后,分别用不同浓度及条件的血管紧张素Ⅱ(AngⅡ)、缬沙坦(Val)、替米沙坦(Tel)、GW9662 干预HASMCs,采用CCK-8 检测细胞增殖能力,Western blot 方法检测细胞血管紧张素Ⅱ受体(AT)蛋白表达.结果 25 μmol/L Tel 与25 μmol/L Val 相比可更强地抑制1 μmol/L AngⅡ诱导的HASMCs 增殖.Tel 可抑制无AngⅡ刺激的HASMCs 增殖,且呈剂量依赖性,而Val 无此作用.25 μmol/L Tel 及Val 抑制HASMCs 上AT1受体表达相同(8.6%比17.0%,P>0.05),但Tel 促进AT2受体表达作用更强(29.9%比10.5%,P<0.05).氧化物酶体增殖体激活受体-γ(PPAR-γ)抑制剂GW9662 能抑制吡格列酮对HASMCs 抑制增殖的作用,但不能影响Tel 对HASMCs 抑制增殖作用.结论 替米沙坦比缬沙坦具有更强的抑制HASMCs 增殖及促进AT2受体表达上调的作用.  相似文献   

14.
We have shown recently that fasudil, a Rho-kinase inhibitor, has renoprotective effects in salt-sensitive hypertensive rats. We hypothesized that activation of Rho-kinase is involved in the pathogenesis of glomerulosclerosis in malignant hypertensive rats. To test this hypothesis, we studied the following 4 groups: control Wistar-Kyoto rats, untreated deoxycorticosterone-acetate salt spontaneously hypertensive rats (DOCA-SHR), low-dose fasudil-treated DOCA-SHR, and high-dose fasudil-treated DOCA-SHR. After 3 weeks of treatment, the effects of fasudil were examined. DOCA-SHR was characterized by increased blood pressure (BP); increased kidney weight; decreased renal function; increased proteinuria; abnormal histological findings; increased monocyte/macrophage infiltration; increased urinary 8-isoprostran levels; increased gene expression of collagen I, collagen III, transforming growth factor-beta, and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunits (p40phox, p47phox, and p67phox); and decreased gene expression of endothelial NO synthase (eNOS) in the renal cortex as compared with Wistar-Kyoto rats. Long-term high-dose fasudil treatment significantly improved renal function and histological findings without changing BP, as compared with untreated DOCA-SHR. Interestingly, long-term fasudil treatment significantly decreased monocyte/macrophage infiltration and urinary 8-isoprostran excretion, in association with decreased mRNA levels of transforming growth factor-beta, collagen I, collagen III, and NADPH oxidase subunits (p40phox, p47phox, and p67phox), and increased mRNA levels of eNOS in the renal cortex. Long-term low-dose fasudil treatment tended to improve these variables slightly but did not affect most of them significantly. Our results suggest that long-term fasudil treatment provides renoprotective effects independent of BP-lowering activity. These renoprotective effects are associated with inhibition of extracellular matrix gene expression, monocyte/macrophage infiltration, oxidative stress, and upregulation of eNOS gene expression.  相似文献   

15.
The angiotensin receptor blocker (ARB) telmisartan is a partial agonist of peroxisome proliferator-activated receptor gamma (PPARgamma). Typical PPARgamma agonists suppress the gene expression of angiotensin-converting enzyme (ACE) in vascular tissues. However, it remains unclear whether or not PPARgamma activation by telmisartan can inhibit vascular ACE activity. We compared the effects of PPARgamma agonistic telmisartan and non-agonistic valsartan on ACE, vascular function and oxidative stress in stroke-prone spontaneously hypertensive rats (SHR-SP) and in sodium (1% NaCl)-loaded SHR-SP. SHR-SP and sodium-loaded SHR-SP received placebo, 1 mg/kg telmisartan, or 10 mg/kg valsartan for 2 weeks. Systolic blood pressure (SBP) was equally reduced in SHR-SP given either telmisartan or valsartan compared with SHR-SP given placebo. However, neither telmisartan nor valsartan suppressed SBP in sodium-loaded SHR-SP. Acetylcholine induced significantly less vasorelaxation in SHR-SP than in Wistar-Kyoto rats, but telmisartan and valsartan each significantly prevented such vasorelaxation. However, telmisartan significantly attenuated acetylcholine-induced vasorelaxation in sodium-loaded SHR-SP, whereas valsartan did not. Telmisartan significantly attenuated NADPH oxidase subunit p22(phox) gene expression in both SHR-SP and sodium-loaded SHR-SP, whereas valsartan did not. Likewise, telmisartan also significantly attenuated the significantly increased vascular ACE activity in sodium-loaded SHR-SP, whereas valsartan did not. In conclusion, the partial PPARgamma agonist telmisartan might inhibit vascular ACE activity, and result in the prevention of oxidative stress and endothelial dysfunction more effectively than non-agonistic valsartan.  相似文献   

16.
Bone marrow-derived endothelial progenitor cells (EPCs) constitute an important endogenous system in the maintenance of endothelial integrity and vascular homeostasis. Cardiovascular risk factors are associated with a reduced number and functional capacity of EPCs. Here we investigated the effect of transplantation of bone marrow–derived cells from Dahl salt-resistant rat into age-matched Dahl salt-sensitive (DS) rat on blood pressure, endothelial function, and circulating EPC number. The recipient DS rats were fed a normal (0.5% NaCl, NS) or high-salt (4% NaCl, HS) diet for 6 weeks after bone marrow transplantation (BMT). DS rats on a NS or a HS diet without BMT were used as controls. Hypertensive DS (HS-DS) rat (systolic blood pressure: 213 ± 4 mm Hg vs. 152 ± 4 mm Hg in NS, P < .05) manifested impaired endothelium-dependent relaxation to acetylcholine (EDR), increased gene expression of vascular oxidative stress and proinflamamtory cytokines, and decreased eNOS expression. BMT on HS-DS rat significantly improved EDR and eNOS expression, reduced oxidative stress without reduction in SBP (206 ± 6 mm Hg). Flow cytometry analysis showed that there was no difference in the number of circulating EPCs, demonstrated by expression of EPC markers CD34, cKit, and vascular endothelial growth factor, between hypertensive and normotensive rats. Surprisingly, BMT resulted in a 5- to 10-fold increase in the previously mentioned EPC markers in hypertensive, but not normotensive rat. These results suggest that DS rat has an impaired ability to increase bone marrow–derived EPCs in response to HS diet challenge, which may contribute to endothelial dysfunction.  相似文献   

17.
The mechanisms mediating abnormal renal autoregulation in Dahl salt-sensitive (DS) rats have not been fully defined. In the present study, we assessed myogenic responsiveness of interlobular arteries (ILAs), afferent arterioles (AAs), and efferent arterioles in isolated perfused hydronephrotic Dahl rat kidneys. Dahl rats were divided into four groups according to strain (Dahl salt-resistant [DR] or DS rats) and dietary sodium manipulation (rats fed low or high salt diets). Systolic blood pressure was elevated only in DS rats fed the high salt diet (202 +/- 4 mm Hg, p less than 0.05). Myogenic responses were obtained by stepwise elevation of renal arterial pressure. Vessel diameters were determined by computer-assisted videomicroscopy. Preglomerular microvessels of DS and DR rats responded differently to changes in renal arterial pressure. AAs and ILAs manifested diminished myogenic responsiveness to increasing renal arterial pressure in DS rats compared with DR rats (p less than 0.05). Both AAs and ILAs in DS rats manifested a higher threshold pressure for eliciting myogenic responses and a decrease in maximal pressure-induced vasoconstriction. The sensitivity of the AA myogenic response to nifedipine was enhanced in DS rats compared with DR rats (p less than 0.05). For rats fed the high salt diet, preglomerular vessels exhibited reduced myogenic responsiveness in both strains. In contrast to preglomerular microvessels, efferent arterioles from all four groups of rats failed to exhibit pressure-induced vasoconstriction. Our data suggest that diminished myogenic responsiveness of AAs and ILAs in DS rats contributes to impaired renal autoregulation in this strain.  相似文献   

18.
We reported previously that an angiotensin II type 1 receptor blocker, telmisartan, improved cognitive decline with peroxisome proliferator-activated receptor-γ activation; however, the detailed mechanisms are unclear. Enhanced blood-brain barrier (BBB) permeability with alteration of tight junctions is suggested to be related to diabetes mellitus. Therefore, we examined the possibility that telmisartan could attenuate BBB impairment with peroxisome proliferator-activated receptor-γ activation to improve diabetes mellitus-induced cognitive decline. Type 2 diabetic mice KKA(y) exhibited impairment of cognitive function, and telmisartan treatment attenuated this. Cotreatment with GW9662, a peroxisome proliferator-activated receptor-γ antagonist, interfered with these protective effects of telmisartan against cognitive function. BBB permeability was increased in both the cortex and hippocampus in KKA(y) mice. Administration of telmisartan attenuated this increased BBB permeability. Coadministration of GW9662 reduced this effect of telmisartan. Significant decreases in expression of tight junction proteins and increases in matrix metalloproteinase expression, oxidative stress, and proinflammatory cytokine production were observed in the brain, and treatment with telmisartan restored these changes. Swollen astroglial end-feet in BBB were observed in KKA(y) mice, and this change in BBB ultrastructure was decreased in telmisartan. These effects of telmisartan were weakened by cotreatment with GW9662. In contrast, administration of another angiotensin II type 1 receptor blocker, losartan, was less effective compared with telmisartan in terms of preventing BBB permeability and astroglial end-foot swelling, and coadministration of GW9662 did not affect the effects of losartan. These findings are consistent with the possibility that, in type 2 diabetic mice, angiotensin II type 1 receptor blockade with peroxisome proliferator-activated receptor-γ activation by telmisartan may help with protection against cognitive decline by preserving the integrity of the BBB.  相似文献   

19.
Red wine polyphenols (RWPs) have been reported to prevent hypertension and endothelial dysfunction. Several individual RWPs exert estrogenic effects. We analyzed the possible in vivo protective effects on blood pressure and endothelial function of RWPs in female spontaneously hypertensive rats (SHR) and its relationship with ovarian function. RWPs (40 mg/kg by gavage) were orally administered for 5 weeks. Ovariectomized rats showed both increased isoprostaglandin F(2alpha) excretion and aortic superoxide production and reduced relaxant response to acetylcholine and contraction to the endothelial nitric oxide synthase (eNOS) inhibitor l-NAME measured in the aorta but similar blood pressure, as compared with sham-operated rats. Moreover, in ovariectomized rats aortic eNOS expression was unchanged, whereas caveolin-1, angiotensin II receptor (AT)-1, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22(phox) and p47(phox) expression was increased compared with sham-operated rats. In both ovariectomized and sham-operated SHR, RWPs reduced systolic blood pressure, urinary isoprostaglandin F(2alpha) excretion, and aortic O(2)(-) production, improving the endothelium-dependent relaxant response to acetylcholine in SHR. These changes were associated with unchanged aortic eNOS expression, whereas caveolin-1 was increased and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22(phox) and p47(phox) expression was reduced. RWPs had no effect on the AT-1 overexpression found in ovariectomized animals. All these results suggest that a chronic treatment with RWPs reduces hypertension and vascular dysfunction through reduction in vascular oxidative stress in female SHR in a manner independent of the ovarian function.  相似文献   

20.
Telmisartan possesses endothelial protective effects due to angiotensin II type 1 receptor antagonist, peroxisome proliferator-activated receptor γ (PPARγ) agonist and antioxidant action. Therefore, our objective was to study effect of telmisartan on angiogenic responsiveness of coronary endothelial cells (cECs) of normal and diabetic rats. Male Wistar rats were divided into six groups, normal rats, diabetic rats 30?d. (30 days after administration of STZ), diabetic rats 60?ds. (60 days after administration of STZ), telmisartan-treated normal rats (2?mg/kg, p.o., for 15 days before isolation of hearts), telmisartan-treated diabetic rats 30?ds, and telmisartan-treated diabetic rats 60?ds. Each group was further divided into two subgroups, sham rat hearts and ischemia-reperfused rat hearts. After isolation of cEC from each subgroup, angiogenic responsiveness and nitric oxide releasing properties were studied using chorioallantoic membrane (CAM) assay and Griess method, respectively. cEC of normal rats showed significant increase in angiogenic responsiveness in presence of vascular endothelial growth factor (VEGF) but not in absence of it. This activity was attenuated by pretreatment of cEC with l-NAME, wortmannin and chelerythrine. Diabetes and ischemia reperfusion injury suppressed angiogenic responsiveness of cEC. Telmisartan treatment showed significant increase in VEGF-induced angiogenic responsiveness and nitric oxide releasing properties of cECs of all subgroups as compared to their respective non-treated subgroups. These effects of telmisartan were significantly inhibited by pretreatment of cECs with l-NAME and wortmannin but not with chelerythrine. Our data suggest that telmisartan improves VEGF-induced coronary angiogenic activity in normal and diabetic rats via stimulation of PI3K/eNOS/NO pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号