首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results : As a prelude to examining the functional roles of Slitrks, we identified eight slitrk orthologs in zebrafish and observed that seven of the eight orthologs were actively transcribed in the nervous system at embryonic, larval, and adult stages. Similar to previous findings in mice and humans, zebrafish slitrks exhibited unique but overlapping spatial and temporal expression patterns in the developing brain, retina, and spinal cord. 相似文献   

2.
Slitrk基因家族是一类调节神经突生长的结构相关的跨膜蛋白,有6个成员。Slitrk蛋白有氨基末端的亮氨酸重复序列(LRRs)和羧基末端的酪氨酸残基2个保守结构域,它们分别与轴突导向因子Slit和神经营养因子受体TrkA的相应结构同源,且功能有相近之处。人与鼠Slitrk家族各成员的氨基酸序列高度同源。除Slitrk6外Slitrk其他成员的表达都局限于神经组织,Slitrk1,Slitrk2的分布具有互补性。Slitrk基因还在多种神经上皮肿瘤中有不同程度的表达。  相似文献   

3.
4.
Mammals and fish differ in their ability to express axon growth‐associated genes in response to CNS injury, which contributes to the differences in their ability for CNS regeneration. Previously we demonstrated that for the axon growth‐associated gene, gap43, regions of the rat promoter that are sufficient to promote reporter gene expression in the developing zebrafish nervous system are not sufficient to promote expression in regenerating retinal ganglion cells in zebrafish. Recently, we identified a 3.6‐kb gap43 promoter fragment from the pufferfish, Takifugu rubripes (fugu), that can promote reporter gene expression during both development and regeneration. Using promoter deletion analysis, we have found regions of the 3.6‐kb fugu gap43 promoter that are necessary for expression in regenerating, but not developing, retinal ganglion cells. Within the 3.6‐kb promoter, we have identified elements that are highly conserved among fish, as well as elements conserved among fish, mammals, and birds. Developmental Dynamics 239:482–495, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Mammalian sulfatase enzymes participate in various processes, such as hormone regulation, lysosomal degradation and modulation of several signaling pathways. The sulfatase gene family consists of 14 members in mice and 17 in humans. Mutations of at least eight members are associated with human disorders, with main disease manifestations in the nervous system and skeleton. Despite their biological significance, little is known about their expression during embryonic development, especially for the more recently discovered gene family members. By in situ hybridization, we compared the expression patterns of nine sulfatases: ArsB, ArsG, ArsI, ArsJ, Galns, Gns, Ids, Sulf1, and Sulf2 in midgestation mouse embryos. Of interest, overlapping expression domains of several sulfatases could be detected in the developing central nervous system, eye, skeleton, and inner organs. Moreover, novel expression patterns for ArsG in choroid plexus, ArsI in hypertrophic chondrocytes and ArsJ in joints were identified. Developmental Dynamics 239:1779–1788, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Dishevelled (Dvl) proteins are key transducers of Wnt signaling encoded by members of a multi‐gene family in vertebrates. We report here the divergent, tissue‐specific expression patterns for all three Dvl genes in Xenopus embryos, which contrast dramatically with their expression patterns in mice. Moreover, we find that the expression patterns of Dvl genes in the chick diverge significantly from those of Xenopus. In addition, in hemichordates, an outgroup to chordates, we find that the one Dvl gene is dynamically expressed in a tissue‐specific manner. Using knockdowns, we find that Dvl1 and Dvl2 are required for early neural crest specification and for somite segmentation in Xenopus. Most strikingly, we report a novel role for Dvl3 in the maintenance of gene expression in muscle and in the development of the Xenopus sclerotome. These data demonstrate that the expression patterns and developmental functions of specific Dvl genes have diverged significantly during chordate evolution. Developmental Dynamics 238:2044–2057, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The Cadm (cell adhesion molecule) family of cell adhesion molecules (also known as IGSF4, SynCAM, Necl and TSLC) has been implicated in a multitude of physiological and pathological processes, such as spermatogenesis, synapse formation and lung cancer. The precise mechanisms by which these adhesion molecules mediate these diverse functions remain unknown. To investigate mechanisms of action of these molecules during development, we have identified zebrafish orthologs of Cadm family members and have examined their expression patterns during development and in the adult. Zebrafish possess six cadm genes. Sequence comparisons and phylogenetic analysis suggest that four of the zebrafish cadm genes represent duplicates of two tetrapod Cadm genes, whereas the other two cadm genes are single orthologs of tetrapod Cadm genes. All six zebrafish cadms are expressed throughout the nervous system both during development and in the adult. The spatial and temporal patterns of expression suggest multiple roles for Cadms during nervous system development.  相似文献   

8.
Members of the Slit family regulate axon guidance and cell migration. To date, three vertebrate slit1 genes have been identified in mammals and orthologs of two, slit2 and slit3, have been identified in zebrafish. Here, we describe the cloning of full-length cDNAs for two zebrafish slit orthologs, slit1a and slit1b. Both predicted proteins contain the conserved motifs that characterize other vertebrate Slits. slit1a and slit1b are both expressed in the midline, hypochord, telencephalon, and hindbrain. Apart from these shared expression domains, however, their expression patterns largely differ. Whereas slit1a is expressed broadly in the central nervous system (CNS) and in the somites, pectoral fin buds, tail bud, and caudal fin folds, slit1b is expressed in the olfactory system throughout embryonic and larval development, and in the retina during larval stages. Their expression patterns, particularly that of slit1a, suggest that Slit proteins may have roles in tissue morphogenesis in addition to their established roles in axon guidance and cell migration.  相似文献   

9.
Ephrins and their tyrosine kinase receptors (Ephs) are a highly conserved family of signaling proteins with various functions during embryonic development. Among others, Eph/ephrin signaling is involved in regulating axon guidance, cell migration, and tissue border formation through inducing modifications of the actin cytoskeleton and cell adhesion. During development ephrins and Ephs are expressed in spatially and temporarily regulated patterns in a wide range of tissues. Here, we analyzed the expression of seven members of the Eph and four member of the ephrin family during early stages of mouse inner ear development by whole‐mount in situ hybridization. We detected expressions of EphA2, EphA4, EphA7, EphB1, ephrinA4, and ephrinA5 in and around the forming otic placode between embryonic day (E) 8.5 and E10, and report their detailed expression patterns. Our results reveal dynamic expression of several members of the ephrin/Eph family consistent with functions in otic placode development, invagination and neuroblast delamination. Developmental Dynamics 240:1578–1585, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Ligands of NGF and GDNF families of neurotrophic factors have important functions in the development of the vertebrate peripheral nervous system (PNS). It has been established that they also play key roles in the regeneration of PNS. Expression patterns of NGF and GDNF family members and their receptors have mostly been analyzed during regeneration, and less during development of the PNS. We describe the expression of mRNAs encoding these neurotrophic factors and their receptors during development of rat sciatic nerve and in three modes of differentiation of cultured rat Schwann cells. Our results demonstrate specific expression patterns of NGF and GDNF family ligands and their receptors during differentiation of Schwann cells in vivo and in vitro.  相似文献   

11.
The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance. Developmental Dynamics 239:703–714, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Background: The mammalian central nervous system is incapable of substantial axon regeneration after injury partially due to the presence of myelin‐associated inhibitory molecules including Nogo‐A and myelin associated glycoprotein (MAG). In contrast, axolotl salamanders are capable of considerable axon regrowth during spinal cord regeneration. Results: Here, we show that Nogo‐A and MAG, and their receptor, Nogo receptor (NgR), are present in the axolotl genome and are broadly expressed in the central nervous system (CNS) during development, adulthood, and importantly, during regeneration. Furthermore, we show that Nogo‐A and NgR are co‐expressed in Sox2 positive neural progenitor cells. Conclusions: These expression patterns suggest myelin‐associated proteins are permissive for neural development and regeneration in axolotls. Developmental Dynamics 242:847–860, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
We report the cloning and expression patterns of three novel zebrafish Roundabout homologs. The Roundabout (robo) gene encodes a transmembrane receptor that is essential for axon guidance in Drosophila and Robo family members have been implicated in cell migration. Analysis of extracellular domains and conserved cytoplasmic motifs shows that zebrafish Robo1 and Robo2 are orthologs of mammalian Robo1 and Robo2, respectively, while zebrafish Robo3 is likely to be an ortholog of mouse Rig-1. The three zebrafish robos are expressed in distinct but overlapping patterns during embryogenesis. They are highly expressed in the developing nervous system, including the olfactory system, visual system, hindbrain, cranial ganglia, spinal cord, and posterior lateral line primordium. They are also expressed in several nonneuronal tissues, including somites and fin buds. The timing and patterns of expression suggest roles for zebrafish robos in axon guidance and cell migration. Wiley-Liss, Inc.  相似文献   

14.
15.
The innexin family of gap junction proteins has 25 members in Caenorhabditis elegans. Here, we describe the first high‐resolution expression map of all members through analysis of live worms transformed with green fluorescent protein under the control of entire promoter regions. Our analyses show that innexins have dynamic expression patterns throughout development and are found in virtually all cell types and tissues. Complex tissues, such as the pharynx, intestine, gonad, as well as scaffolding tissues and guidepost cells express a variety of innexins in overlapping or complementary patterns, suggesting they may form heteromeric and heterotypic channels. Innexin expression occurs in several types of cells that are not known to form gap junctions as well as in a pair of migrating cells, suggesting they may have hemichannel function. Therefore, innexins likely play roles in almost all body functions, including embryonic development, cell fate determination, oogenesis, egg laying, pharyngeal pumping, excretion, and locomotion. Developmental Dynamics 238:1936–1950, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Voltage‐gated calcium channels (VGCC) play important roles in electrically excitable cells and embryonic development. The VGCC β subunits are essential for membrane localization of the channel and exert modulatory effects on channel functions. In mammals, the VGCC β subunit gene family contains four members. In zebrafish, there appear to be seven VGCC β subunits including the previously identified β1 subunit. cDNAs for six additional VGCC β subunit homologs were identified in zebrafish, their chromosomal locations determined and their expression patterns characterized during embryonic development. These six genes are primarily expressed in the nervous system with cacnb4a also expressed in the developing heart. Sequence homology, genomic synteny and expression patterns suggest that there are three pairs of duplicate genes for β2, β3, and β4 in zebrafish with distinct expression patterns during embryonic development. Developmental Dynamics 237:3842–3852, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Our previous study suggested a possible role for Sbno1, a mouse homologue of strawberry notch gene during brain development. In this report, we cloned the zebrafish homologues of sbno, and examined their expression pattern during embryogenesis by whole‐mount in situ hybridization. Zebrafish have three sbno genes: one Sbno1 homologue and two Sbno2 homologues, sbno2a and sbno2b. We observed that the expression of sbno1 and sbno2a was initially ubiquitous and gradually became predominant in the central nervous system as development progressed. The expression of sbno2b was observed in non‐neural tissues in contrast to the other two genes. sbno1 and sbno2a exhibited higher expression in distinct regions within the nervous system of pharyngula‐stage embryos, suggesting possible differing roles for sbno1 and sbno2a during later stages of embryogenesis. Together, the observed gene expression patterns suggest an important role of sbno‐family genes during development of the vertebrate central nervous system. Developmental Dynamics 239:1789–1796, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Physical interaction between the transmembrane proteins Delta and Notch allows only a subset of neural precursors to become neurons, as well as regulating other aspects of neural development. To examine the localization of Delta protein during neural development, we generated an antibody specific to zebrafish DeltaA (Dla). Here, we describe for the first time the subcellular localization of Dla protein in distinct puncta at cell cortex and/or membrane, supporting the function of Dla in direct cell–cell communication. In situ RNA hybridization and immunohistochemistry revealed dynamic, coordinated expression patterns of dla mRNA and Dla protein in the developing and adult zebrafish nervous system. Dla expression is mostly excluded from differentiated neurons and is maintained in putative precursor cells at least until larval stages. In the adult brain, dla mRNA and Dla protein are expressed in proliferative zones normally associated with stem cells. Developmental Dynamics 238:3226–3336, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Semaphorins are major regulators of morphogenesis and are involved in a variety of processes ranging from the guidance of cell migration to the development of cancer. Since semaphorins were first characterized as repulsive neuronal guidance cues, their expression has been best documented in the nervous system. However, broader studies are lacking. Here, we describe the expression of 13 members of the semaphorin family and two neuropilin receptors during early Xenopus laevis development. No particular expression pattern defines any of the semaphorin classes, but many are dynamically expressed in distinct areas undergoing morphogenetic cell movements like the developing mesoderm and the migrating neural crest. Furthermore, the complementary expression patterns of Sema3A/Nrp1 and Sema3F/Nrp2 are maintained across hundreds of millions of years, possibly indicating a conserved role in the guidance of migrating neural crest cells. Developmental Dynamics 237:3853–3863, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
The bcl-2 family of proteins comprises both anti-apoptotic and pro-apoptotic members, which play a pivotal role in regulating cell death. Bcl-w is a recently identified member of this family, which was shown to inhibit apoptosis in haemopoietic cell lines. However, the function and expression patterns of bcl-w in the nervous system have so far not been described. We have cloned complementary DNA corresponding to rat bcl-w and analysed the expression of bcl-w messenger RNA during rat brain development, using RNA blotting and in situ hybridization techniques. We also compared the expression patterns of bcl-w with those of bcl-xL. During brain development, the levels of bcl-w messenger RNA were found to increase, with highest expression located to specific regions of the mature brain, such as hippocampus, cerebellum, piriform cortex and locus coeruleus. Bcl-w messenger RNA was expressed by neurons, as shown with double labeling with neuronal markers. In contrast to bcl-w, bcl-xL messenger RNA expression levels were highest during early development, particularly in cortex, hippocampus, thalamus, spinal cord and dorsal root ganglia. During postnatal development the expression of bcl-xL messenger RNA decreased and were only detected at low levels in the adult nervous system. As shown earlier for bcl-2, the expression of bcl-w and bcl-x messenger RNA in cultured cerebellar granule cells was not altered by the deprivation of neurotrophic factors. The present results suggest that bcl-w may play an important role in the mature nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号