首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hypermethylation of CpG island is a common mechanism by which tumor suppressor genes are inactivated. The tumor suppressor genes p16(INK4a) and p15(INK4b) are important components of the cell cycles. We have studied the feasibility of detecting tumor-associated aberrant p16(INK4a) and p15(INK4b) methylation in non-small cell lung cancer (NSCLC) using methylation-specific PCR. We found a high frequency of hypermethylation of the p16(INK4a) gene in 17 of 45 cases of NSCLC. In this study, there was no difference between the clinicopathological features or overall survival of patients with and without p16(INK4a) methylation. On the other hand, p15(INK4b) promoter hypermethylation is rare (5/45) in lung cancer and occurs in association with p16(INK4a) methylation. The overall survival of patients with p15(INK4b) methylation was markedly shortened in this series. We also analyzed cells in bronchial washings, and p16(INK4a) methylation was detected in 4 of 17 cases of NSCLC. Moreover, 1 of 10 plasma samples from patients with NSCLC was positive for p16(INK4a) methylation. Our results suggest a possible prognostic role of p15(INK4b) methylation in NSCLC, and that the detection of aberrant p16(INK4a) methylation in both bronchial washings and plasma may be useful for cancer diagnosis.  相似文献   

3.
The p15 gene which encodes a cyclin-dependent kinase inhibitor, is located in the 9p21 chromosomal region that is frequently deleted in human bladder transitional cell carcinomas (TCCs). The aim of the present paper is to study the potential involvement of the p15 gene in the evolution of TCCs. p15 mRNA expression was investigated by semi-quantitative RT-PCR in a series of 75 TCCs, 13 bladder cell lines and 6 normal bladder urothelia by semi-quantitative RT-PCR. p15 was expressed in the normal urothelium but p15 mRNA levels were significantly decreased in 66% of the superficial (Ta-T1) TCCs (P = 0.0015). In contrast, in muscle-invasive (T2-T4) TCCs, p15 expression differed widely between samples. p16 mRNA levels were also studied and there was no correlation between p15 and p16 mRNA levels, thus indicating that the two genes were regulated independently. Lower p15 expression in superficial tumours did not reflect a switch from quiescence to proliferative activity as normal proliferative urothelial controls did not present decreased p15 mRNA levels relative to quiescent normal urothelia. We further investigated the mechanisms underlying p15 down regulation. Homozygous deletions of the p15 gene, also involving the contiguous p16 gene, were observed in 42% of the TCCs with decreased p15 expression. No hypermethylation at multiple methylation-sensitive restriction sites in the 5;-CpG island of p15 was encountered in the remaining tumours. Our data suggest that decreased expression of p15 may be an important step in early neoplastic transformation of the urothelium and that a mechanism other than homozygous deletions or hypermethylation, may be involved in p15 down regulation.  相似文献   

4.
Actinic keratosis (AK) is a well-established pre-cancerous skin lesion that has the potential to progress to squamous cell carcinoma (SCC). We investigated the involvement of the CDKN2A, CDKN2B and p53 genes in AK and in the progression of AK to SCC. Mutational analysis on exons 1a, 1b and 2 of the CDKN2A locus and exon 1 of the CDKN2B locus as well as allelic imbalance was performed in 26 AK specimens. Expression levels of the genes p14(ARF), p15(INK4b), p16(INK4a) and p53 were examined in 16 AKs and 12 SCCs by real-time RT-PCR. A previously described polymorphism of p16(INK4a) (Ala148Thr) was detected at an allelic frequency of 12%. Six samples carried novel mutations at codon 71 of the CDKN2A locus and one sample presented an additional mutation at codon 65. Two AK samples carried a not-previously described non-UV type missense mutation at codon 184 (Val184Glu) of exon 1b in the p14(ARF) gene. Regarding the CDKN2B locus a new mutation at codon 50 (Ala50Thr) and another at codon 24 (Arg24Arg), were detected. Microsatellite instability (MSI) was found in 15% of AKs in at least one marker, indicating that genetic instability has some implication in the development of AK. Down-regulation of p16(INK4a) and p53 mRNA levels was noted in SCC compared to AK. TSGs expression levels in sun-exposed morphologically normal-appearing skin, suggests that abnormal growth stimuli might exist in these tissues as well. Furthermore, we suggest a possible role of p15(INK4b), independently from the intracellular pathway mediated by p16(INK4a), and of p14(ARF) in AK development, as well as in the progression of AK to SCC. The deregulation of the expression profiles of the CDKN2A, CDKN2B and p53 genes may, independently of mutations and LOH at 9p21, play a significant role in AK and progression of AK to SCC.  相似文献   

5.
Kusy S  Larsen CJ  Roche J 《Leukemia & lymphoma》2004,45(10):1989-1994
The INK4 family of proteins p15INK4b, p14ARF and p16INK4a function as cell cycle inhibitors where they are involved in the inhibition of G1 phase progression. Methylation of the p15INK4b promoter never seems to occur in solid tumors but is a major gene silencing mechanism in hematological malignancies. p14ARF and p16INK4a promoter methylation often occurs in solid tumors but also in leukemias and lymphomas. In chronic myelogenous leukemia (CML), only a few reports have been published regarding INK4 methylation and the results of the literature are discordant. Thus clearly, more works on large series have to be performed independently.  相似文献   

6.
7.
8.
To investigate if the cooperation between the Rgr oncogene and the inactivation of INK4b (a CDK inhibitor), as described previously in a sarcoma model, would be operational in a lymphoid system in vivo, we generated a transgenic/knockout murine model. Transgenic mice expressing the Rgr oncogene under a CD4 promoter were crossed into a p15(INK4b)-deficient background. Unexpectedly, mice with a complete ablation of both p15(INK4b) alleles had a lower tumor incidence and higher survival rate when compared with CD4-Rgr progeny with homozygous or heterozygous expression of p15(INK4b). Also, a similar survival pattern was observed in a parallel model in which transgenic mice expressing a constitutively activated N-Ras mutant were crossed into a p15(INK4b)-deficient background. To analyze this paradoxical event, we investigated the hypothesis that the absence of both p15(INK4b) alleles in the presence of the Rgr oncogene could be deleterious for proper thymocyte development. When analyzed, thymocyte development was blocked at the double negative (DN) 3 and DN4 stages in mice missing one or both alleles of p15(INK4b), respectively. We found reduction in overall apoptotic levels in the thymocytes of mice expressing Rgr, compared with their wild-type mice, supporting thymocyte escape from programmed cell death and subsequently facilitating the onset of thymic lymphomas but less for those missing both p15 alleles. These findings provide evidence of the complex interplay between oncogenes and tumor suppressor genes in tumor development and indicate that in the lymphoid tissue the inactivation of both p15 alleles is unlikely to be the first event in tumor development.  相似文献   

9.
10.
p19INK4d (CDKN2D) is a negative regulator of the cell cycle. Little is known of its role in cancer development and prognosis. We aimed to evaluate the clinical significance of p19INK4d expression in ovarian carcinomas with respect to the TP53 accumulation status, as well as the frequency of CDKN2D mutations. p19INK4d and TP53 expression was evaluated immunohistochemically in 445 ovarian carcinomas: 246 patients were treated with platinum–cyclophosphamide (PC/PAC), while 199 were treated with taxane–platinum agents (TP). CDKN2D gene expression (mRNA) was examined in 106 carcinomas, while CDKN2D mutations in 68 tumors. Uni- and multivariate statistical analyses (logistic regression and the Cox proportional hazards model) were performed for patient groups divided according to the chemotherapeutic regimen administered, and in subgroups with and without TP53 accumulation. High p19INK4d expression increased the risk of death, but only in patients with the TP53-negative carcinomas (HR 1.61, P = 0.049 for PC/PAC-treated patients, HR 2.00, P = 0.015 for TP-treated patients). This result was confirmed by the mRNA analysis (HR 4.24, P = 0.001 for TP-treated group). High p19INK4d protein expression associated with adverse clinicopathological factors. We found no alterations in the CDKN2D gene; the c.90C>G (p.R30R; rs1968445) polymorphism was detected in 10% of tumors. Our results suggest that p19INK4d expression is a poor prognostic factor in ovarian cancer patients. Analyses of tumor groups according to the TP53 accumulation status facilitate the identification of cancer biomarkers.  相似文献   

11.
12.
Solomon DA  Kim JS  Jean W  Waldman T 《Cancer research》2008,68(21):8657-8660
Glioblastoma multiforme (GBM) is one of the most dreaded cancer diagnoses due to its poor prognosis and the limited treatment options. Homozygous deletion of the p16(INK4a)/p14(ARF)/p15(INK4b) locus is among the most common genetic alterations in GBM. Two recent studies have shown that deletion and mutation of another INK4 family member, p18(INK4c), also drives the pathogenesis of GBM. This minireview will discuss the known roles for p18(INK4c) in the initiation and progression of cancer and suggest opportunities for future studies.  相似文献   

13.
The important cell cycle regulatory gene p15(INK4b) has been shown to be inactivated in acute myeloid leukemia and myelodysplastic syndrome. Little is known about the expression and epigenetic modification of this gene in chronic myelomonocytic leukemia (CMML) that belongs to the myelodysplastic/myeloproliferative disorders (MDS/MPD) with a high proportion of blastic transformation. Analysis of bone marrow trephines in a series of 33 CMML cases showed an aberrant p15(INK4b) gene methylation in up to 58% of cases. Methylation was analyzed employing different methylation-specific PCR and genomic sequencing protocols. It turned out to be spread over a broad area of the 5' region and exhibited substantial heterogeneity between cases and even in individual patients. The degree of aberrant methylation was correlated with a reduced mRNA as well as reduced protein expression, and was associated with a higher expression of DNA methyltransferase DNMT 3A. We conclude that aberrant gene methylation is a frequent event in CMML that might contribute to the pathogenesis of this MDS/MPD.  相似文献   

14.
15.
16.
Cytogenetic/molecular abnormalities significantly influence the prognosis of patients with acute leukemia. Recently, two genes, p16INK4a and p15INK4b, encoding two cyclin-dependent kinase inhibitor proteins of the INK4 family of Mr 15,000 and 16,000, respectively, have been localized to 9p21. Remarkably, the p16INK4a locus has been found to encode a second protein, p14ARF, known as p19ARF in mice, with a distinct reading frame. Like p16INK4a, p14ARF is involved in cell cycle regulation, blocking cells at the G1 restriction point through the activity of MDM-2 and p53. We studied bone marrow samples of 42 newly diagnosed and untreated patients with acute lymphoblastic leukemia for the incidence of deletions of p16INK4a/p14ARF and p15INK4b using Southern blot analysis and determined the clinical outcome with regard to complete remission (CR) duration, event-free survival, and overall survival. We found deletions of p16INK4a/p14ARF in 17 of 42 patients (40%), with homozygous deletions in 11 of 42 patients (26%) and hemizygous deletions in 6 of 42 patients (14%). The gene for p15INK4b was codeleted in most, but not all, cases and was never deleted without deletion of p16INK4a/ p14ARF. No correlation was observed between molecular studies and karyotype abnormalities as determined by conventional cytogenetics. Furthermore, no difference was found in the CR rate, CR duration, event-free survival, and overall survival in patients with homozygous gene deletions compared to patients with no deletions or loss of only one allele.  相似文献   

17.
The recently discovered p15INK4B and p16INK4 genes encoding cell cycle regulating proteins, map to a region on chromosome 9p21 that is commonly deleted in a variety of malignant diseases. The p16INK4 gene has now been shown to be a tumor suppressor gene. It is frequently inactivated in cancer and is possibly the second most often mutated gene in human malignant disease after p53. The role of the p15INK4B and p16INK4 genes in hematologic malignancies has been the subject of intense investigation since their discovery. In this review we address the function and possible role in tumorigenesis of the p15INK4B and p16INK4 genes and discuss their significance as prognostic markers in hematologic malignancies.  相似文献   

18.
p19INK4d, a member of the INK4 family of cyclin-dependent kinase inhibitors, negatively regulates the proto-oncogenic cyclin D/CDK4(6) complexes whose ability to phosphorylate the retinoblastoma tumour suppressor (RB) promotes G1/S transition. In contrast to the related p16INK4a tumour suppressor, expression patterns of 19INK4d in human tissues and tumours remain unknown. As the RB pathway is commonly targeted in cancer, and mouse models suggest a role for p19INK4d in spermatogenesis, we examined the abundance and localization of p19INK4d in the human testis, both during normal development and at various stages of germ-cell tumour pathogenesis. Our data show that the p19INK4d protein is abundant in spermatocytes of normal human adult testes, whereas virtually no p19INK4d is detectable in testicular cancer, including the preinvasive carcinoma in situ stage. Together with the lack of p19INK4d in human foetal germ cells, these results support the concept of foetal origin of the testicular germ-cell tumours, and help better understand the emerging role of the RB pathway in spermatogenesis and tumorigenesis in the human testis. Oncogene (2000) 19, 4146 - 4150  相似文献   

19.
The 9p21 gene cluster, harboring growth suppressive genes p14ARF, p15INK4b, and p16INK4a, is one of the major aberration hotspots in human cancers. It was shown that p14ARF and p16INK4a play active roles in the p53 and Rb tumor suppressive pathways, respectively, and p15INK4b is a mediator of the extracellular growth inhibition signals. To elucidate specific targets and aberrations affecting this subchromosomal region, we constructed a detailed alteration map of the 9p21 gene cluster by analyzing homozygous deletion, hypermethylation, and mutation of the p14ARF, p15INK4b, and p16INK4a genes individually in 40 esophageal squamous cell carcinomas (ESCCs) and compared the genetic alterations with mRNA expression in 18 of these samples. We detected aberrant promoter methylation of the p16INK4a gene in 16 (40%), of p14ARF in 6 (15%), and of p15INK4b in 5 (12.5%) tumor samples. Most p16INK4a methylations were exclusive, whereas all but one of the p14ARF/p15INK4b methylations were accompanied by concomitant p16INK4a methylation. We detected homozygous deletion of p16INK4a in 7 (17.5%), of p14ARF-E1beta in 13 (33%), and of p15INK4b in 16 (40%) tumor samples. Most deletions occurred exclusively on the E1beta-p15INK4b loci. Two samples contained p14ARF deletion but with p16INK4a and p15INK4b intact. No mutation was detected in the p14ARF and p16INK4a genes. Comparative RT-PCR showed good concordance between suppressed mRNA expression and genetic alteration for p15INK4b and p16INK4a genes in the 18 frozen samples, whereas 5 of the 13 cases with suppressed p14ARF mRNA expression contained no detectable E1beta alteration but aberrations in the p16INK4a locus. Our results show that in human ESCCs, p14ARF is a primary target of homozygous deletion along with p15INK4b, whereas p16INK4a is the hotspot of hypermethylation of the 9p21 gene cluster. The frequent inactivation of the p14ARF and p16INK4a genes may be an important mechanism for the dysfunction of both the Rb and p53 growth regulation pathways during ESCC development.  相似文献   

20.
Cyclin and cyclin-dependent kinase (a) complexes play important roles in modulating the cell cycle. The CDK inhibitors (a) inhibit the kinase activities of these complexes and block the cell cycle. The p16/multiple tumor suppressor (MTS) 1/inhibitor of CDK4 (INK4) a/CDKN2 gene, a CDKI, is frequently deleted in a variety of human cancers. Recently another CDKI gene, p15/MTS2/INK4b, was cloned and localized to within 20kb of the p16 gene. Moreover, a third CDKI gene, named p18/INK4c and having a high degree of protein homology to p16, has now been cloned. To elucidate the importance of these CDKI genes in non-small cell lung cancers (a), we examined DNAs from 34 NSCLC samples for alterations in these genes by Southern blot and polymerase chain reaction (a) -single-strand conformational polymorphism (a) analyses. Matched control normal tissues from the same individuals were also examined. Homozygous deletions of the p15 gene were found in three cases. Furthermore, comparative PCR analysis confirmed these deletions and suggested that one additional case had an abnormality of the p15 gene. Neither rearrangements nor deletions of the p18 gene were detected. By PCR-SSCP and direct sequencing of the aberrantly migrating bands, we detected only polymorphic nucleotide substitutions in both the p15 and p18 genes. In summary, the frequency of deletions of the p15 gene was 12% (four of 34 cases), and no point mutations in the p15 gene were detected in the NSCLCs. For the p18 gene, no abnormalities were detected. A previous analysis of these NSCLC samples for p16 gene alterations revealed that the three cases with homozygous deletions of the p15 gene also have homozygous deletions of the p16 gene. © 1995 Wiley- Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号