首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome‐wide association studies are helping to dissect the etiology of complex diseases. Although case‐control association tests are generally more powerful than family‐based association tests, population stratification can lead to spurious disease‐marker association or mask a true association. Several methods have been proposed to match cases and controls prior to genotyping, using family information or epidemiological data, or using genotype data for a modest number of genetic markers. Here, we describe a genetic similarity score matching (GSM) method for efficient matched analysis of cases and controls in a genome‐wide or large‐scale candidate gene association study. GSM comprises three steps: (1) calculating similarity scores for pairs of individuals using the genotype data; (2) matching sets of cases and controls based on the similarity scores so that matched cases and controls have similar genetic background; and (3) using conditional logistic regression to perform association tests. Through computer simulation we show that GSM correctly controls false‐positive rates and improves power to detect true disease predisposing variants. We compare GSM to genomic control using computer simulations, and find improved power using GSM. We suggest that initial matching of cases and controls prior to genotyping combined with careful re‐matching after genotyping is a method of choice for genome‐wide association studies. Genet. Epidemiol. 33:508–517, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
Testing Hardy‐Weinberg equilibrium (HWE) in the control group is commonly used to detect genotyping errors in genetic association studies. We propose a likelihood ratio test for testing HWE in the study population using both case and control samples. This test incorporates underlying association models. Another feature is that, when we infer the disease‐genotype association, we explicitly incorporate HWE or a possible departure from Hardy‐Weinberg equilibrium (DHWE) into the model. Our unified framework enables us to infer the disease‐genotype association when a detected DHWE needs to be part of the model after causes for the DHWE are explored. Real data sets are used to illustrate the application of the methodology and its implication in genetic association studies. Our analysis and interpretation touch on issues such as genotyping errors, population selection, population stratification, or the study sampling plan, that all could be the cause of DHWE. Genet. Epidemiol. 2009. Published 2008 Wiley‐Liss, Inc.  相似文献   

4.
A key step in genomic studies is to assess high throughput measurements across millions of markers for each participant's DNA, either using microarrays or sequencing techniques. Accurate genotype calling is essential for downstream statistical analysis of genotype‐phenotype associations, and next generation sequencing (NGS) has recently become a more common approach in genomic studies. How the accuracy of variant calling in NGS‐based studies affects downstream association analysis has not, however, been studied using empirical data in which both microarrays and NGS were available. In this article, we investigate the impact of variant calling errors on the statistical power to identify associations between single nucleotides and disease, and on associations between multiple rare variants and disease. Both differential and nondifferential genotyping errors are considered. Our results show that the power of burden tests for rare variants is strongly influenced by the specificity in variant calling, but is rather robust with regard to sensitivity. By using the variant calling accuracies estimated from a substudy of a Cooperative Studies Program project conducted by the Department of Veterans Affairs, we show that the power of association tests is mostly retained with commonly adopted variant calling pipelines. An R package, GWAS.PC, is provided to accommodate power analysis that takes account of genotyping errors ( http://zhaocenter.org/software/ ).  相似文献   

5.
Li Q  Yu K 《Genetic epidemiology》2008,32(3):215-226
Hidden population substructure can cause population stratification and lead to false-positive findings in population-based genome-wide association (GWA) studies. Given a large panel of markers scanned in a GWA study, it becomes increasingly feasible to uncover the hidden population substructure within the study sample based on measured genotypes across the genome. Recognizing that population substructure can be displayed as clustered and/or continuous patterns of genetic variation, we propose a method that aims at the detection and correction of the confounding effect resulting from both patterns of population substructure. The proposed method is an extension of the EIGENSTRAT method (Price et al. [2006] Nat Genet 38:904-909). This approach is computationally feasible and easily applied to large-scale GWA studies. We show through simulation studies that, compared with the EIGENSTRAT method, the new method requires a smaller number of markers and yields a more appropriate correction for population stratification.  相似文献   

6.
We study the link between two quality measures of SNP (single nucleotide polymorphism) data in genome‐wide association (GWA) studies, that is, per SNP call rates (CR) and p‐values for testing Hardy–Weinberg equilibrium (HWE). The aim is to improve these measures by applying methods based on realized randomized p‐values, the false discovery rate and estimates for the proportion of false hypotheses. While exact non‐randomized conditional p‐values for testing HWE cannot be recommended for estimating the proportion of false hypotheses, their realized randomized counterparts should be used. P‐values corresponding to the asymptotic unconditional chi‐square test lead to reasonable estimates only if SNPs with low minor allele frequency are excluded. We provide an algorithm to compute the probability that SNPs violate HWE given the observed CR, which yields an improved measure of data quality. The proposed methods are applied to SNP data from the KORA (Cooperative Health Research in the Region of Augsburg, Southern Germany) 500 K project, a GWA study in a population‐based sample genotyped by Affymetrix GeneChip 500 K arrays using the calling algorithm BRLMM 1.4.0. We show that all SNPs with CR = 100 per cent are nearly in perfect HWE which militates in favor of the population to meet the conditions required for HWE at least for these SNPs. Moreover, we show that the proportion of SNPs not being in HWE increases with decreasing CR. We conclude that using a single threshold for judging HWE p‐values without taking the CR into account is problematic. Instead we recommend a stratified analysis with respect to CR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
We propose a method to analyze family‐based samples together with unrelated cases and controls. The method builds on the idea of matched case–control analysis using conditional logistic regression (CLR). For each trio within the family, a case (the proband) and matched pseudo‐controls are constructed, based upon the transmitted and untransmitted alleles. Unrelated controls, matched by genetic ancestry, supplement the sample of pseudo‐controls; likewise unrelated cases are also paired with genetically matched controls. Within each matched stratum, the case genotype is contrasted with control/pseudo‐control genotypes via CLR, using a method we call matched‐CLR (mCLR). Eigenanalysis of numerous SNP genotypes provides a tool for mapping genetic ancestry. The result of such an analysis can be thought of as a multidimensional map, or eigenmap, in which the relative genetic similarities and differences amongst individuals is encoded in the map. Once constructed, new individuals can be projected onto the ancestry map based on their genotypes. Successful differentiation of individuals of distinct ancestry depends on having a diverse, yet representative sample from which to construct the ancestry map. Once samples are well‐matched, mCLR yields comparable power to competing methods while ensuring excellent control over Type I error. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Testing for the Hardy–Weinberg equilibrium (HWE) is often used as an initial step for checking the quality of genotyping. When testing the HWE for case‐control data, the impact of a potential genetic association between the marker and the disease must be controlled for otherwise the results may be biased. Li and Li [2008] proposed a likelihood ratio test (LRT) that accounts for this potential genetic association and it is more powerful than the commonly used control‐only χ2 test. However, the LRT is not efficient when the marker is independent of the disease, and also requires numerical optimization to calculate the test statistic. In this article, we propose a novel shrinkage test for assessing the HWE. The proposed shrinkage test yields higher statistical power than the LRT when the marker is independent of or weakly associated with the disease, and converges to the LRT when the marker is strongly associated with the disease. In addition, the proposed shrinkage test has a closed form and can be easily used to test the HWE for large datasets that result from genome‐wide association studies. We compare the performance of the shrinkage test with existing methods using simulation studies, and apply the shrinkage test to a genome‐wide association dataset for Alzheimer's disease.  相似文献   

9.
In case‐control single nucleotide polymorphism (SNP) data, the allele frequency, Hardy Weinberg Disequilibrium, and linkage disequilibrium (LD) contrast tests are three distinct sources of information about genetic association. While all three tests are typically developed in a retrospective context, we show that prospective logistic regression models may be developed that correspond conceptually to the retrospective tests. This approach provides a flexible framework for conducting a systematic series of association analyses using unphased genotype data and any number of covariates. For a single stage study, two single‐marker tests and four two‐marker tests are discussed. The true association models are derived and they allow us to understand why a model with only a linear term will generally fit well for a SNP in weak LD with a causal SNP, whatever the disease model, but not for a SNP in high LD with a non‐additive disease SNP. We investigate the power of the association tests using real LD parameters from chromosome 11 in the HapMap CEU population data. Among the single‐marker tests, the allelic test has on average the most power in the case of an additive disease, but for dominant, recessive, and heterozygote disadvantage diseases, the genotypic test has the most power. Among the four two‐marker tests, the Allelic‐LD contrast test, which incorporates linear terms for two markers and their interaction term, provides the most reliable power overall for the cases studied. Therefore, our result supports incorporating an interaction term as well as linear terms in multi‐marker tests. Genet. Epidemiol. 34:67–77, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Genome‐wide association (GWA) studies have proved extremely successful in identifying novel genetic loci contributing effects to complex human diseases. In doing so, they have highlighted the fact that many potential loci of modest effect remain undetected, partly due to the need for samples consisting of many thousands of individuals. Large‐scale international initiatives, such as the Wellcome Trust Case Control Consortium, the Genetic Association Information Network, and the database of genetic and phenotypic information, aim to facilitate discovery of modest‐effect genes by making genome‐wide data publicly available, allowing information to be combined for the purpose of pooled analysis. In principle, disease or control samples from these studies could be used to increase the power of any GWA study via judicious use as “genetically matched controls” for other traits. Here, we present the biological motivation for the problem and the theoretical potential for expanding the control group with publicly available disease or reference samples. We demonstrate that a naïve application of this strategy can greatly inflate the false‐positive error rate in the presence of population structure. As a remedy, we make use of genome‐wide data and model selection techniques to identify “axes” of genetic variation which are associated with disease. These axes are then included as covariates in association analysis to correct for population structure, which can result in increases in power over standard analysis of genetic information from the samples in the original GWA study. Genet. Epidemiol. 34: 319–326, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Case‐control genome‐wide association studies provide a vast amount of genetic information that may be used to investigate secondary phenotypes. We study the situation in which the primary disease is rare and the secondary phenotype and genetic markers are dichotomous. An analysis of the association between a genetic marker and the secondary phenotype based on controls only (CO) is valid, whereas standard methods that also use cases result in biased estimates and highly inflated type I error if there is an interaction between the secondary phenotype and the genetic marker on the risk of the primary disease. Here we present an adaptively weighted (AW) method that combines the case and control data to study the association, while reducing to the CO analysis if there is strong evidence of an interaction. The possibility of such an interaction and the misleading results for standard methods, but not for the AW or CO approaches, are illustrated by data from a case‐control study of colorectal adenoma. Simulations and asymptotic theory indicate that the AW method can reduce the mean square error for estimation with a prespecified SNP and increase the power to discover a new association in a genome‐wide study, compared to CO analysis. Further experience with genome‐wide studies is needed to determine when methods that assume no interaction gain precision and power, thereby can be recommended, and when methods such as the AW or CO approaches are needed to guard against the possibility of nonzero interactions. Genet. Epidemiol. 34:427–433, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

12.
The ultimate goal of genome‐wide association (GWA) studies is to identify genetic variants contributing effects to complex phenotypes in order to improve our understanding of the biological architecture underlying the trait. One approach to allow us to meet this challenge is to consider more refined sub‐phenotypes of disease, defined by pattern of symptoms, for example, which may be physiologically distinct, and thus may have different underlying genetic causes. The disadvantage of sub‐phenotype analysis is that large disease cohorts are sub‐divided into smaller case categories, thus reducing power to detect association. To address this issue, we have developed a novel test of association within a multinomial regression modeling framework, allowing for heterogeneity of genetic effects between sub‐phenotypes. The modeling framework is extremely flexible, and can be generalized to any number of distinct sub‐phenotypes. Simulations demonstrate the power of the multinomial regression‐based analysis over existing methods when genetic effects differ between sub‐phenotypes, with minimal loss of power when these effects are homogenous for the unified phenotype. Application of the multinomial regression analysis to a genome‐wide association study of type 2 diabetes, with cases categorized according to body mass index, highlights previously recognized differential mechanisms underlying obese and non‐obese forms of the disease, and provides evidence of a potential novel association that warrants follow‐up in independent replication cohorts. Genet. Epidemiol. 34: 335–343, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was ~80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.  相似文献   

14.
15.
A major challenge in genome‐wide association studies (GWASs) is to derive the multiple testing threshold when hypothesis tests are conducted using a large number of single nucleotide polymorphisms. Permutation tests are considered the gold standard in multiple testing adjustment in genetic association studies. However, it is computationally intensive, especially for GWASs, and can be impractical if a large number of random shuffles are used to ensure accuracy. Many researchers have developed approximation algorithms to relieve the computing burden imposed by permutation. One particularly attractive alternative to permutation is to calculate the effective number of independent tests, Meff, which has been shown to be promising in genetic association studies. In this study, we compare recently developed Meff methods and validate them by the permutation test with 10,000 random shuffles using two real GWAS data sets: an Illumina 1M BeadChip and an Affymetrix GeneChip® Human Mapping 500K Array Set. Our results show that the simpleM method produces the best approximation of the permutation threshold, and it does so in the shortest amount of time. We also show that Meff is indeed valid on a genome‐wide scale in these data sets based on statistical theory and significance tests. The significance thresholds derived can provide practical guidelines for other studies using similar population samples and genotyping platforms. Genet. Epidemiol. 34:100–105, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The purpose of this work is the development of linear trend tests that allow for error (LTT ae), specifically incorporating double-sampling information on phenotypes and/or genotypes. We use a likelihood framework. Misclassification errors are estimated via double sampling. Unbiased estimates of penetrances and genotype frequencies are determined through application of the Expectation-Maximization algorithm. We perform simulation studies to evaluate false-positive rates for various genotype classification weights (recessive, dominant, additive). We compare simulated power between the LTT ae and its genotypic test equivalent, the LRT ae, in the presence of phenotype and genotype misclassification, to evaluate power gains of the LTT ae for multi-locus haplotype association with a dominant mode of inheritance. Finally, we apply LTT ae and a method without double-sample information (LTT std) to double-sampled phenotype data for an actual Alzheimer's disease (AD) case-control study with ApoE genotypes. Simulation results suggest that the LTT ae maintains correct false-positive rates in the presence of misclassification. For power simulations, the LTT ae method is at least as powerful as LRT ae method, with a maximum power gain of 0.42 over the LRT ae method for certain parameter settings. For AD data, LTT ae provides more significant evidence for association (permutation p=0.0522) than LTT std (permutation p=0.1684). This is due to observed phenotype misclassification. The LTT ae statistic enables researchers to apply linear trend tests to case-control genetic data, increasing power to detect association in the presence of misclassification. If the disease MOI is known, LTT ae methods are usually more powerful due to the fact that the statistic has fewer degrees of freedom.  相似文献   

17.
Neighboring common polymorphisms are often correlated (in linkage disequilibrium (LD)) as a result of shared ancestry. An association between a polymorphism and a disease trait may therefore be the indirect result of a correlated functional variant, and identifying the true causal variant(s) from an initial disease association is a major challenge in genetic association studies. Here, we present a method to estimate the sample size needed to discriminate between a functional variant of a given allele frequency and effect size, and other correlated variants. The sample size required to conduct such fine‐scale mapping is typically 1–4 times larger than required to detect the initial association. Association studies in populations with different LD patterns can substantially improve the power to isolate the causal variant. An online tool to perform these calculations is available at http://moya.srl.cam.ac.uk/ocac/FineMappingPowerCalculator.html . Genet. Epidemiol. 34:463–468, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Genome-wide association (GWA) studies have been extremely successful in identifying novel loci contributing effects to a wide range of complex human traits. However, despite this success, the joint marginal effects of these loci account for only a small proportion of the heritability of these traits. Interactions between variants in different loci are not typically modelled in traditional GWA analysis, but may account for some of the missing heritability in humans, as they do in other model organisms. One of the key challenges in performing gene-gene interaction studies is the computational burden of the analysis. We propose a two-stage interaction analysis strategy to address this challenge in the context of both quantitative traits and dichotomous phenotypes. We have performed simulations to demonstrate only a negligible loss in power of this two-stage strategy, while minimizing the computational burden. Application of this interaction strategy to GWA studies of T2D and obesity highlights potential novel signals of association, which warrant follow-up in larger cohorts.  相似文献   

19.
Problems associated with insufficient power have haunted the analysis of genome‐wide association studies and are likely to be the main challenge for the analysis of next‐generation sequencing data. Ranking genes according to their strength of association with the investigated phenotype is one solution. To obtain rankings for genes, researchers can draw from a wide range of statistics summarizing the relationships between variants mapped to a gene and the phenotype. Hence, it is of interest to explore the performance of these statistics in the context of rankings. To this end, we conducted a simulation study (limited to genes of equal sizes) of three different summary statistics examining the ability to rank genes in a meaningful order. The weighted sum of squared marginal score test (Pan, 2009), RareCover algorithm (Bahtia et al., 2010) and the elastic net regularization (Zou and Hastie, 2005) were chosen, because they can handle common as well as rare variants. The test based on the score statistic outperformed both other methods in almost all investigated scenarios. It was the only measure to consistently detect genes with interacting causal variants. However, the RareCover algorithm proved better at identifying genes including causal variants with small effect sizes and low minor allele frequency than the weighted sum of squared marginal score test. The performance of the elastic net regularization was unimpressive for all but the simplest scenarios. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Genetic association studies are a powerful tool to detect genetic variants that predispose to human disease. Once an associated variant is identified, investigators are also interested in estimating the effect of the identified variant on disease risk. Estimates of the genetic effect based on new association findings tend to be upwardly biased due to a phenomenon known as the “winner's curse.” Overestimation of genetic effect size in initial studies may cause follow‐up studies to be underpowered and so to fail. In this paper, we quantify the impact of the winner's curse on the allele frequency difference and odds ratio estimators for one‐ and two‐stage case‐control association studies. We then propose an ascertainment‐corrected maximum likelihood method to reduce the bias of these estimators. We show that overestimation of the genetic effect by the uncorrected estimator decreases as the power of the association study increases and that the ascertainment‐corrected method reduces absolute bias and mean square error unless power to detect association is high. Genet. Epidemiol. 33:453–462, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号