首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Patients with medial compartment knee osteoarthritis (OA) adopt an abnormal gait pattern, and often develop frontal plane laxity at the knee. The purpose of this study was to quantify the extent of frontal plane knee joint laxity in patients with medial knee OA and genu varum and to assess the effect of joint laxity on knee joint kinetics, kinematics and muscle activity during gait. DESIGN: Twelve subjects with genu varum and medial compartment knee osteoarthritis (OA group) and 12 age-matched uninjured subjects underwent stress radiography to determine the presence and magnitude of frontal plane laxity. All subjects also went through gait analysis with surface electromyography of the medial and lateral quadriceps, hamstrings, and gastrocnemius to calculate knee joint kinematics and kinetics and co-contraction levels during gait. RESULTS: The OA group showed significantly greater knee instability (P = 0.002), medial joint laxity (P = 0.001), greater medial quadriceps-medial gastrocnemius (VMMG) co-contraction (P = 0.043), and greater knee adduction moments (P = 0.019) than the control group. Medial joint laxity contributed significantly to the variance in both VMMG and the knee adduction moment during early stance. CONCLUSION: The presence of medial laxity in patients with knee OA is likely contributing to the altered gait patterns observed in those with medial knee OA. Greater medial co-contraction and knee adduction moments bodes poorly for the long-term integrity of the articular cartilage, suggesting that medial joint laxity should be a focus of interventions aimed at slowing the progression of disease in individuals with medial compartment knee OA.  相似文献   

2.
OBJECTIVE: This study tests the hypothesis that the peak external knee adduction moment during gait is increased in a group of ambulatory subjects with knee osteoarthritis (OA) of varying radiographic severity who are being managed with medical therapy. Tibiofemoral knee OA more commonly affects the medial compartment. The external knee adduction moment can be used to assess the load distribution between the medial and lateral compartments of the knee joint. Additionally, this study tests if changes in the knee angles, such as a reduced midstance knee flexion angle, or reduced sagittal plane moments previously identified by others as load reducing mechanisms are present in this OA group. DESIGN: Thirty-one subjects with radiographic evidence of knee OA and medial compartment cartilage damage were gait tested after a 2-week drug washout period. Thirty-one normal subjects (asymptomatic control subjects) with a comparable age, weight and height distribution were also tested. Significant differences in the sagittal plane knee motion and peak external moments between the normal and knee OA groups were identified using t tests. RESULTS: Subjects with knee OA walked with a greater than normal peak external knee adduction moment (P=0.003). The midstance knee flexion angle was not significantly different between the two groups (P=0.625) nor were the peak flexion and extension moments (P> 0.037). CONCLUSIONS: Load reducing mechanisms, such as a decreased midstance knee flexion angle, identified by others in subjects with endstage knee OA or reduced external flexion or extension moments were not present in this group of subjects with knee OA who were being managed by conservative treatment. The finding of a significantly greater than normal external knee adduction moment in the knee OA group lends support to the hypothesis that an increased knee adduction moment during gait is associated with knee OA.  相似文献   

3.
The aims of this study were to evaluate and explain the individual muscle contributions to the medial and lateral knee compartment forces during gait, and to determine whether these quantities could be inferred from their contributions to the external knee adduction moment. Gait data from eight healthy male subjects were used to compute each individual muscle contribution to the external knee adduction moment, the net tibiofemoral joint reaction force, and reaction moment. The individual muscle contributions to the medial and lateral compartment forces were then found using a least‐squares approach. While knee‐spanning muscles were the primary contributors, non‐knee‐spanning muscles (e.g., the gluteus medius) also contributed substantially to the medial compartment compressive force. Furthermore, knee‐spanning muscles tended to compress both compartments, while most non‐knee‐spanning muscles tended to compress the medial compartment but unload the lateral compartment. Muscle contributions to the external knee adduction moment, particularly those from knee‐spanning muscles, did not accurately reflect their tendencies to compress or unload the medial compartment. This finding may further explain why gait modifications may reduce the knee adduction moment without necessarily decreasing the medial compartment force. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1586–1595, 2012  相似文献   

4.
The purpose of this study was to examine interlimb differences in gait kinematics and kinetics in patients with symptomatic medial knee OA. The main objective was to identify hip joint movement strategies that might lower the knee adduction moment and also compensate for decreased knee flexion during weight acceptance. Gait analysis was performed on 32 patients with moderate medial compartment knee OA. Kinetic and kinematic data were calculated and side‐to‐side comparisons made. Radiographs were used to identify frontal plane alignment. No interlimb difference in the peak knee adduction moment was found (p = 0.512), whereas a greatly reduced hip adduction moment was seen on the involved side (p < 0.001) during the early part of stance. The involved limb flexed significantly less and hip and knee flexion moments were smaller compared to the uninvolved side. Gait adaptations involving a lateral sway of the trunk may successfully lead to relatively lower ipsilateral knee adduction moments, and would further be reflected by a lower adduction moment at the hip. Subjects did not compensate for less knee flexion by any dynamic means, and likely experience a resulting higher joint impact. These gait adaptations may have implications with respect to development of weakness of the ipsilateral hip musculature and progression of multiarticular OA. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:78–83, 2009  相似文献   

5.
Varus knee alignment is associated with an increased risk for developing medial knee osteoarthritis (OA). Medial knee OA is commonly associated with altered walking mechanics in the frontal and sagittal planes, as well as altered ground reaction forces. It is unknown whether these mechanics are present in young, asymptomatic individuals with varus knees. We expected that varus‐aligned individuals would generally present with frontal plane mechanics that were similar to those reported for individuals with medial knee OA. The gait mechanics of 17 asymptomatic individuals with varus knees and 17 healthy, normally aligned controls were recorded. Gait parameters associated with medial knee OA were compared between groups. The individuals with varus knees exhibited greater knee external adduction moments, knee adduction, eversion, and lateral ground reaction force than the normally aligned individuals. In addition, those with varus knees also demonstrated increased knee flexion and external knee flexor moments during midstance. These results suggest that individuals with varus knees exhibit some, but not all, of the altered mechanics seen in medial knee OA. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1414–1419, 2009  相似文献   

6.
Osteoarthritic knee pain affects patient mobility. Relief of knee pain in osteoarthritis has been reported to increase loading of the knee during gait, but it is unknown whether such pain relief enhances knee loading during more demanding activities such as stair-stepping. The gait of 19 patients and stair-stepping of 14 patients with painful medial compartment osteoarthritis of the knee was assessed before and after pain-relieving intraarticular injection of the knee and compared with those of 21 healthy control subjects. There were significant increases in gait velocity, cadence, maximum external knee adduction moment (indicating increased loading in the medial compartment of the knee), and maximum external hip adduction and ankle abduction moments immediately after the injection. With the exception of velocity and ankle abduction moment, these variables were returned to levels that were not statistically different from those of the control subjects. However, no significant differences were found during stair-stepping in the external adduction-abduction moments about the knee, hip, or ankle after injection. Furthermore, the postinjection magnitudes of these variables during stair-stepping were significantly less than those of the controls. Therefore, although the relief of knee pain is sufficient to enhance gait function in osteoarthritis of the knee, it is insufficient to enhance stair-stepping function.  相似文献   

7.
Knee osteoarthritis (OA) is one of the most prevalent forms of this disease, with the medial compartment most commonly affected. The direction of external forces and limb orientation during walking results in an adduction moment that acts around the knee, and this parameter is regarded as a surrogate measure of medial knee compression. The knee adduction moment is intimately linked with the development and progression of knee OA and is, therefore, a target for conservative biomechanical intervention strategies, which are the focus of this Review. We examine the evidence for walking barefoot and the use of lateral wedge insoles and thin-soled, flexible shoes to reduce the knee adduction moment in patients with OA. We review strategies that directly affect the gait, such as walking with the foot externally rotated ('toe-out gait'), using a cane, lateral trunk sway and gait retraining. Valgus knee braces and muscle strengthening are also discussed for their effect upon reducing the knee adduction moment.  相似文献   

8.
Studies of lateral wedge insoles (LWIs) in medial knee osteoarthritis (OA) have shown reductions in the average external knee adduction moment (EKAM) but no lessening of knee pain. Some treated patients actually experience increases in the EKAM which could explain the overall absence of pain response. We examined whether, in patients with painful medial OA, reductions in the EKAM were associated with lessening of knee pain. Each patient underwent gait analysis whilst walking in a control shoe and two LWI's. We evaluated the relationship between change in EKAM and change in knee pain using Spearman Rank Correlation coefficients and tested whether dichotomizing patients into biomechanical responders (decreased EKAM) and non‐responders (increased EKAM) would identify those with reductions in knee pain. In 70 patients studied, the EKAM was reduced in both LWIs versus control shoe (?5.21% and ?6.29% for typical and supported wedges, respectively). The change in EKAM using LWIs was not significantly associated with the direction of knee pain change. Further, 54% were biomechanical responders, but these persons did not have more knee pain reduction than non‐responders. Whilst LWIs reduce EKAM, there is no clearcut relationship between change in medial load when wearing LWIs and corresponding change in knee pain. © 2014 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 32:1147–1154, 2014.
  相似文献   

9.
Progression of medial compartment knee osteoarthritis (OA) has been associated with repetitive mechanical loading during walking, often characterized by the peak knee adduction (KAM) and knee flexion moments (KFM). However, the relative contributions of these components to the knee total joint moment (TJM) can change as the disease progresses since KAM and KFM are influenced by different factors that change over time. This study tested the hypothesis that the relative contributions of KAM, KFM, and the rotational moment (KRM) to the TJM change over time in subjects with medial compartment knee OA. Patients with medial compartment knee OA (n = 19) were tested walking at their self‐selected speed at baseline and a 5‐year follow‐up. For each frame during stance, the TJM was calculated using the KAM, KFM, and KRM. The peaks of the TJM and the relative contributions of the moment components at the time of the peaks of the TJM were tested for changes between baseline and follow‐up. The percent contribution of KFM to the first peak of the TJM (TJM1) significantly decreased (p < 0.001) and the percent contribution of KAM to TJM1 significantly increased (p < 0.001), while the magnitude of the TJM1 did not significantly change over the 5‐year follow‐up. These gait changes with disease progression appear to maintain a constant TJM1, but the transition from a KFM to a KAM dominance appears to reflect gait changes associated with progressing OA and pain. Thus, the TJM and its component analysis captures a comprehensive metric for total loading on the knee over time. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. 36:2373–2379, 2018.
  相似文献   

10.
The knee adduction moment (KAM) provides a major contribution to the elevated load in the medial compartment of the knee. An abnormally high KAM has been linked with the progression of knee osteoarthritis (OA). Footwear‐generated biomechanical manipulations reduce the magnitude of this moment by conveying a more laterally shifted trajectory of the foot's center of pressure (COP), reducing the distance between the ground reaction force and the center of the knee joint, thus lowering the magnitude of the torque. We sought to examine the outcome of a COP shift in a cohort of female patients suffering from medial knee OA. Twenty‐two female patients suffering from medial compartment knee OA underwent successive gait analysis testing and direct pedobarographic examination of the COP trajectory with a foot‐worn biomechanical device allowing controlled manipulation of the COP. Modulation of the COP coronal trajectory from medial to lateral offset resulted in a significant reduction of the KAM. This trend was demonstrated in subjects with mild‐to‐moderate OA and in patients suffering from severe stages of the disease. Our results indicate that controlled manipulation of knee coronal kinetics in individuals suffering from medial knee OA can be facilitated by customized COP modification. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:1668–1674, 2011  相似文献   

11.
After unilateral total knee arthroplasty (TKA), osteoarthritis (OA) in the non‐operated knee often progresses. The altered gait mechanics exhibited by patients after TKA increase the loading on the non‐operated knee and predispose it to disease progression. Therefore, our objective was to examine the potentially detrimental changes in frontal plane kinetics and kinematics during walking in patients who underwent unilateral TKA. Thirty‐one subjects 6 months after TKA, 24 subjects 1 year after unilateral TKA, and 20 control subjects were recruited. All subjects underwent 3D gait analysis. In the TKA groups, the non‐operated knee had a higher adduction angle and higher dynamic loading, knee adduction moment and impulse, compared to the operated knee. This increased loading may be an underlying reason for OA progression in the non‐operated knee. Measures of loading in the control knee did not differ from that of the non‐operated knee in the TKA group, but the TKA group walked with shorter step length. While the non‐operated knee loading was not different from controls, there may be greater risk of cumulative loading in the non‐operated knee of the TKA group given the shorter step length. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:647–652, 2011  相似文献   

12.
This study tested whether the peak external knee adduction moments during walking in subjects with knee osteoarthritis (OA) were correlated with the mechanical axis of the leg, radiographic measures of OA severity, toe out angle or clinical assessments of pain, stiffness or function. Gait analysis was performed on 62 subjects with knee OA and 49 asymptomatic control subjects (normal subjects). The subjects with OA walked with a greater than normal peak adduction moment during early stance (p = 0.027). In the OA group, the mechanical axis was the best single predictor of the peak adduction moment during both early and late stance (R = 0.74, p < 0.001). The radiographic measures of OA severity in the medial compartment were also predictive of both peak adduction moments (R = 0.43 to 0.48, p < 0.001) along with the sum of the WOMAC subscales (R = -0.33 to -0.31, p < 0.017). The toe out angle was predictive of the peak adduction moment only during late stance (R = -0.45, p < 0.001). Once mechanical axis was accounted for, other factors only increased the ability to predict the peak knee adduction moments by 10 18%. While the mechanical axis was indicative of the peak adduction moments, it only accounted for about 50% of its variation, emphasizing the need for a dynamic evaluation of the knee joint loading environment. Understanding which clinical measures of OA are most closely associated with the dynamic knee joint loads may ultimately result in a better understanding of the disease process and the development of therapeutic interventions.  相似文献   

13.
Gait modification offers a noninvasive option for offloading the medial compartment of the knee in patients with knee osteoarthritis. While gait modifications have been proposed based on their ability to reduce the external knee adduction moment, no gait pattern has been proven to reduce medial compartment contact force directly. This study used in vivo contact force data collected from a single subject with a force‐measuring knee replacement to evaluate the effectiveness of two gait patterns at achieving this goal. The first was a “medial thrust” gait pattern that involved medializing the knee during stance phase, while the second was a “walking pole” gait pattern that involved using bilateral walking poles commonly used for hiking. Compared to the subject's normal gait pattern, medial thrust gait produced a 16% reduction and walking pole gait a 27% reduction in medial contact force over stance phase, both of which were statistically significant based on a two‐tailed Mann–Whitney U‐test. While medial thrust gait produced little change in lateral and total contact force over the stance phase, walking pole gait produced significant 11% and 21% reductions, respectively. Medial thrust gait may allow patients with knee osteoarthritis to reduce medial contact force using a normal‐looking walking motion requiring no external equipment, while walking pole gait may allow patients with knee osteoarthritis or a knee replacement to reduce medial, lateral, and total contact force in situations where the use of walking poles is possible. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 1016–1021, 2009  相似文献   

14.
OBJECTIVE: To test the hypothesis that an association exists between the characteristics of the knee adduction moment and foot progression angle (FPA) in asymptomatic individuals and those with mild to moderate and severe knee osteoarthritis (OA). DESIGN: Fifty asymptomatic individuals, 46 patients with mild to moderate and 44 patients with severe knee OA were recruited. Maximum knee adduction moment during late stance and principal component analysis (PCA) were used to describe the knee adduction moment captured during gait. Multiple regression models were used for each of the three group assignments to analyze the association between the independent variables and the knee adduction moment. RESULTS: FPA explained a significant amount of the variability associated with the shape of the knee adduction moment waveform for the asymptomatic and mild to moderate groups (P<0.05), but not for the severe group (P>0.05). Walking velocity alone explained significant variance associated with the shape of the knee adduction moment in the severe OA group (P<0.05). CONCLUSION: A toe out FPA was associated with altered knee adduction moment waveform characteristics, extracted using PCA, in asymptomatic individuals and those with mild to moderate knee OA only. These findings are directly implicated in medial knee compartment loading. This relationship was not evident in those with severe knee OA.  相似文献   

15.
Obesity is the primary risk factor for knee osteoarthritis (OA). Greater external knee adduction moments, surrogate measures for medial compartment loading, are present in Obese individuals and may predispose them to knee OA. Laterally wedged insoles decrease the magnitude of the external adduction moment in Obese individuals but it is unknown how they alter the center of pressure on the tibial plateau. A gait analysis was performed on 14 Obese (avg. 29.3 years; BMI range: 30.3–51.6 kg/m2) and 14 lean women (avg. 26.1 years; BMI range: 20.9–24.6 kg/m2) with and without a full‐length, wedged insole. Computed joint angles, joint moments, and knee extensor strength values were input into a musculoskeletal model to estimate center of pressure of the contact force on the tibial plateau. Statistical significance was assessed using a two‐way ANOVA to compare the main effects of group and insole condition (α = 0.05). The insole resulted in a significant (p < 0.01) lateral shift in the center of pressure location in both the Obese and Control groups (mean: 2.9 ± 0.7 and 1.5 ± 0.7 mm, respectively). The insole also significantly reduced the peak external knee adduction moment 1.88 ± 1.82 N m in the Control group (p < 0.01) and 3.62 ± 3.90 N m in the Obese group (p < 0.01). The results of this study indicate the effects of a prophylactic wedged insole for reducing the magnitude of the load on the knee's medial compartment in Obese women who are at risk for knee OA development. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 665–671, 2013  相似文献   

16.
This study quantified the contributions by muscles, gravity, and inertia to the tibiofemoral compartment forces in the symptomatic (SYM) and asymptomatic (ASYM) limbs of varus mal‐aligned medial knee osteoarthritis (OA) patients, and compared the results with healthy controls (CON). Muscle forces and tibiofemoral compartment loads were calculated using gait data from 39 OA patients and 15 controls aged 49 ± 7 years. Patients exhibited lower knee flexion angle, higher hip abduction, and knee adduction angles, lower internal knee flexion torque but higher external knee adduction moment. Muscle forces were highest in CON except hamstrings, which was highest in SYM. ASYM muscle forces were lowest for biceps femoris short head and gastrocnemius but otherwise intermediate between SYM and CON. In all subjects, vasti, hamstrings, gastrocnemius, soleus, gluteus medius, gluteus maximus, and gravity were the largest contributors to medial compartment force (MCF). Inertial contributions were negligible. Highest MCF was found in SYM throughout stance. Small increases in contributions from hamstrings, gluteus maximus, gastrocnemius, and gravity at the first peak; soleus and rectus femoris at the second peak; and soleus, gluteus maximus, gluteus medius, and gravity during mid‐stance summed to produce significantly higher total MCF. Compared to CON, the ASYM limb exhibited similar peak MCF but higher mid‐stance MCF. In patients, diminished non‐knee‐spanning muscle forces did not produce correspondingly diminished MCF contributions due to the influence of mal‐alignment. Our findings emphasize consideration of muscle function, lower‐limb alignment, and mid‐stance loads in developing interventions for OA, and inclusion of the asymptomatic limb in clinical assessments. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:321–330, 2017.
  相似文献   

17.
The use of lateral foot wedging in the management of medial knee osteoarthritis is under scrutiny. Interestingly, there have been minimal efforts to evaluate biomechanical effectiveness with long‐term use. Therefore, we aimed to evaluate dynamic knee loading (assessed using the knee adduction moment) and other secondary gait parameters in patients with medial knee osteoarthritis wearing lateral foot wedging at a baseline visit and after 1 year of wear. Three‐dimensional gait data were captured in an intervention group of 19 patients with symptomatic medial knee osteoarthritis wearing their prescribed laterally wedged foot orthoses at 0 and 12 months. Wedge amounts were prescribed based on symptom response to a step‐down test. A control group of 19 patients wearing prescribed neutral orthoses were also captured at 0 and 12 months. The gait of the intervention group wearing neutral orthoses was additionally captured. Walking speed and shoes were controlled. Analyses of variance were conducted to examine for group‐by‐time (between the groups in their prescribed orthoses) and condition‐by‐time (within the intervention group) interactions, main effects, and simple effects. We observed increased knee adduction moments and frontal plane motion over time in the control group but not the intervention group. Further, within the intervention group, the mechanical effectiveness of the lateral wedging did not decrease. In patients with medial knee osteoarthritis, the effects of lateral foot wedging on pathomechanics associated with medial knee osteoarthritis were favorable and sustained over time. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 659–664, 2013  相似文献   

18.
Knee osteoarthritis (OA) commonly occurs in the medial compartment of the knee and has been linked to overloading of the medial articular cartilage. Gait modification represents a non‐invasive treatment strategy for reducing medial compartment knee force. The purpose of this study was to evaluate the effectiveness of a variety of gait modifications that were expected to alter medial contact force. A single subject implanted with a force‐measuring knee replacement walked using nine modified gait patterns, four of which involved different hiking pole configurations. Medial and lateral contact force at 25, 50, and 75% of stance phase, and the average value over all of stance phase (0–100%), were determined for each gait pattern. Changes in medial and lateral contact force values relative to the subject's normal gait pattern were determined by a Kruskal–Wallis test. Apart from early stance (25% of stance), medial contact force was most effectively reduced by walking with long hiking poles and wide pole placement, which significantly reduced medial and lateral contact force during stance phase by up to 34% (at 75% of stance) and 26% (at 50% of stance), respectively. Although this study is based on data from a single subject, the results provide important insight into changes in medial and lateral contact forces through gait modification. The results of this study suggest that an optimal configuration of bilateral hiking poles may significantly reduce both medial and lateral compartment knee forces in individuals with medial knee osteoarthritis. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 434–440, 2013  相似文献   

19.
There is a need to understand how obesity and aging interact to cause an increased risk of medial knee osteoarthritis (OA). This study tested whether the knee adduction and flexion moments increase with age in healthy normal‐weight and obese adults, as well as the mechanism of this increase. We analyzed whether ground reaction force magnitude, knee alignment, step width, toe‐out angle, body volume distribution, and limb position (knee position relative to the pelvis center) are associated with the adduction moment and whether these variables also change with age. Ninety‐six healthy volunteers (60 normal‐weight and 36 obese) were tested using marker‐based gait analysis; knee alignment was based on marker positions during quiet standing. Adduction moment increased with age in obese (R2 = 0.19), but not in normal‐weight individuals (R2 = 0.01); knee flexion moment did not change with age in either group. In the obese, only knee alignment and limb position were related to the adduction moment (R2 = 0.19 and 0.51), but only limb position changed with age (R2 = 0.26). The resulting increase in adduction moment suggests greater medial compartment loads, which may combine with elevated levels of inflammation to contribute to the increased risk of medial OA in this population. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1414–1422, 2013  相似文献   

20.
Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force‐measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a “medial thrust” gait involving knee medialization during stance phase and a “walking pole” gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32–33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15–47%) corresponded to reductions in the second peak and impulse of the medial contact force (12–42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior–inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R2 = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348–1354, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号