首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of the ubiquity of Legionella isolates in aquatic habitats, epidemiologic evaluation of Legionella pneumophila strains is important in the investigation and subsequent control of nosocomial outbreaks of legionellosis. In this study, ribotyping and restriction enzyme analysis by pulsed-field gel electrophoresis (PFGE) were used to compare isolates of L. pneumophila obtained from patients and the environment during a nosocomial outbreak with unrelated control strains. Restriction enzyme analysis by PFGE resolved 14 different patterns among the L. pneumophila serogroup 1 and L. pneumophila serogroup 6 isolates involved in the study. Two of the patterns were observed in the three L. pneumophila serogroup 6 isolates from patients with confirmed nosocomial infections and environmental isolates from the potable water supply, which was, therefore, believed to be the source of the patients' infections. Three more patterns that were not present in isolates from patients with legionellosis were seen in isolates from the hospital environment, demonstrating the presence of multiple strains in the hospital environment. In the outbreak, one distinct pattern occurred among the L. pneumophila serogroup 1 isolates from patients with nosocomial infections, suggesting a common source; however, the source could not be determined. By comparison, ribotyping generated five patterns. However, some control strains of both L. pneumophila serogroups 1 and 6 possessed the same ribotypes as were present in the outbreak isolates. Both techniques were used successfully to subtype the isolates obtained during the investigation of the outbreak. Furthermore, restriction enzyme analysis by PFGE was useful for subdividing ribotypes and for distinguishing strains involved in the outbreak from epidemiologically unrelated strains.  相似文献   

2.
Typing of Legionella pneumophila remains important in the investigation of outbreaks of Legionnaires' disease and in the control of organisms contaminating hospital water. We found that the discriminatory power of a nonradioactive ribotyping method could be improved by combining results obtained with four restriction enzymes (HindIII, NciI, ClaI, and PstI). Fifty-eight clinical and environmental L. pneumophila strains including geographically unrelated as well as epidemiologically connected isolates were investigated. Epidemiologically related strains had the same ribotypes independent of the combinations of enzymes used. Some strains belonging to the same serogroup were assigned to different ribotypes, and some ribotypes contained members of different serogroups, indicating, as others have found, that serogroup and genotype are not always related. The discriminatory power of the method was estimated by calculating an index of discrimination (ID) for individual enzymes and combinations thereof. The combined result with all four enzymes was highly discriminatory (ID = 0.97), but results for three enzymes also yielded ID values acceptable for epidemiological purposes. In addition, the testing of 27 type strains and 6 clinical isolates representing Legionella species other than L. pneumophila indicated that ribotyping might be of value for species identification within this genus, as previously suggested.  相似文献   

3.
Analysis of PCR-amplified transfer DNA (tDNA) intergenic spacers was evaluated as a rapid method for identification to the species level of 18 species of Legionella known as human pathogens. Type strains (n = 19), reference strains (n = 16), environmental strains (n = 31), and clinical strains (n = 32) were tested. PCR products using outwardly directed tDNA consensus primers were separated on polyacrylamide gels and analyzed with automated laser fluorescence. Test results were obtained in 8 h starting with 72-h-old bacterial growth on solid medium. Species-specific patterns were obtained for all 18 Legionella species tested: Legionella anisa, L. bozemanii serogroups 1 and 2, L. cincinnatiensis, L. dumoffii, L. feeleii serogroups 1 and 2, L. gormanii, L. hackeliae serogroups 1 and 2, L. jordanis, L. lansingensis, L. longbeachae serogroups 1 and 2, L. lytica, L. maceachernii, L. micdadei, L. oakridgensis, L. parisiensis, L. pneumophila serogroups 1 to 14, L. sainthelensi serogroup 2, L. tucsonensis, and L. wadsworthii. Computer-assisted matching of tDNA-intergenic length polymorphism (ILP) patterns identified all 63 environmental and clinical strains to the species level and to serogroup for some strains. tDNA-ILP analysis is proposed as a routinely applicable method which allows rapid identification of environmental and clinical isolates of Legionella spp. associated with legionellosis.  相似文献   

4.
Electrophoretic analysis of lipopolysaccharide (LPS) extracts from 430 previously serotyped Legionella isolates and 28 American Type Culture Collection (ATCC) non-Legionella pneumophila Legionella reference strains representing different Legionella species and serogroups has been performed. LPS was prepared from Legionella suspensions by sonication and proteinase K digestion. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, LPS bands were either stained with silver nitrate or transferred onto a nitrocellulose membrane and detected with rabbit antibodies raised against L. pneumophila serogroup 5, which was known to cross-react with L. pneumophila serogroups 1 to 14. Silver staining revealed that each of the 28 ATCC non-L. pneumophila Legionella strains possessed an individual and characteristic LPS banding pattern. The LPS profile was defined by the molecular weight of the visualized bands and/or the individual ladder-like LPS pattern. It was demonstrated by immunoblotting that non-L. pneumophila Legionella strains did not react with the serogroup 5 antiserum, thus allowing for the differentiation between L. pneumophila and non-L. pneumophila species.  相似文献   

5.
The nucleotide sequences of the partial rpoB gene were determined from 38 Legionella species, including 15 serogroups of Legionella pneumophila. These sequences were then used to infer the phylogenetic relationships among the Legionella species in order to establish a molecular differentiation method appropriate for them. The sequences (300 bp) and the phylogenetic tree of rpoB were compared to those from analyses using 16S rRNA gene and mip sequences. The trees inferred from these three gene sequences revealed significant differences. This sequence incongruence between the rpoB tree and the other trees might have originated from the high frequency of synonymous base substitutions and/or from horizontal gene transfer among the Legionella species. The nucleotide variation of rpoB enabled more evident differentiation among the Legionella species than was achievable by the 16S rRNA gene and even by mip in some cases. Two subspecies of L. pneumophila (L. pneumophila subsp. pneumophila and subsp. fraseri) were clearly distinguished by rpoB but not by 16S rRNA gene and mip analysis. One hundred and five strains isolated from patient tissues and environments in Korea and Japan could be identified by comparison of rpoB sequence similarity and phylogenetic trees. These results suggest that the partial sequences of rpoB determined in this study might be applicable to the molecular differentiation of Legionella species.  相似文献   

6.
Previous DNA relatedness and enzyme electrophoretic mobility studies indicated heterogeneity among strains of Legionella pneumophila serogroups 1, 4, 5, and Lansing 3 (a new, as yet unnumbered serogroup). In this study 60 L. pneumophila strains were studied by DNA hybridization (hydroxyapatite method) to assess their genomic relatedness. These strains were also studied biochemically and serologically to determine whether they formed one or more phenotypic groups. DNA relatedness studies identified three groups. DNA group 1 contained the type strain Philadelphia 1 and strains from serogroups 1 through 14 of L. pneumophila. The average relatedness of DNA group 1 strains was 88% at 60 degrees C with 1.1% divergence in related sequences and 85% at 75 degrees C. DNA group 2 contained strain Los Angeles 1, the reference strain of serogroup 4, and strains of serogroups 1, 4, 5, and Lansing 3, an unnumbered serogroup. Average relatedness of DNA group 2 strains was 84% at 60 degrees C with 0.7% divergence and 87% at 75 degrees C. Reciprocal relatedness of DNA groups 1 and 2 was approximately 67% at 60 degrees C with 6.0% divergence and 48% at 75 degrees C. DNA group 3 strains were in serogroup 5. They were 98% related at 60 degrees C with 0.5% divergence and 97% related at 75 degrees C. Reciprocal relatedness of DNA group 3 and DNA group 1 was approximately 74% at 60 degrees C with 5.3% divergence and 43% at 75 degrees C, and reciprocal relatedness of DNA groups 3 and 2 was 66% at 60 degrees C with 5.7% divergence and 55% at 75 degrees C. The DNA groups could not be separated biochemically or serologically or by cell wall fatty acid and isoprenoid quinone composition. Three subspecies of L. pneumophila are proposed to accommodate the three DNA groups: L. pneumophila subsp. pneumophila subsp. nov. for DNA group 1, L. pneumophila subsp. fraseri subsp. nov. for DNA group 2, and pneumophila subsp. pascullei subsp. nov. for DNA group 3.  相似文献   

7.
Immunological cross-reactions among Legionella species were investigated with sonicated, proteinase K-digested cell lysates. The antigens separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were either analyzed for lipopolysaccharides (LPSs) by silver staining or transferred to nitrocellulose membranes for serological characterization with rabbit antibodies directed against Legionella pneumophila serogroups 1 and 5. When antiserum prepared against serogroup 5 was used to probe the LPSs from L. pneumophila serogroups 1 to 14, the antibodies recognized a common epitope harbored by all L. pneumophila serogroups but not by other Legionella species or by the gram-negative bacteria tested as controls. Hence, the serogroup 5 antiserum correctly identified all serogroups of L. pneumophila tested in the LPS immunoblot assay. Moreover, the silver-stained profiles of the isolated LPSs revealed characteristic patterns allowing the identification of the individual serogroups of L. pneumophila.  相似文献   

8.
The antibody response of patients infected with Legionella pneumophila serogroup 1 in a common source outbreak was investigated. Heat-killed antigens from L pneumophila serogroups 1-3 and 6-10, plus several other strains of L pneumophila, together with 13 other species of legionellas were used in an indirect fluorescence antibody test. Formolised yolk sac antigens made from L pneumophila serogroups 1, 6, and 7 were also used. Although antibodies were produced to several L pneumophila serogroups or Legionella species by individuals, there was no constant pattern, suggesting that the response is a characteristic of the infected individual and not of the infecting strain of Legionella. There is evidence that heat-killed antigen made from L pneumophila serogroup 7 may give unreliable results.  相似文献   

9.
Genomics can provide the basis for understanding the evolution of emerging, lethal human pathogens such as Legionella pneumophila, the causative agent of Legionnaires' disease. This bacterium replicates within amoebae and persists in the environment as a free-living microbe. Among the many Legionella species described, L. pneumophila is associated with 90% of human disease and within the 15 serogroups (Sg), L. pneumophila Sg1 causes over 84% of Legionnaires' disease worldwide. Why L. pneumophila Sg1 is so predominant is unknown. Here, we report the first comprehensive screen of the gene content of 217 L. pneumophila and 32 non-L. pneumophila strains isolated from humans and the environment using a Legionella DNA-array. Strikingly, we uncovered a high conservation of virulence- and eukaryotic-like genes, indicating strong environmental selection pressures for their preservation. No specific hybridization profile differentiated clinical and environmental strains or strains of different serogroups. Surprisingly, the gene cluster coding the determinants of the core and the O side-chain synthesis of the lipopolysaccaride (LPS cluster) determining Sg1 was present in diverse genomic backgrounds, strongly implicating the LPS of Sg1 itself as a principal cause of the high prevalence of Sg1 strains in human disease and suggesting that the LPS cluster can be transferred horizontally. Genomic analysis also revealed that L. pneumophila is a genetically diverse species, in part due to horizontal gene transfer of mobile genetic elements among L. pneumophila strains, but also between different Legionella species. However, the genomic background also plays a role in disease causation as demonstrated by the identification of a globally distributed epidemic strain exhibiting the genotype of the sequenced L. pneumophila strain Paris.  相似文献   

10.
We studied the lipopolysaccharide (LPS) of Legionella pneumophila and six other Legionella species to determine whether strain differences were apparent. The LPS was purified by a cold ethanol extraction procedure, and total carbohydrates represented 10 to 20% of LPS weight. 2-keto-3-deoxyoctonate represented 1 to 13% of the total carbohydrate present in the LPS. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all strains except L. dumoffi showed smooth-type LPS with multiple high-molecular-weight complexes. Proteinase K-treated, whole-cell lysates showed profiles similar to those of purified LPS. Each serogroup of L. pneumophila and each Legionella species had a distinct sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile. L. pneumophila lipid A is antigenically related to the lipid A of Enterobacteriaceae. In immunoblot assays with the LPS of L. pneumophila serogroups 1 to 6 as antigens, serogroup-specific immune monkey sera recognized homologous purified LPS, but not the LPS of the five heterologous serogroups. These studies indicate that LPS composition may be a determinant of serogroup specificity as defined by the immunofluorescence-based serogrouping schema for L. pneumophila and other Legionella species.  相似文献   

11.
Several strains of Legionella pneumophila and other species of Legionella with proteolytic activities were compared by assays, including Southern hybridizations and Western immunoblots, to determine their proteolytic, hemolytic, and cytotoxic activities. Only proteases from strains of L. pneumophila were both hemolytic and cytotoxic, and proteolytic activities extracted from other species of Legionella possessed only hemolytic activity. A 4.0-kilobase DNA sequence encoding the 38-kilodalton metalloprotease from L. pneumophila Philadelphia 1 that we showed previously was responsible for the observed hemolytic and cytotoxic phenotypes (F. D. Quinn and L. S. Tompkins, Mol. Microbiol., 3:797-805, 1989) was used in Southern hybridizations to probe chromosomal DNA from several strains of L. pneumophila and other Legionella species. The probe hybridized to the chromosomal DNA of all serogroups of L. pneumophila but not to any strains of L. dumoffii, L. micdadei, L. feeleii, or L. jordanis that we examined. Additionally, Western immunoblots done with rabbit antisera made to the cloned L. pneumophila protease demonstrated cross-reactions among 38-kilodalton proteins from strains of L. pneumophila, but no reactions were observed with proteins from other species of Legionella. Similarly, the cloned protease from L. pneumophila reacted with convalescent-phase sera from patients infected with L. pneumophila, but not with antisera isolated from patients infected with other Legionella species. Thus, despite some similarities among the proteolytic activities of members of the genus Legionella, including proteolytic and hemolytic phenotypes, metal requirements for zinc or iron, sensitivity to EDTA, and temperature and pH optima, we documented distinct genetic, immunological, and cytotoxicity differences among the proteolytic activities produced by Legionella species.  相似文献   

12.
Major protein-containing antigens of Legionella pneumophila serogroup 1 were were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis with rabbit antisera to 14 different Legionella species or serogroups. Fourteen bands were observed in immunoelectropherograms of whole-cell, sonicated cell, and heated cell preparations, seven of which appeared in the supernatant fluid from the heated cells and three of which were shown in an outer membrane fraction. Immunoblots of whole-cell antigen preparations of 14 Legionella species or serogroups revealed seven major Legionella proteins: antigens with molecular weights of 58,000, 79,000, and 154,000 were present in all Legionella sp. strains, antigens with molecular weights of 44,000 and 97,000 occurred in multiple species, and antigens with molecular weights of 14,000 and 25,000 were present only in L. pneumophila strains. All sera from 15 patients with culture-confirmed L. pneumophila serogroup 1 disease and 14 of 18 (78%) sera from serologically diagnosed patients reacted with the 58-kilodalton (kDa) common antigen. In contrast, less than one-half of the sera reacted with the L. pneumophila-specific proteins (14 and 25 kDa). Absorption of sera with Escherichia coli cells had no effect on their reactivity with the 58-kDa antigen, whereas absorption with L. pneumophila serogroup 1 cells removed reactivity. These data suggest that the 58-kDa antigen may prove useful in serodiagnostic tests for legionellosis.  相似文献   

13.
Outer membranes were isolated from eight serogroups of L. pneumophila and five other Legionella species. The protein composition of the membranes was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single, disulfide stabilized protein with a molecular size of 29,000 to 30,000 daltons was found to be the major outer membrane protein (MOMP) of all the serogroups. The equivalent of the L. pneumophila MOMP was not observed in any of the other Legionella species examined. Silver staining of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels revealed distinctive patterns for each serogroup and other Legionella species that were not observed by staining with Coomassie blue and may result from the presence of lipopolysaccharide in the membrane preparations. The MOMP from serogroup 1 was isolated by exposing crude peptidoglycan to detergent in the presence of heat and reducing agent and was found to be tightly associated with lipopolysaccharide. Antibodies to this complex were used to probe the outer membranes of the remaining, L. pneumophila serogroups and other Legionella species by Western blotting. Serogroup 1 anti-MOMP antibodies were found to react with the MOMP from the remaining seven serogroups examined, whereas antibodies directed against the lipopolysaccharide of serogroup 1 only reacted with lipopolysaccharide from two of the remaining seven serogroups.  相似文献   

14.
Repetitive element PCR (rep-PCR) uses outward-facing primers to amplify multiple segments of DNA located between conserved repeated sequences interspersed along the bacterial chromosome. Polymorphisms of rep-PCR amplification products can serve as strain-specific molecular fingerprints. Primers directed at the repetitive extragenic palindromic element were used to characterize isolates of Legionella pneumophila and other Legionella species. Substantial variation was seen among the rep-PCR fingerprints of different Legionella species and serogroups. More limited, but distinct, polymorphisms of the rep-PCR fingerprint were evident among epidemiologically unrelated isolates of L. pneumophila serogroup 1. Previously characterized Legionella isolates from nosocomial outbreaks were correctly clustered by this method. These results suggest the presence of repetitive extragenic palindromic-like elements within the genomes of members of the family Legionellaceae that can be used to discriminate between strains within a serogroup of L. pneumophila and between different Legionella species. rep-PCR appears to be a useful technique for the molecular fingerprinting of Legionella species.  相似文献   

15.
Monoclonal antibodies (MAbs) against the virulence-associated Mip protein of Legionella spp. were raised by immunizing BALB/c mice with (i) Legionella pneumophila, (ii) Legionella micdadei, and (iii) purified recombinant native Mip protein cloned from L. pneumophila Philadelphia 1. Following screening of seeded wells by immunoblot analysis with homologous antigens, eight Mip-specific MAbs were found. These MAbs were chosen to investigate the antigenic diversity of Mip proteins in the genus Legionella. Mip was detected in 82 Legionella strains representing all 34 species tested. One of these MAbs, obtained from immunization with L. micdadei, recognized an epitope common to all Legionella species tested by immunoblot analysis. Another MAb was discovered to be specific for the Mip protein of L. pneumophila. The remaining six MAbs recognized 18 to 79% of Legionella species included in this study. By making use of the MAbs introduced in this study, it could be shown that, based on Mip protein epitope expression, Legionella species can be divided into at least six antigenetically distinct groups. As demonstrated by 43 L. pneumophila strains representing all serogroups, no antigenic diversity of Mip proteins was found for this species. In addition, 18 non-Legionella species, including Chlamydia trachomatis, Neisseria meningitidis, Pseudomonas aeruginosa, and Saccharomyces cerevisiae, all of which are known to carry genes homologous to the Legionella mip genes, were reacted against all eight MAbs. No cross-reactivity was detectable in any of those strains.  相似文献   

16.
Identification of mip-like genes in the genus Legionella.   总被引:20,自引:7,他引:13       下载免费PDF全文
The mip gene of Legionella pneumophila serogroup 1 strain AA100 encodes a 24-kilodalton surface protein (Mip) and enhances the abilities of L. pneumophila to parasitize human macrophages and to cause pneumonia in experimental animals. To determine whether this virulence factor is conserved in the genus Legionella, a large panel of Legionella strains was examined by Southern hybridization and immunoblot analyses for the presence and expression of mip-related sequences. Strains representing all 14 serogroups of L. pneumophila contained a mip gene and expressed a 24-kilodalton Mip protein. Although the isolates of the 29 other Legionella species did not hybridize with mip DNA probes under high-stringency conditions, they did so at reduced stringency. In support of the notion that these strains possess mip-like genes, these species each expressed a protein (24 to 31 kilodaltons in size) that reacted with specific Mip antisera. Moreover, the cloned mip analog from Legionella micdadei encoded the cross-reactive protein. Thus, mip is conserved and specific to L. pneumophila, but mip-like genes are present throughout the genus, perhaps potentiating the intracellular infectivity of all Legionella species.  相似文献   

17.
Monoclonal antibodies directed against Legionella pneumophila serogroups 1 to 6 were produced by fusing splenocytes of BALB/c mice with the Sp 2/0-Ag14 or the NSO mouse myeloma cell lines. Specificity of these antibodies was determined by indirect fluorescent-antibody staining: 8 reacted with L. pneumophila serogroup 1 and, respectively, 13, 6, 6, 5, and 10 reacted with serogroups 2, 3, 4, 5, and 6; all except 5 were serogroup specific, and none presented cross-reactions with six other species of Legionellaceae. Serogroup determination of 35 isolates of L. pneumophila with seven selected monoclonal antibodies resulted in correct serogrouping in all instances; a pool of the same seven monoclonal antibodies stained intensely all strains of L. pneumophila without any staining of the other species of Legionellaceae. When 24 serogroup 1 isolates of L. pneumophila were stained with eight serogroup 1-specific monoclonal antibodies, the staining patterns could be clustered in five distinct groups. These hybridomas thus represent an unlimited source of standard reagent that could be used in the detection and serogrouping of L. pneumophila; differences in staining patterns could be used as epidemiological markers for these bacteria.  相似文献   

18.
Objective: To evaluate the performance of arbitrarily primed polymerase chain reaction (AP-PCR) analysis in epidemiologic typing of Legionella pneumophila.
Methods: Sixty-two isolates of L. pneumophila of serogroups 1, 3, 6 and 10, including epidemiologically related and unrelated isolates, were analyzed by AP-PCR using the primer BG2. Twenty-six of the serogroup 1 isolates were typed by pulsed-field gel electrophoresis (PFGE).
Results: AP-PCR analysis showed 98% typeability and complete reproducibility. A majority of unrelated isolates of each serogroup could be distinguished (discrimination index: 92%). Clinical isolates showed AP-PCR patterns indistinguishable from those of the isolates of the related environmental source. PFGE and AP-PCR results were in agreement for 88% of isolates.
Conclusions: Single-primer AP-PCR analysis can be used as a simple and reproducible screening method for typing L. pneumophila strains of different serogroups.  相似文献   

19.
Isolates of Legionella pneumophila that are serologically different from strains of serogroups 1 through 5 were obtained from lung biopsy tissue or pleural fluid from three renal transplant recipients in Chicago, Ill. These strains were placed in a newly designated L. pneumophila serogroup, serogroup 6, on the basis of fluorescent-antibody staining characteristics. An L. pneumophila strain obtained from Bethesda, Md., one from Houston, Tex., and one from Oxford, England, also belong to this new serogroup. L. pneumophila serogroup 6 appears to be widely distributed geographically.  相似文献   

20.
We wanted to determine the prevalence of pneumonias caused by Legionella species among patients on whom autopsies were performed in two medical centers in St Louis from January 1976 to June 1981. We screened formaldehyde-fixed deparaffinized lung tissue sections with microscopic evidence of pneumonia from 97 patients with use of the direct immunofluorescence antibody technique with a multivalent antilegionella conjugate containing antibodies to Legionella pneumophila serogroups 1 through 4 plus other Legionella species. One patient (1%) had disseminated L pneumophila serogroup 1 infection. We conclude that the prevalence of pneumonias caused by L pneumophila (serogroups 1 through 4), Legionella micdadei, Legionella bozemanii, Legionella dumoffii, or Legionella gormanii is low in the patients studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号