首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose:

To assess the safety of intravenously administered gadolinium‐based contrast material in sickle cell disease (SCD) patients.

Materials and Methods:

All pediatric and adult SCD patients evaluated by magnetic resonance imaging (MRI) at our institution between January 1995 and July 2009 were identified. The medical records of SCD patients who underwent contrast‐enhanced MRI as well as an equal‐sized cohort of SCD patients who underwent unenhanced MRI were reviewed for adverse (vaso‐occlusive and hemolytic) events within 1 week following imaging.

Results:

Eight (five mild and three moderate) adverse events were documented within 1 week following contrast‐enhanced MRI (38 patients and 61 contrast injections), while six (five mild and one moderate) similar events occurred within 1 week following unenhanced MRI (61 patients and 61 unenhanced MRI examinations). This difference in the number of adverse events was not statistically significant (odds ratio = 1.4; 95% confidence interval [CI] 0.4, 5.2). No severe adverse event occurred in either patient cohort.

Conclusion:

Gadolinium‐based contrast materials do not appear to be associated with increased risk of vaso‐occlusive or hemolytic adverse events when administered to SCD patients. Larger, prospective studies using multiple gadolinium‐based contrast materials would be useful to confirm the results of our investigation. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

2.

Purpose:

To evaluate the feasibility of semiquantitative measurement of liver perfusion from analysis of ferucarbotran induced signal‐dynamics in double‐contrast liver MR‐imaging (DC‐MRI).

Materials and Methods:

In total 31 patients (21 men; 58 ± 10 years) including 18 patients with biopsy proven liver cirrhosis prospectively underwent clinically indicated DC‐MRI at 1.5 Tesla (T) with dynamic T2*‐weighted gradient‐echo imaging after ferucarbotran bolus injection. Breathing artefacts in tissue and input time curves were reduced by Savitzky‐Golay‐filtering and semiquantitative perfusion maps were calculated using a model free approach. Hepatic blood flow index (HBFI) and splenic blood flow index (SBFI) were determined by normalization of arbitrary perfusion values to the perfusion of the erector spinae muscle resulting in a semiquantitative perfusion measure.

Results:

In 30 of 31 patients the evaluated protocol could successfully be applied. Mean HBF was 7.7 ± 2.46 (range, 4.6–12.8) and mean SBF was 13.20 ± 2.57 (range, 8.5–17.8). A significantly lower total HBF was seen in patients with cirrhotic livers as compared to patients with noncirrhotic livers (P < 0.05). In contrast, similar SBF was observed in cirrhotic and noncirrhotic patients (P = 0.11).

Conclusion:

Capturing the signal dynamics during bolus injection of ferucarbotran in DC‐MRI of the liver allows for semiquantitative assessment of hepatic perfusion that may be helpful for a more precise characterisation of liver cirrhosis and focal liver lesions. J. Magn. Reson. Imaging 2012;36:168–176. © 2012 Wiley Periodicals, Inc.  相似文献   

3.

Purpose:

To evaluate whether diffusion‐weighted imaging (DWI) improves the detection of hepatocellular carcinoma (HCC) on super paramagnetic iron oxide (SPIO)‐enhanced MRI.

Materials and Methods:

This retrospective study group consisted of 30 patients with 50 HCC nodules who underwent MRI at 1.5 Tesla. Two combined MR sequence sets were compared for detecting HCC: SPIO‐enhanced MRI (axial T2‐weighted fast spin‐echo (FSE) and T1‐/T2*‐weighted fast field echo (FFE) scanned before and after administration of ferucarbotran) and SPIO‐enhanced MRI + DWI (SPIO‐enhanced MRI with axial DWI scanned before and after administration of ferucarbotran). Three blinded readers independently reviewed for the presence of HCC on a segment‐by‐segment basis using a four‐point confidence scale. The performance of the two combined MR sequence sets was evaluated using receiver operating characteristic (ROC) analysis.

Results:

The average area under the ROC curve (Az) of the three readers for the SPIO‐enhanced MRI + DWI set (0.870 ± 0.046) was significantly higher that that for the SPIO‐enhanced MRI set (0.820 ± 0.055) (P = .025). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for detection of HCC were 66.0%, 98.0%, 90.0%, and 91.4%, respectively, for the SPIO‐enhanced MRI set, and 70.0%, 98.6%, 92.9%, and 92.4%, respectively, for the SPIO‐enhanced MRI + DWI set.

Conclusion:

The SPIO‐enhanced MRI + DWI set outperformed the SPIO‐enhanced MRI set for depicting HCC. J. Magn. Reson. Imaging 2010; 31: 373–382. © 2010 Wiley‐Liss, Inc.  相似文献   

4.

Purpose

To determine the diagnostic value of superparamagnetic iron oxide (SPIO)‐enhanced MRI for the differentiation of well‐differentiated hepatocellular carcinomas (WD‐HCCs) from other hepatocellular nodules in cirrhotic liver.

Materials and Methods

This study included 114 patients with 216 histologically confirmed hepatocellular nodules, i.e., 23 dysplastic nodules (DNs), 37 WD‐HCCs, and 156 moderately or poorly differentiated HCCs (MD‐/PD HCCs), who underwent SPIO‐enhanced MRI at 3.0T. MRI included T2‐weighted fast‐spin echo and T2*‐weighted gradient recalled echo (GRE) sequences before and after administration of ferucarbotran. The contrast‐to‐noise ratio (CNR) of the lesion was calculated. Reviewers analyzed signal intensity (SI) of the nodules and their enhancement features on SPIO‐enhanced images. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in the diagnosis of WD‐HCC were also calculated.

Results

The mean CNR of WD‐HCC was significantly higher than that of DN on T2*‐weighted image. Incomplete high SI on SPIO‐enhanced T2*‐weighted images were seen in 56.8% of WD‐HCC. The most prevalent enhancement features of WD‐HCCs on SPIO‐enhanced T2*‐weighted images, were iso SI with high SI foci [32.5% (12/37)] and homogenous subtle high SI [24.3% (9/37)]. Alternatively, 22 of 23 DNs (95.7%) showed low‐ or iso SI, and 145 of 156 (94.9%) MD‐/PD HCCs showed strong high SI. When iso SI with high SI foci or subtle homogenous high SI nodule was considered as diagnostic criteria for WD‐HCC, we could identify 56.8% of the WD‐HCCs but only 4.4% of the DNs and 3.2% of the MD‐/PD HCCs.

Conclusion

WD‐HCCs have characteristic enhancement features that differentiate them from DNs and MD‐/PD HCCs on SPIO‐enhanced 3.0T MRI. The lesion conspicuity was better on T2*‐weighted images than that on T2‐weighted images. J. Magn. Reson. Imaging 2009;29:328–335. © 2009 Wiley‐Liss, Inc.  相似文献   

5.

Purpose

To examine the usefulness of diffusion‐weighted MRI (DW‐MRI) for the detection of both primary colorectal cancer and regional lymph node metastases, and compare its performance with 2‐[fluorine‐18]‐fluoro‐2‐deoxy‐D‐glucose positron emission tomography (FDG‐PET) in the same patients.

Materials and Methods

We studied 25 patients with known colorectal cancer. All underwent both DW‐MRI and FDG‐PET studies. The images were retrospectively assessed by visual inspection and the imaging findings were compared with histopathological findings on surgical specimens.

Results

Of the 27 primary colorectal lesions surgically excised in 25 patients, 23 (85.2%) were true‐positive on both DW‐MRI and FDG‐PET. Two cancers were false‐negative on DW‐MRI but true‐positive on FDG‐PET, and two were false‐negative on both DW‐MRI and FDG‐PET. With respect to the detectability of metastatic lymph nodes, DW‐MRI and FDG‐PET manifested a sensitivity of 80% (8/10) and 30.0% (3/10), a specificity of 76.9% (10/13) and 100% (13/13), and an accuracy of 78.3% (18/23) and 69.6% (16/23), respectively.

Conclusion

DW‐MRI is inferior to FDG‐PET for the detection of primary lesions, but superior for the detection of lymph node metastases. J. Magn. Reson. Imaging 2009;29:336–340. © 2009 Wiley‐Liss, Inc.  相似文献   

6.

Purpose

To explore ultrasmall superparamagnetic particles of iron oxide (USPIO) as a marker for diffuse inflammation in multiple sclerosis (MS) normal‐appearing white matter (NAWM), using quantitative MRI. Disease activity in the NAWM of MS patients partly explains why MRI lesion burden correlates only moderately with disability. USPIO have been shown to visualize the cellular component of inflammation in focal MS lesions. In this study, we aimed to explore USPIO as a marker for the more diffuse inflammation in MS NAWM, using quantitative MRI.

Materials and Methods

In this prospective MRI study, 16 MS patients (eight relapsing‐remitting MS [RRMS] and eight primary‐progressive MS [PPMS] cases) and five healthy control (HC) subjects were included. Using a flip‐angle (FA) array, B1‐corrected T1 maps were generated before and 24 hours after USPIO (SHU555C) injection. White‐matter (WM) T1 histogram and region‐of‐interest (ROI) characteristics were compared between both time points using Wilcoxon signed‐rank test.

Results

Both NAWM ROI and histogram analyses showed T1 shortening after USPIO injection in MS patients (P < 0.01), but not in HCs (P = 0.68).

Conclusion

This exploratory study suggests that USPIO‐enhanced MRI may be a new potential marker for subtle inflammatory activity in MS NAWM. Further studies should focus on relating diffuse inflammation to clinical disease activity and treatment efficacy. J. Magn. Reson. Imaging 2009;29:774–779. © 2009 Wiley‐Liss, Inc.  相似文献   

7.

Background and purpose

Our aim was to investigate whether magnetic resonance imaging (MRI) with ferucarbotran administered prior to radiofrequency ablation could accurately assess ablative margin when compared with enhanced computed tomography (CT) with iodized oil marking.

Materials and methods

We enrolled 27 patients with 32 hepatocellular carcinomas in which iodized oil deposits were visible throughout the nodule after transcatheter arterial chemoembolization. For these nodules, radiofrequency ablation was performed after ferucarbotran administration. We then performed T2-weighted MRI after 1 week and enhanced CT after 1 month. T2-weighted MRI demonstrated the ablative margin as a low-intensity rim. We classified the margin into three grades; margin (+): high-intensity area with a continuous low-intensity rim; margin zero: high-intensity area with a discontinuous low-intensity rim; and margin (−): high-intensity area extending beyond the low-intensity rim.

Results

In 28 (86%) of 32 nodules, there was agreement between MRI and CT. The overall agreement between for the two modalities in the assessment of ablative margin was good (κ = 0.759, 95% confidence interval: 0.480–1.000, p < 0.001). In four nodules, ablative margins on MRI were underestimated by one grade compared with CT.

Conclusion

MRI using ferucarbotran is less invasive and allows earlier assessment than CT. The MRI technique performed similarly to enhanced CT with iodized oil marking in evaluating the ablative margin after radiofrequency ablation.  相似文献   

8.

Purpose

To elucidate whether a contrast agent dilution method (dilution method), in which gadoxetate disodium (Gd‐EOB‐DTPA) is diluted with saline, is useful for good‐quality arterial‐phase images.

Materials and Methods

In this study we observed 494 hypervascular hepatocellular carcinomas (HCCs) in 327 patients with chronic liver disease. Three Gd‐EOB‐DTPA injection methods were adopted for comparison: 1) test injection method (undiluted Gd‐EOB‐DTPA and modified scan delay), in which a test dose of 0.5 mL of Gd‐EOB‐DTPA was injected to determine scan delay; 2) conventional method (undiluted Gd‐EOB‐DTPA and fixed scan delay); and ( 3 ) dilution method (diluted Gd‐EOB‐DTPA and fixed scan delay), in which Gd‐EOB‐DTPA was diluted to 20 mL with saline. Lesion‐liver contrast was calculated. Image quality and lesion detectability were evaluated by two radiologists blinded to the injection methods.

Results

The lesion‐liver contrast of the dilution method was significantly higher than that of the other two methods. Lesion detectability of the conventional method (64%) was significantly lower than that of the other two methods (contrast agent dilution method, 95%; test injection method, 93%). The image quality of the contrast agent dilution method was significantly better than that of the other two methods.

Conclusion

The dilution method contributed to improved image quality, high lesion‐liver contrast, and high lesion detectability in the arterial‐phase images of GD‐EOB‐DTPA‐enhanced MRI. J. Magn. Reson. Imaging 2009;30:849–854. © 2009 Wiley‐Liss, Inc.  相似文献   

9.

Purpose

To determine the spatial localization errors of magnetic resonance imaging (MRI)‐guided core biopsy for breast lesions using the handheld vacuum‐assisted core biopsy device in phantoms and patients.

Materials and Methods

Biopsies were done using a 10‐gauge handheld vacuum‐assisted core biopsy system (Vacora, Bard, AZ, USA) on a 1.5T MRI scanner (Philips Achieva, Best, The Netherlands). A standardized biopsy localization protocol was followed by trained operators for multiplanar planning of the biopsy on a separate workstation. Biopsy localization errors were determined as the distance from needle tip to center of the target in three dimensions.

Results

Twenty MRI‐guided biopsies of phantoms were performed by three different operators. The biopsy target mean size was 6.8 ± 0.6 mm. The overall mean three‐dimensional (3D) biopsy targeting error was 4.4 ± 2.9 mm. Thirty‐two MRI breast biopsies performed in 22 patients were reviewed. The lesion mean size was 10.5 ± 9.4 mm. The overall mean 3D localization error was 5.7 ± 3.0 mm. No significant differences between phantom and patients biopsy errors were found (P > 0.5).

Conclusion

MRI‐guided handheld vacuum‐assisted core biopsy device shows good targeting accuracy and should allow localization of lesions to within ~5 to 6 mm. J. Magn. Reson. Imaging 2009;30:424–429. © 2009 Wiley‐Liss, Inc.  相似文献   

10.

Purpose

To assess the feasibility of free‐breathing high‐spatial‐resolution delayed contrast‐enhanced three‐dimensional (3D) viability magnetic resonance imaging (MRI) at 3.0T for the detection of myocardial damages.

Materials and Methods

Twenty‐five patients with myocardial diseases, including myocardial infarction and cardiomyopathies, were enrolled after informed consent was given. Free‐breathing 3D viability MRI with high spatial resolution (1.5 × 1.25 × 2.5 mm) at 3.0T, for which cardiac and navigator gating techniques were employed, was compared with breath‐hold two‐dimensional (2D) viability imaging (1.77 × 1.18 × 10 mm) for assessment of contrast‐to‐noise ratio (CNR) and myocardial damage.

Results

Free‐breathing 3D viability imaging was achieved successfully in 21 of the 25 patients. This imaging technique depicted 84.6% of hyperenhancing myocardium with a higher CNR between hyperenhancing myocardium and blood and with excellent agreement for the transmural extension of myocardial damage (k = 0.91). In particular, the 3D viability images delineated the myocardial infarction and linear hyperenhancing myocardium, comparable to the 2D viability images.

Conclusion

Free‐breathing high‐spatial‐resolution delayed contrast‐enhanced 3D viability MRI using 3.0T was feasible for the evaluation of hyperenhancing myocardium, as seen with myocardial infarction and cardiomyopathies. J. Magn. Reson. Imaging 2008;28:1361–1367. © 2008 Wiley‐Liss, Inc.  相似文献   

11.

Purpose:

To evaluate the use of four‐dimensional (4D) velocity‐encoded magnetic resonance imaging (VEC MRI) for blood flow quantification in patients with semilunar valve stenosis and complex accelerated flow.

Materials and Methods:

Peak velocities (Vmax) and stroke volumes (SV) were quantified by 2D and 4D VEC MRI in volunteers (n = 7) and patients with semilunar valve stenosis (n = 18). Measurements were performed above the aortic and pulmonary valve with both techniques and, additionally, at multiple predefined planes in the ascending aorta and in the pulmonary trunk within the 4D dataset. In patients, 4D VEC MRI streamline analysis identified flow patterns and regions of highest flow velocity (4Dmax‐targeted) for further measurements and Vmax was also measured by Doppler‐echocardiography.

Results:

In patients, 4D VEC MRI showed higher Vmax than 2D VEC MRI (2.7 ± 0.6 m/s vs. 2.4 ± 0.5 m/s, P < 0.03) and was more comparable to Doppler‐echocardiography (2.8 ± 0.7 m/s). 4Dmax‐targeted revealed highest Vmax values (3.1 ± 0.6 m/s). SV measurements showed significant differences between different anatomical levels in the ascending aorta in patients with complex accelerated flow, whereas differences in volunteers with laminar flow patterns were negligible (P = 0.004).

Conclusion:

4D VEC MRI improves MRI‐derived blood flow quantification in patients with semilunar valve stenosis and complex accelerated flow. J. Magn. Reson. Imaging 2013;37:208–216. © 2012 Wiley Periodicals, Inc.  相似文献   

12.

Purpose:

To evaluate the incidence and predictive factors of hypervascular transformation during follow‐up of “high‐risk nodules” detected in the hepatobiliary phase of initial Gd‐EOB‐DTPA‐enhanced MRI in chronic liver disease patients.

Materials and Methods:

A total of 109 patients with chronic liver disease who underwent Gd‐EOB‐DTPA‐enhanced MRI several times were investigated. Of these, 43 patients had 76 high‐risk nodules with both hypointensity in the hepatobiliary phase and hypovascularity in the arterial phase of initial MRI. These nodules were observed until hypervascularity was detected. MRI and clinical findings were compared to assess the incidence and potential predictive factors for hypervascular transformation between the group showing hypervascular transformation and the group not showing hypervascularization.

Results:

The median observation period was 242.5 ± 203.2 days (range, 47–802 days). Overall, 24 of 76 high‐risk nodules (31.6%) showed hypervascular transformation during follow‐up (median observation period, 186.0 ± 190.3 days). The growth rate of the nodules (P < 0.001), the presence of fat within nodules (P = 0.037), and hyperintensity on T1‐weighted images (P = 0.018) were significantly correlated with hypervascularization.

Conclusion:

Subsets of high‐risk nodules tended to show hypervascular transformation during follow‐up, with an increased growth rate, the presence of fat, and hyperintensity on T1‐weighted images as predictive factors. J. Magn. Reson. Imaging 2013;37:1377–1383. © 2013 Wiley Periodicals, Inc.  相似文献   

13.

Purpose:

To assess the feasibility of multiple‐bolus dynamic contrast‐enhanced (DCE) magnetic resonance imaging (MRI) in the pancreas; to optimize the analysis; and to investigate application of the method to a glucose challenge in type 2 diabetes.

Materials and Methods:

A 4‐bolus DCE‐MRI protocol was performed on five patients with type 2 diabetes and 11 healthy volunteers during free‐breathing. Motion during the dynamic time series was corrected for using a model‐driven nonlinear registration. A glucose challenge was administered intravenously between the first and second DCE‐MRI acquisition in all patients and in seven of the healthy controls.

Results:

Image registration improved the reproducibility of the DCE‐MRI model parameters across the repeated bolus‐acquisitions in the healthy controls with no glucose challenge (eg, coefficient of variation for Ktrans improved from 38% to 28%). Native tissue T1 was significantly lower in patients (374 ± 68 msec) compared with volunteers (519 ± 41 msec) but there was no significant difference in any of the baseline DCE‐MRI parameters. No effect of glucose challenge was observed in either the patients or healthy volunteers.

Conclusion:

Multiple bolus DCE‐MRI is feasible in the pancreas and is improved by nonlinear image registration but is not sensitive to the effects of an intravenous glucose challenge. J. Magn. Reson. Imaging 2010;32:622–628. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
PurposeAdverse reaction rates to gadolinium based magnetic resonance imaging (MRI) contrast agents which occur immediately post-injection are well documented. However little research has investigated delayed reaction rates (i.e. 30 min–24 h). This study evaluated the rate of immediate and delayed adverse reaction rates to a gadolinium based MRI contrast agent (Dotarem®) and investigated the effect of a hydration regime on the rate of adverse events.MethodFifty-eight patients received no preparation, prior to administration of the contrast agent, whilst another 58 underwent a hydration protocol. The patients had their answers to a questionnaire recorded immediately after the scanning procedure and also via a follow-up telephone call 24 h later.ResultsIn the unprepared group 9 patients (15.5%) experienced immediate adverse events, i.e. within 0–30 min, whereas 24 (41.4%) experienced delayed reactions (30 min–24 h) after administration of the contrast agent. In the hydrated patient group 6 (10.3%) experienced an immediate adverse event, whilst 8 (13.7%) experienced delayed events post-injection. The difference in the total reaction rates for the unprepared and hydrated groups was statistically significant for immediate and delayed reactions. The difference in the rates of delayed headache, nausea, dizziness and problems with the injection site, for the unprepared and hydrated groups was statistically significant.ConclusionAn oral hydration regime administered to patients, both before and after MRI contrast agent administration significantly reduced the total number of immediate and delayed reactions. It also significantly reduced delayed headache, nausea, dizziness and problems at the injection site. Whilst this pilot study had methodological shortcomings, the strength of the relationship demonstrated are worthy of further investigation.  相似文献   

15.

Purpose:

To compare the diagnostic accuracy of superparamagnetic iron oxide (SPIO)‐enhanced fluid‐attenuated inversion‐recovery echo‐planar imaging (FLAIR EPI) for malignant liver tumors with that of T2‐weighted turbo spin‐echo (TSE), T2*‐weighted gradient‐echo (GRE), and diffusion‐weighted echo‐planar imaging (DW EPI).

Materials and Methods:

SPIO‐enhanced magnetic resonance imaging (MRI) that included FLAIR EPI, T2‐weighted TSE, T2*‐weighted GRE, and DW EPI sequences was performed using a 3 T system in 54 consecutive patients who underwent surgical exploration with intraoperative ultrasonography. A total of 88 malignant liver tumors were evaluated. Images were reviewed independently by two blinded observers who used a 5‐point confidence scale to identify lesions. Results were correlated with results of histopathologic findings and surgical exploration with intraoperative ultrasonography. The accuracy of each MRI sequence was measured with jackknife alternative free‐response receiver operating characteristic analysis. The sensitivity of each observer with each MRI sequence was compared with McNemar's test.

Results:

Accuracy values were significantly higher with FLAIR EPI sequence (0.93) than with T2*‐weighted GRE (0.80) or DW EPI sequences (0.80) (P < 0.05). Sensitivity was significantly higher with the FLAIR EPI sequence than with any of the other sequences.

Conclusion:

SPIO‐enhanced FLAIR EPI sequence was more accurate in the diagnosis of malignant liver tumors than T2*‐weighted GRE and DW EPI sequences. SPIO‐enhanced FLAIR EPI sequence is helpful for the detection of malignant liver tumors. J. Magn. Reson. Imaging 2010;31:607–616. ©2010 Wiley‐Liss, Inc.  相似文献   

16.

Purpose:

To evaluate the feasibility of using micron‐sized superparamagnetic iron oxide particles (MPIOs) as an effective labeling agent for monitoring bone marrow‐derived mesenchymal stromal cell (BMSC) migration in the brain using magnetic resonance imaging (MRI) in a rat model of stroke and whether the accumulation of MPIO‐labeled BMSCs can be differentiated from the accumulation of free MPIO particles or hemoglobin breakdown at a site of neuronal damage.

Materials and Methods:

In this study BMSCs were labeled with iron oxide and their pattern of migration following intravenous injection in a rat stroke model was monitored using a clinical MRI system followed by standard histopathology. The migration pattern was compared between intravenous injection of BMSCs alone, BMSCs labeled with MPIOs, and MPIO particles alone.

Results:

The results demonstrated that while MRI was highly sensitive in the detection of iron oxide particle‐containing cells in areas of neuronal ischemia, the true origin of cells containing iron oxide particles remains ambiguous. Therefore, detection of iron particles may not be a suitable strategy for the detection of BMSCs in the brain in a stroke model.

Conclusion:

This study suggests that the use of MPIOs as labeling agents are insufficient to conclusively determine the localization of iron within cells in regions of neuronal ischemia and hemorrhage. J. Magn. Reson. Imaging 2013;37:1409–1418. © 2012 Wiley Periodicals, Inc.  相似文献   

17.

Purpose:

To evaluate the relative enhancement of liver, pancreas, focal nodular hyperplasia (FNH), pancreas‐to‐liver index, and FNH‐to‐liver index in the hepatic arterial dominant phase (HADP) after injection of hepatocyte‐specific MRI contrast agents, gadoxetic acid and gadobenate dimeglumine, on 3 and 1.5 Tesla (T) MRI in the same patient.

Materials and Methods:

The MRI database was retrospectively searched to identify consecutive patients who underwent abdominal MRI at 3T and 1.5T systems, using both 0.025 mmol/kg gadoxetic acid‐enhanced and 0.05 mmol/kg gadobenate dimeglumine‐enhanced MRI at the same magnetic strength field system. 22 patients were identified, 10 were scanned at 3T system and 12 at 1.5T system. The enhancement of liver, pancreas, and FNH was evaluated quantitatively on MR images.

Results:

The relative enhancement of liver in HADP in the gadobenate dimeglumine‐enhanced group in all subjects was significantly higher than that in gadoxetic acid‐enhanced group (P = 0.023). The gadobenate dimeglumine‐enhanced group in HADP had better relative enhancement of pancreas and FNH, pancreas‐to‐liver index, and FNH‐to‐liver index than gadoxetic acid‐enhanced group, but the difference was not statistically significant.

Conclusion:

The 0.05 mmol/kg gadobenate dimeglumine‐enhanced abdominal MRI studies at 3T and 1.5T MR systems are superior in relative enhancement of the liver in HADP to 0.025 mmol/kg gadoxetic acid‐enhanced MRI. This type of assessment may provide comparative effectiveness data. J. Magn. Reson. Imaging 2013;37:903–908. © 2012 Wiley Periodicals, Inc.  相似文献   

18.

Purpose:

To further validate the quantitative use of flow‐sensitive four‐dimensional velocity encoded cine magnetic resonance imaging (4D VEC MRI) for simultaneously acquired venous and arterial blood flow in healthy volunteers and for abnormal flow in patients with congenital heart disease.

Materials and Methods:

Stroke volumes (SV) obtained in arterial and venous thoracic vessels were compared between standard two‐dimensional (2D), 4D VEC MRI with and without respiratory navigator gating (gated/nongated) in volunteers (n = 7). In addition, SV and regurgitation fractions (RF) measured in aorta or pulmonary trunk of patients with malformed and/or insufficient valves (n = 10) were compared between 2D and nongated 4D VEC MRI methods.

Results:

In volunteers and patients, Bland–Altman tests showed excellent agreement between 2D, gated, and nongated 4D VEC MRI obtained quantitative blood flow measurements. The bias between 2D and gated 4D VEC MRI was <0.5 mL for SV; between 2D and nongated 4D VEC MRI the bias was <0.7 mL for SV and <1% for RF.

Conclusion:

Blood flow can be quantified accurately in arterial, venous, and pathological flow conditions using 4D VEC MRI. Nongated 4D VEC MRI has the potential to be suited for clinical use in patients with congenital heart disease who require flow acquisitions in multiple vessels. J. Magn. Reson. Imaging 2010;32:677–683. © 2010 Wiley‐Liss, Inc.  相似文献   

19.

Purpose:

To investigate the detectability of hepatocellular carcinoma (HCC) on Gd‐EOB‐enhanced MR images (Gd‐EOB‐MRI), we performed tumor‐by‐tumor analysis of pathologically confirmed tumors using explants from cirrhotic patients who had undergone liver transplantation.

Materials and Methods:

We studied 11 explanted livers and classified the tumor intensity during the arterial phase (AP) and the hepatobiliary phase (HBP) as low in HBP with early enhancement (EE) in AP (A), as high in HBP with EE in AP (B), as low in HBP without EE in AP (C), as high in HBP without EE in AP (D), and as iso‐intense in HBP with EE in AP (E). The diagnostic criteria for HCC were (i) pattern A and C, (ii) pattern A and E, (iii) pattern C and E, and (iv) patterns A, C, and E.

Results:

Of the 71 HCCs, 22 were not detected at MRI; of these, 9 were moderately differentiated and 13 were well‐differentiated HCCs. The sensitivity of Gd‐EOB‐MRI for diagnostic criteria 1, 2, 3, and 4 was 63.4%, 52.1%, 22.5%, and 69.0%.

Conclusion:

The maximum sensitivity of Gd‐EOB‐MRI for HCC was only 69.0% even when diagnostic criteria that included all previously reported HCC patterns were adopted. J. Magn. Reson. Imaging 2013;37:684—691. © 2012 Wiley Perioidicals, Inc.  相似文献   

20.

Purpose

To develop and demonstrate the feasibility of multisequence and multiplanar MRI for whole‐body cancer detection.

Materials and Methods

Two fast Dixon‐based sequences and a diffusion‐weighted sequence were used on a commercially available 1.5 T scanner for whole‐body cancer detection. The study enrolled 19 breast cancer patients with known metastases and in multistations acquired whole‐body axial diffusion‐weighted, coronal T2‐weighted, axial/sagittal pre‐ and postcontrast T1‐weighted, as well as triphasic abdomen images. Three radiologists subjectively scored Dixon images of each series for overall image quality and fat suppression uniformity on a 4‐point scale (1 = poor, 2 = fair, 3 = good, and 4 = excellent).

Results

Eighteen of the 19 patients completed the whole‐body MRI successfully. The mean acquisition time and overall patient table time were 46 ± 3 and 69 ± 5 minutes, respectively. The average radiologists' scores for overall image quality and fat suppression uniformity were both 3.4 ± 0.5. The image quality was consistent between patients and all completed whole‐body examinations were diagnostically adequate.

Conclusion

Whole‐body MRI offering essentially all the most optimal tumor‐imaging sequences in a typical 1‐hour time slot can potentially become an appealing “one‐stop‐shop” for whole‐body cancer imaging. J. Magn. Reson. Imaging 2009;29:1154–1162. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号