首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Angiogenesis plays an important role in tumor growth and metastasis and has been reported to be inversely correlated with overall survival of osteosarcoma patients. It has been shown that apurinic/apyrimidinic endonuclease 1 (APE1), a dually functional protein possessing both base excision repair and redox activities, is involved in tumor angiogenesis, although these mechanisms are not fully understood. Our previous study showed that the expression of transforming growth factor β (TGFβ) was significantly reduced in APE1‐deficient osteosarcoma cells. Transforming growth factor β promotes cancer metastasis through various mechanisms including immunosuppression, angiogenesis, and invasion. In the current study, we initially revealed that APE1, TGFβ, and microvessel density (MVD) have pairwise correlation in osteosarcoma tissue samples, whereas TGFβ, tumor size, and MVD were inversely related to the prognosis of the cohort. We found that knocking down APE1 in osteosarcoma cells resulted in TGFβ downregulation. In addition, APE1‐siRNA led to suppression of angiogenesis in vitro based on HUVECs in Transwell and Matrigel tube formation assays. Reduced secretory protein level of TGFβ of culture medium also resulted in decreased phosphorylation of Smad3 of HUVECs. In a mouse xenograft model, siRNA‐mediated silencing of APE1 downregulated TGFβ expression, tumor size, and MVD. Collectively, the current evidence indicates that APE1 regulates angiogenesis in osteosarcoma by controlling the TGFβ pathway, suggesting a novel target for anti‐angiogenesis therapy in human osteosarcoma.  相似文献   

3.
Rapid growth of cancer cells often creates insufficient supply of oxygen and nutrients in the tumour nest. The frequent detection of hypoxia‐inducible factor (HIF) and interleukin‐8 (IL‐8) in afflicted tissues suggests that IL‐8 expression could be associated with elevated levels of HIF. Recently, we found that hypoxia also upregulated the expression of hepatocyte growth factor (HGF) in lung adenocarcinoma (LAD) cells. However, the relationship between HGF and IL‐8 has not been investigated in LAD cells. In this study, we found that HGF induced IL‐8 expression in LAD. Interestingly, hypoxia also increased the level of prostaglandin F (PGF), a product of dihydrodiol dehydrogenase (DDH). When expression of DDH was suppressed by siRNA, the levels of PGF, HGF and IL‐8 were reduced; however, their levels returned to normal after DDH was reintroduced. These data suggest that hypoxia induces biosynthesis of PGF, which then activates HGF and IL‐8 expression. The results provide a reasonable explanation of how PGF, HGF and IL‐8 exert their effects on cancer cell metastasis. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Prostate cancer (PCa) prevails as the most commonly diagnosed malignancy in men and the third leading cause of cancer‐related deaths in developed countries. One of the distinct characteristics of prostate cancer is overexpression of the small ubiquitin‐like modifier (SUMO)‐specific protease 1 (SENP1), and the upregulation of SENP1 contributes to the malignant progression and cell proliferation of PCa. Previous studies have shown that the expression of microRNA‐145 (miRNA‐145) was extensively deregulated in PCa cell lines and primary clinical prostate cancer samples. Independent target prediction methods have indicated that the 3′‐untranslated region of SENP1 mRNA is a potential target of miR‐145. Here we found that low expression of miR‐145 was correlated with high expression of SENP1 in PCa cell line PC‐3. The transient introduction of miR‐145 caused cell cycle arrest in PC‐3 cells, and the opposite effect was observed when miR‐145 inhibitor was transfected. Further studies revealed that the SENP1 3′‐untranslated region was a regulative target of miR‐145 in vitro. MicroRNA‐145 also suppressed tumor formation in vivo in nude mice. Taken together, miR‐145 plays an important role in tumorigenesis of PCa through interfering SENP1.  相似文献   

5.
We investigated effects of soluble mediators secreted by small cell lung cancer (SCLC) cell lines on modulation of cytokine-induced growth of lymphocytes. We found that interleukin-2 (IL-2)-mediated T-cell growth was inhibited by a cytokine constitutively secreted by the SCLC cell Une, NCI-N417. Of several cytokines tested, only transforming growth factoir β1 (TGFβ1) severely suppressed IL-2-dependent T-cell growth. Using a specific antiTGFβ, antibody, we found that this antibody blocked the immunosuppressive activity secreted by NCI-N417. Thus, the NCI-N417-derived immunosuppressive molecule was serologically identified as TGFβ1. Further experiments showed that TGFβ1 was secreted by four of eight SCLC lines tested. mRNA for TGFβ1 was expressed in NCI-N417 and in SCLC-22H. Constitutive secretion of biologically active TGFβ1 by SCLC lines suggests that tumour-derived immunosuppression may have clinical relevance.  相似文献   

6.
Ovarian cancer metastasis is characterized by the shedding of malignant cells from the surface of the ovary and their implantation onto the peritoneal surface, which lines the abdominal cavity. As the factors promoting this process are poorly understood, we investigated the ovarian cancer–peritoneal interaction by means of in vitro coculture experiments with ovarian cancer (OVCAR‐5 and SKOV‐3) and peritoneal (LP‐9) cells. One of the proteins differentially expressed in the coculture secretome was identified by MALDI‐TOF/TOF mass spectrometry as the extracellular matrix protein transforming growth factor‐beta‐induced protein (TGFBIp, also known as βig‐H3). Immunohistochemistry showed high TGFBIp levels in normal surface ovarian epithelial and peritoneal cells, whereas TGFBIp levels in primary serous ovarian carcinomas and matching metastatic implants was very low. In functional in vitro experiments, treatment with recombinant TGFBIp significantly increased the motility and invasiveness of OVCAR‐5 and SKOV‐3 cells and significantly increased ovarian cancer cell (OVCAR‐5, OVCAR‐3 and SKOV‐3) adhesion to LP‐9 cells. TGFBIp was found to be processed at both the N‐ and C‐terminus in the secretome of the ovarian cancer–peritoneal cell coculture. Plasmin inhibitors blocked TGFBIp processing and significantly reduced OVCAR‐5 cell adhesion to peritoneal cells. We conclude that TGFBIp expressed by peritoneal cells increases the metastatic potential of ovarian cancer cells. TGFBIp is therefore a potential novel therapeutic target against ovarian cancer.  相似文献   

7.
Adjunctive chemotherapy with bisphosphonates has been reported to delay bone metastasis and improve overall survival in breast cancer. Aside from its antiresorptive effect, bisphosphonates exhibit antitumor activities, in vitro and in vivo, via several mechanisms, including antiangiogenesis. In this study, we investigated the potential molecular mechanisms underlying the antiangiogenic effect of non–nitrogen‐containing and nitrogen‐containing bisphosphonates, clodronate and pamidronate, respectively, in insulin‐like growth factor (IGF)‐1 responsive human breast cancer cells. We tested whether bisphosphonates had any effects on hypoxia‐inducible factor (HIF)‐1α/vascular endothelial growth factor (VEGF) axis that plays a pivotal role in tumor angiogenesis, and our results showed that both pamidronate and clodronate significantly suppressed IGF‐1‐induced HIF‐1α protein accumulation and VEGF expression in MCF‐7 cells. Mechanistically, we found that either pamidronate or clodronate did not affect mRNA expression of HIF‐1α, but they apparently promoted the degradation of IGF‐1‐induced HIF‐1α protein. Meanwhile, we found that the presence of pamidronate and clodronate led to a dose‐dependent decease in the newly‐synthesized HIF‐1α protein induced by IGF‐1 in breast cancer cells after proteasomal inhibition, thus, indirectly reflecting the inhibition of protein synthesis. In addition, our results indicated that the inhibitory effects of bisphosphonates on the HIF‐1α/VEGF axis are associated with the inhibition of the phosphoinositide 3‐kinase/AKT/mammalian target of rapamycin signaling pathways. Consistently, we demonstrated that pamidronate and clodronate functionally abrogated both in vitro and in vivo tumor angiogenesis induced by IGF‐1‐stimulated MCF‐7 cells. These findings have highlighted an important mechanism of the pharmacological action of bisphosphonates in the inhibition of tumor angiogenesis in breast cancer cells.  相似文献   

8.
Amphireguline (AR) is an epidermal growth factor (EGF)-related peptide that seems to play an important role in breast cancer progression. We have demonstrated recently that suppression of AR expression in transformed breast epithelial cells considerably reduced both size and neovascularization of tumors developed in nude mice. We show that the reduction of AR expression allowed to an important decrease of the levels of urokinase-type plasminogen activator (uPA) and transforming growth factor-beta1 (TGFbeta1). According to these data, exogenous AR (10(-10) M-10(-8) M) stimulated the production of uPA and TGFbeta1 in AR antisense-transfected A2-15 and A2-P17F25 cells. The addition of 2 x 10(-10) M TGFbeta1 into culture medium increased the level of uPA produced by AR-expressing parental cells but not by A2-15 and A2-P17F25 cell clones. Whereas AR alone stimulated uPA production to 200% of control, combined AR and TGFbeta1 treatment increased protease level in A2-15 and A2-P17F25 cells to 500-600% of control, demonstrating a synergism between TGFbeta1 and AR. This was accompanied by an important augmentation of the number of tumoral cells that invaded matrigel in vitro. The synergistic induction of uPA protein resulted of an early and transient augmentation of steady state mRNA level and was blocked in the presence of the MAP kinase kinase inhibitor PD098059, strongly suggesting that synergistic effect of AR and TGFbeta1 on uPA expression required MAPK pathway. This data demonstrates concerted action between AR and TGFbeta1 that may have profound effect on protease production and consequently on breast cancer progression.  相似文献   

9.
Pleiotrophin (PTN) is a hepatocyte growth factor and considered to play roles in liver fibrogenesis and hepatocarcinogenesis. In this study we examined the mechanism of the action of PTN in these pathological processes. First, we confirmed that hepatic stellate cells (HSCs) and Kupffer cells, and also later hepatocytes in hyperplastic nodules increased PTN mRNA expressions during carbon tetrachloride-induced liver fibrosis. Then, the relationship between PTN and transforming growth factor beta1 (TGFbeta1), a known potent pro-fibrogenetic cytokine, in carcinogenesis was investigated using hepatoma cell lines. Huh-7 human hepatoma cells weakly expressed PTN, but HepG2 human hepatoma cells and FaO rat hepatoma cells did not. Recombinant (r) TGFbeta1 induced the cultured Huh-7 cells to undergo apoptosis, which was inhibited by rPTN. Huh-7 cells became resistant to TGFbeta1-, but not mitomycin C-induced apoptosis when transfected with PTN gene, indicating the specificity of the PTN anti-apoptotic activity. Poly ADP ribose polymerase, procaspase-8 and procaspase-3 were not cleaved in the TGFbeta1-reluctant cells. The TGFbeta1-induced caspase-3 activation was also suppressed in Huh-7 and FaO cells both transduced with PTN gene-bearing adenoviruses. In summary, PTN was expressed in HSCs, Kupffer cells, and hepatocytes in fibrotic liver. We propose that PTN specifically antagonizes the TGFbeta1 activity during liver fibrosis.  相似文献   

10.
11.
Prostate cancer cells initially require androgen for continued proliferation, but invariably become androgen independent or unresponsive and recur after treatment by androgen ablation. Exploitation of common signaling components downstream of their specific receptors (i.e., androgen receptor (AR), insulin-like growth factor 1 (IGF-1) receptor, and epidermal growth factor (EGF) receptor) could provide a mechanism by which androgen independent cells survive and proliferate. Our objective was to design and implement prostate enriched cDNA microarrays to identify genes induced in prostate epithelial cells in a similar temporal pattern by both androgen and IGF or EGF. AR positive and AR negative human prostate epithelial cells of the M12 line were exposed in parallel to DHT, EGF, or IGF for 0, 6, or 24 h. RNA extracted from each of these groups was analyzed by cDNA microarrays composed of a unique set of 6373 prostate-derived cDNA clones from the Prostate Expression Database (PEDB). We observed statistically significant changes in 20 genes induced in common after 6 and 24 h exposure to androgen or these growth factors, and validated the microarray results by RT-PCR for three or four of these genes: v-myc, isocitrate dehydrogenase, and calnexin. Androgen response element binding motifs were identified in the upstream sequence in 16 of these 20 genes. These results provide comprehensive and unique insights into potential mechanisms by which peptide growth factors provide alternate pathways to control prostate epithelial cell proliferation in malignant states.  相似文献   

12.
TNFα and TRAIL, 2 members of the tumor necrosis factor family, share many common signaling pathways to induce apoptosis. Although many cancer cells are sensitive to these proapoptotic agents, some develop resistance. Recently, we have demonstrated that upregulation of c‐Fos/AP‐1 is necessary, but insufficient for cancer cells to undergo TRAIL‐induced apoptosis. Here we present a prostate cancer model with differential sensitivity to TNFα and TRAIL. We show that inhibition of NF‐κB or activation of AP‐1 can only partially sensitize resistant prostate cancer cells to proapoptotic effects of TNFα or TRAIL. Inhibition of NF‐κB by silencing TRAF2, by silencing RIP or by ectopic expression of IκB partially sensitized resistant prostate cancer. Similarly, activation of c‐Fos/AP‐1 only partially sensitized resistant cancer cells to proapoptotic effects of TNFα or TRAIL. However, concomitant repression of NF‐κB and activation of c‐Fos/AP‐1 significantly enhanced the proapoptotic effects of TNFα and TRAIL in resistant prostate cancer cells. Therefore, multiple molecular pathways may need to be modified, to overcome cancers that are resistant to proapoptotic therapies. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Activation of transforming growth factor β (TGF‐β) combined with persistent hypoxia often affects the tumor microenvironment. Disruption of cadherin/catenin complexes induced by these stimulations yields aberrant extracellular matrix (ECM) production, characteristics of epithelial‐mesenchymal transition (EMT). Hypoxia‐inducible factors (HIF), the hallmark of the response to hypoxia, play differential roles during development of diseases. Recent studies show that localization of cadherin/catenin complexes at the cell membrane might be tightly regulated by protein phosphatase activity. We aimed to investigate the role of stabilized HIF‐1α expression by protein phosphatase activity on dissociation of the E‐cadherin/β‐catenin complex and aberrant ECM expression in lung cancer cells under stimulation by TGF‐β. By using lung cancer cells treated with HIF‐1α stabilizers or carrying doxycycline‐dependent HIF‐1α deletion or point mutants, we investigated the role of stabilized HIF‐1α expression on TGF‐β‐induced EMT in lung cancer cells. Furthermore, the underlying mechanisms were determined by inhibition of protein phosphatase activity. Persistent stimulation by TGF‐β and hypoxia induced EMT phenotypes in H358 cells in which stabilized HIF‐1α expression was inhibited. Stabilized HIF‐1α protein expression inhibited the TGF‐β‐stimulated appearance of EMT phenotypes across cell types and species, independent of de novo vascular endothelial growth factor A (VEGFA) expression. Inhibition of protein phosphatase 2A activity abrogated the HIF‐1α‐induced repression of the TGF‐β‐stimulated appearance of EMT phenotypes. This is the first study to show a direct role of stabilized HIF‐1α expression on inhibition of TGF‐β‐induced EMT phenotypes in lung cancer cells, in part, through protein phosphatase activity.  相似文献   

14.
15.
Transforming growth factor β (TGFβ) causes the acquisition of epithelial–mesenchymal transition (EMT). Although the tumor suppressor gene PTEN (phosphatase and tensin homologue deleted from chromosome 10) can negatively regulate many signaling pathways activated by TGFβ, hyperactivation of these signaling pathways is observed in lung cancer cells. We recently showed that PTEN might be subject to TGFβ‐induced phosphorylation of its C‐terminus, resulting in a loss of its enzyme activities; PTEN with an unphosphorylated C‐terminus (PTEN4A), but not PTEN wild, inhibits TGFβ‐induced EMT. Nevertheless, whether or not the blockade of TGFβ‐induced EMT by the PTEN phosphatase activity might be attributed to the unphosphorylated PTEN C‐terminus itself has not been fully determined. Furthermore, the lipid phosphatase activity of PTEN is well characterized, whereas the protein phosphatase activity has not been determined. By using lung cancer cells carrying PTEN domain deletions or point mutants, we investigated the role of PTEN protein phosphatase activities on TGFβ‐induced EMT in lung cancer cells. The unphosphorylated PTEN C‐terminus might not directly retain the phosphatase activities and repress TGFβ‐induced EMT; the modification that keeps the PTEN C‐terminus not phosphorylated might enable PTEN to retain the phosphatase activity. PTEN4A with G129E mutation, which lacks lipid phosphatase activity but retains protein phosphatase activity, repressed TGFβ‐induced EMT. Furthermore, the protein phosphatase activity of PTEN4A depended on an essential association between the C2 and phosphatase domains. These data suggest that the protein phosphatase activity of PTEN with an unphosphorylated C‐terminus might be a therapeutic target to negatively regulate TGFβ‐induced EMT in lung cancer cells.  相似文献   

16.
Cyclooxygenase (COX)‐2‐derived prostaglandin E2 (PGE2) supports the growth of a spectrum of cancers. The potential benefit of COX‐2‐inhibiting non‐steroidal anti‐inflammatory drugs (NSAIDs) for cancer treatment is however limited by their well‐known cardiovascular side‐effects. Therefore, targeting microsomal PGE synthase 1 (mPGES‐1), the downstream enzyme in the COX‐2‐dependent pathway of PGE2 production might be attractive, although conflicting data regarding a potential tumor‐supporting function of mPGES‐1 were reported. We determined the impact of mPGES‐1 in human DU145 prostate cancer cell growth. Surprisingly, knockdown of mPGES‐1 did not alter growth of DU145 monolayer cells, but efficiently inhibited the growth of DU145 multicellular tumor spheroids (MCTS). Opposed to MCTS, monolayer cells did not secrete PGE2 due to a lack of COX‐2 expression, which was induced during spheroid formation. Pharmacological inhibition of COX‐2 and mPGES‐1 supported the crucial role of PGE2 for growth of MCTS. The functionality of spheroid‐derived PGE2 was demonstrated by its ability to inhibit cytotoxic T cell activation. When investigating mechanisms of spheroid‐induced COX‐2 induction, we observed that among microenvironmental factors neither glucose deprivation, hypoxia nor tumor cell apoptosis enhanced COX‐2 expression. Interestingly, interfering with apoptosis in spheroids triggered a shift towards necrosis, thus augmenting COX‐2 expression. We went on to demonstrate that necrotic cells induced COX‐2 mRNA expression and PGE2 secretion from live tumor cells. In conclusion, necrosis‐dependent COX‐2 upregulation in MCTS promoted PGE2‐dependent tumor growth and inhibited activated cytotoxic T cells. Hence, blocking mPGES‐1 as a therapeutic option may be considered for COX‐2/mPGES‐1‐positive solid cancers.  相似文献   

17.
18.
Tumor–stroma interactions play an essential role in the biology of colorectal carcinoma (CRC). Multipotent mesenchymal stromal cells (MSC) may represent a pivotal part of the stroma in CRC, but little is known about the specific interaction of MSC with CRC cells derived from tumors with different mutational background. In previous studies we observed that MSC promote the xenograft growth of the CRC cell‐line DLD1. In the present study, we aimed to analyze the mechanisms of MSC‐promoted tumor growth using various in vitro and in vivo experimental models and CRC cells of different mutational status. MSC specifically interacted with distinct CRC cells and supported tumor seeding in xenografts. The MSC–CRC interaction facilitated three‐dimensional spheroid formation in CRC cells with dysfunctional E‐cadherin system. Stable knock‐downs revealed that the MSC‐facilitated spheroid formation depended on β1‐integrin in CRC cells. Specifically in α‐catenin‐deficient CRC cells this β1‐integrin‐dependent interaction resulted in a MSC‐mediated promotion of early tumor growth in vivo. Collagen I and other extracellular matrix compounds were pivotal for the functional MSC–CRC interaction. In conclusion, our data demonstrate a differential interaction of MSC with CRC cells of different mutational background. Our study is the first to show that MSC specifically compared to normal fibroblasts impact early xenograft growth of distinct α‐catenin deficient CRC cells possibly through secretion of extracellular matrix. This mechanism could serve as a future target for therapy and metastasis prevention.  相似文献   

19.
20.
High biological activity of the transforming growth factor (TGF)‐β‐Smad pathway characterizes the malignant phenotype of malignant gliomas and confers poor prognosis to glioma patients. Accordingly, TGF‐β has become a novel target for the experimental treatment of these tumors. TGF‐β is processed by furin‐like proteases (FLP) and secreted from cells in a latent complex with its processed propeptide, the latency‐associated peptide (LAP). Latent TGF‐β‐binding protein 1 (LTBP‐1) covalently binds to this small latent TGF‐β complex (SLC) and regulates its function, presumably via interaction with the extracellular matrix (ECM). We report here that the levels of LTBP‐1 protein in vivo increase with the grade of malignancy in gliomas. LTBP‐1 is associated with the ECM as well as secreted into the medium in cultured malignant glioma cells. The release of LTBP‐1 into the medium is decreased by the inhibition of FLP activity. Gene‐transfer mediated overexpression of LTBP‐1 in glioma cell lines results in an increase inTGF‐β activity. Accordingly, Smad2 phosphorylation as an intracellular marker of TGF‐β activity is enhanced. Conversely, LTBP‐1 gene silencing reduces TGF‐β activity and Smad2 phosphorylation without affecting TGF‐β protein levels. Collectively, we identify LTBP‐1 as an important modulator of TGF‐β activation in glioma cells, which may contribute to the malignant phenotype of these tumors. © 2009 UICC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号