首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To assess a 3D radial balanced steady‐state free precession (SSFP) technique that provides submillimeter isotropic resolution and inherently registered fat and water image volumes in comparison to conventional T2‐weighted RARE imaging for lesion characterization in breast magnetic resonance imaging (MRI).

Materials and Methods

3D projection SSFP (3DPR‐SSFP) combines a dual half‐echo radial k‐space trajectory with a linear combination fat/water separation technique (linear combination SSFP). A pilot study was performed in 20 patients to assess fat suppression and depiction of lesion morphology using 3DPR‐SSFP. For all patients fat suppression was measured for the 3DPR‐SSFP image volumes and depiction of lesion morphology was compared against corresponding T2‐weighted fast spin echo (FSE) datasets for 15 lesions in 11 patients.

Results

The isotropic 0.63 mm resolution of the 3DPR‐SSFP sequence demonstrated improved depiction of lesion morphology in comparison to FSE. The 3DPR‐SSFP fat and water datasets were available in a 5‐minute scan time while average fat suppression with 3DPR‐SSFP was 71% across all 20 patients.

Conclusion

3DPR‐SSFP has the potential to improve the lesion characterization information available in breast MRI, particularly in comparison to conventional FSE. A larger study is warranted to quantify the effect of 3DPR‐SSFP on specificity. J. Magn. Reson. Imaging 2009;30:135–144. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Diffusion weighted magnetic resonance images are often acquired with single shot multislice imaging sequences, because of their short scanning times and robustness to motion. To minimize noise and acquisition time, images are generally acquired with either anisotropic or isotropic low resolution voxels, which impedes subsequent posterior image processing and visualization. In this article, we propose a super‐resolution method for diffusion weighted imaging that combines anisotropic multislice images to enhance the spatial resolution of diffusion tensor data. Each diffusion weighted image is reconstructed from a set of arbitrarily oriented images with a low through‐plane resolution. The quality of the reconstructed diffusion weighted images was evaluated by diffusion tensor metrics and tractography. Experiments with simulated data, a hardware DTI phantom, as well as in vivo human brain data were conducted. Our results show a significant increase in spatial resolution of the diffusion tensor data while preserving high signal to noise ratio. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.

Purpose:

To demonstrate reduced field‐of‐view (RFOV) single‐shot fast spin echo (SS‐FSE) imaging based on the use of two‐dimensional spatially selective radiofrequency (2DRF) pulses.

Materials and Methods:

The 2DRF pulses were incorporated into an SS‐FSE sequence for RFOV imaging in both phantoms and the human brain on a 1.5 Tesla (T) whole‐body MR system with the aim of demonstrating improvements in terms of shorter scan time, reduced blurring, and higher spatial resolution compared with full FOV imaging.

Results:

For phantom studies, scan time gains of up to 4.2‐fold were achieved as compared to the full FOV imaging. For human studies, the spatial resolution was increased by a factor of 2.5 (from 1.7 mm/pixel to 0.69 mm/pixel) for RFOV imaging within a scan time (0.7 s) similar to full FOV imaging. A 2.2‐fold shorter scan time along with a significant reduction of blurring was demonstrated in RFOV images compared with full FOV images for a target spatial resolution of 0.69 mm/pixel.

Conclusion:

RFOV SS‐FSE imaging using a 2DRF pulse shows advantages in scan time, blurring, and specific absorption rate reduction along with true spatial resolution increase compared with full FOV imaging. This approach is promising to benefit fast imaging applications such as image guided therapy. J. Magn. Reson. Imaging 2010;32:242–248. © 2010 Wiley‐Liss, Inc.  相似文献   

4.

Purpose:

To evaluate the effectiveness of flow‐sensitive dephasing (FSD) magnetization preparation in improving blood signal suppression of three‐dimensional (3D) turbo spin‐echo (TSE) sequence (SPACE) for isotropic high‐spatial‐resolution carotid arterial wall imaging at 3T.

Materials and Methods:

The FSD‐prepared SPACE sequence (FSD‐SPACE) was implemented by adding two identical FSD gradient pulses right before and after the first refocusing 180°‐pulse of the SPACE sequence in all three orthogonal directions. Nine healthy volunteers were imaged at 3T with SPACE, FSD‐SPACE, and multislice T2‐weighted 2D TSE coupled with saturation band (SB‐TSE). Apparent carotid wall‐lumen contrast‐to‐noise ratio (aCNRw‐l) and apparent lumen area (aLA) at the locations with residual‐blood (rb) signal shown on SPACE images were compared between SPACE and FSD‐SPACE. Carotid aCNRw‐l and lumen (LA) and wall area (WA) measured from FSD‐SPACE were compared to those measured from SB‐TSE.

Results:

Plaque‐mimicking flow artifacts identified in seven carotids on SPACE images were eliminated on FSD‐SPACE images. The FSD preparation resulted in slightly reduced aCNRw‐l (P = 0.025), but significantly improved aCNR between the wall and rb regions (P < 0.001) and larger aLA (P < 0.001). Compared to SB‐TSE, FSD‐SPACE offered comparable aCNRw‐l with much higher spatial resolution, shorter imaging time, and larger artery coverage. The LA and WA measurements from the two techniques were in good agreement based on intraclasss correlation coefficient (0.988 and 0.949, respectively; P < 0.001) and Bland‐Altman analyses.

Conclusion:

FSD‐SPACE is a time‐efficient 3D imaging technique for carotid arterial wall with superior spatial resolution and blood signal suppression. J. Magn. Reson. Imaging 2010;31:645–654. © 2010 Wiley‐Liss, Inc.  相似文献   

5.

Purpose:

To increase the in‐plane spatial resolution and image update rates of 2D magnetic resonance (MR) digital subtraction angiography (DSA) pulse sequences to 0.57 × 0.57 mm and 6 frames/sec, respectively, for intracranial vascular disease applications by developing a radial FLASH protocol and to characterize a new artifact, not previously described in the literature, which arises in the presence of such pulse sequences.

Materials and Methods:

The pulse sequence was optimized and artifacts were characterized using simulation and phantom studies. With Institutional Review Board (IRB) approval, the pulse sequence was used to acquire time‐resolved images from healthy human volunteers and patients with x‐ray DSA‐confirmed intracranial vascular disease.

Results:

Artifacts were shown to derive from inhomogeneous spoiling due to the nature of radial waveforms. Gradient spoiling strategies were proposed to eliminate the observed artifact by balancing gradient moments across TR intervals. The resulting radial 2D MR DSA sequence (2.6 sec temporal footprint, 6 frames/sec with sliding window factor 16, 0.57 × 0.57 mm in‐plane) demonstrated small vessel detail and corroborated x‐ray DSA findings in intracranial vascular imaging studies.

Conclusion:

Appropriate gradient spoiling in radial 2D MR DSA pulse sequences improves intracranial vascular depiction by eliminating circular banding artifacts. The proposed pulse sequence may provide a useful addition to clinically applied 2D MR DSA scans. J. Magn. Reson. Imaging 2012;36:249–258. © 2012 Wiley Periodicals, Inc.  相似文献   

6.

Purpose:

To develop and implement a clinical DTI technique suitable for the pediatric setting that retrospectively corrects for large motion without the need for rescanning and/or reacquisition strategies, and to deliver high‐quality DTI images (both in the presence and absence of large motion) using procedures that reduce image noise and artifacts.

Materials and Methods:

We implemented an in‐house built generalized autocalibrating partially parallel acquisitions (GRAPPA)‐accelerated diffusion tensor (DT) echo‐planar imaging (EPI) sequence at 1.5T and 3T on 1600 patients between 1 month and 18 years old. To reconstruct the data, we developed a fully automated tailored reconstruction software that selects the best GRAPPA and ghost calibration weights; does 3D rigid‐body realignment with importance weighting; and employs phase correction and complex averaging to lower Rician noise and reduce phase artifacts. For select cases we investigated the use of an additional volume rejection criterion and b‐matrix correction for large motion.

Results:

The DTI image reconstruction procedures developed here were extremely robust in correcting for motion, failing on only three subjects, while providing the radiologists high‐quality data for routine evaluation.

Conclusion:

This work suggests that, apart from the rare instance of continuous motion throughout the scan, high‐quality DTI brain data can be acquired using our proposed integrated sequence and reconstruction that uses a retrospective approach to motion correction. In addition, we demonstrate a substantial improvement in overall image quality by combining phase correction with complex averaging, which reduces the Rician noise that biases noisy data. J. Magn. Reson. Imaging 2012;36:961–971. © 2012 Wiley Periodicals, Inc.  相似文献   

7.

Purpose:

To investigate the effect of standardized and study‐specific human brain diffusion tensor templates on the accuracy of spatial normalization, without ignoring the important roles of data quality and registration algorithm effectiveness.

Materials and Methods:

Two groups of diffusion tensor imaging (DTI) datasets, with and without visible artifacts, were normalized to two standardized diffusion tensor templates (IIT2, ICBM81) as well as study‐specific templates, using three registration approaches. The accuracy of inter‐subject spatial normalization was compared across templates, using the most effective registration technique for each template and group of data.

Results:

It was demonstrated that, for DTI data with visible artifacts, the study‐specific template resulted in significantly higher spatial normalization accuracy than standardized templates. However, for data without visible artifacts, the study‐specific template and the standardized template of higher quality (IIT2) resulted in similar normalization accuracy.

Conclusion:

For DTI data with visible artifacts, a carefully constructed study‐specific template may achieve higher normalization accuracy than that of standardized templates. However, as DTI data quality improves, a high‐quality standardized template may be more advantageous than a study‐specific template, because in addition to high normalization accuracy, it provides a standard reference across studies, as well as automated localization/segmentation when accompanied by anatomical labels. J. Magn. Reson. Imaging 2013;37:372–381. © 2012 Wiley Periodicals, Inc.  相似文献   

8.

Purpose

To describe an initial experience imaging the human hippocampus in vivo using a 7T magnetic resonance (MR) scanner and a protocol developed for very high field neuroimaging.

Materials and Methods

Six normal subjects were scanned on a 7T whole body MR scanner equipped with a 16‐channel head coil. Sequences included a full field of view T1‐weighted 3D turbo field echo (T1W 3D TFE: time of acquisition (TA) = 08:58), T2*‐weighted 2D fast field echo (T2*W 2D FFE: TA = 05:20), and susceptibility‐weighted imaging (SWI: TA = 04:20). SWI data were postprocessed using a minimum intensity projection (minIP) algorithm. Total imaging time was 23 minutes.

Results

T1W 3D TFE images with 700 μm isotropic voxels provided excellent anatomic depiction of macroscopic hippocampal structures. T2*W 2D FFE images with 0.5 mm in‐plane resolution and 2.5 mm slice thickness provided clear discrimination of the Cornu Ammonis and the compilation of adjacent sublayers of the hippocampus. SWI images (0.5 mm in‐plane resolution, 1.0 mm slice thickness) delineated microvenous anatomy of the hippocampus.

Conclusion

In vivo 7T MR imaging can take advantage of higher signal‐to‐noise and novel contrast mechanisms to provide increased conspicuity of hippocampal anatomy. J. Magn. Reson. Imaging 2008;28:1266–1272. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Diffusion tensor imaging (DTI) can provide vital insights into brain connectivity, and may become an important tool for the diagnosis and treatment of neurological disease. However, DTI's intrinsic low signal-to-noise ratio (SNR) and vulnerability to ghosting artifacts can result in poor image quality with low spatial resolution, which limits its clinical applications. In this study, a new double-shot EPI sequence (half-FOV EPI) with high spatial resolution was developed. This method enables DT measurements to be obtained with high isotropic spatial resolution and whole-brain coverage. To avoid ghosting artifacts, the data are combined in image space rather than in k-space.  相似文献   

10.

Purpose

To develop a novel approach for high‐resolution functional MRI (fMRI) using the conventional gradient‐echo sequence.

Materials and Methods

Echo‐planar imaging (EPI) techniques have generally been used for fMRI studies due to their fast imaging time. However, it is difficult for studying brain function at the submillimeter level using this sequence. In addition, EPI techniques have some drawbacks, such as Nyquist ghosts and geometric distortions in the reconstructed images, and subsequently require additional postprocessing to reduce these artifacts. One way of solving these problems is to acquire fMRI data by means of a conventional gradient‐echo imaging sequence instead of EPI. To provide a fast imaging time, the proposed method combines higher‐order generalized series (HGS) imaging with a parallel imaging technique which is called the HGS‐parallel technique.

Results

The proposed HGS‐parallel technique achieves a 12.8‐fold acceleration in imaging time without the cost of spatial resolution. The proposed method was verified through the application of fMRI studies on normal subjects.

Conclusion

This study suggests that the proposed method can be used for high‐resolution fMRI studies without the geometric distortion and the Nyquist ghost artifacts compared to EPI. J. Magn. Reson. Imaging 2009;29:924–936. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Design and analysis of a practical 3D cones trajectory.   总被引:3,自引:0,他引:3  
The 3D Cones k-space trajectory has many desirable properties for rapid and ultra-short echo time magnetic resonance imaging. An algorithm is presented that generates the 3D Cones gradient waveforms given a desired field of view and resolution. The algorithm enables a favorable trade-off between increases in readout time and decreases in the total number of required readouts. The resulting trajectory is very signal-to-noise ratio (SNR) efficient and has excellent aliasing properties. A rapid high-resolution ultra-short echo time imaging sequence is used to compare the 3D Cones trajectory to 3D projection reconstruction (3DPR) sampling schemes. For equivalent scan times, the 3D Cones trajectory has better SNR performance and fewer aliasing artifacts as compared to the 3DPR trajectory.  相似文献   

12.

Purpose:

To determine optimal delay times and flip angles for T1‐weighted hepatobiliary imaging at 1.5 Tesla (T) with gadoxetic acid and to demonstrate the feasibility of using a high‐resolution navigated optimized T1‐weighted pulse sequence to evaluate biliary disease.

Materials and Methods:

Eight healthy volunteers were scanned at 1.5T using a T1‐weighted three‐dimensional (3D)‐SPGR pulse sequence following the administration of 0.05 mmol/kg of gadoxetic acid. Navigator‐gating enabled acquisition of high spatial resolution (1.2 × 1.4 × 1.8 mm3, interpolated to 0.7 × 0.7 × 0.9 mm3) images in approximately 5 min of free‐breathing. Multiple breath‐held acquisitions were performed at flip angles between 15° and 45° to optimize T1 weighting. To evaluate the performance of this optimized sequence in the setting of biliary disease, the image quality and biliary excretion of 51 consecutive clinical scans performed to assess primary sclerosing cholangitis (PSC) were evaluated.

Results:

Optimal hepatobiliary imaging occurs at 15–25 min, using a 40° flip angle. The image quality and visualization of biliary excretion in the PSC scans were excellent, despite the decreased liver function in some patients. Visualization of reduced excretion often provided diagnostic information that was unavailable by conventional magnetic resonance cholangiopancreatography (MRCP).

Conclusion:

High‐resolution navigated 3D‐SPGR hepatobiliary imaging using gadoxetic acid and optimized scan parameters is technically feasible and can be clinically useful, even in patients with decreased hepatobiliary function. J. Magn. Reson. Imaging 2012;36:890–899. © 2012 Wiley Periodicals, Inc.  相似文献   

13.

Purpose

To describe and demonstrate a new technique that allows diffusion tensor imaging of small structures such as the spinal cord (SC) and optic nerve (ON) with contiguous slices and reduced image distortions using a narrow field of view (FOV).

Materials and Methods

Images were acquired with a modified single‐shot echo‐planar imaging (EPI) sequence that contains a refocusing radio frequency (RF) pulse in the presence of the phase‐encoding (rather than slice‐select) gradient. As a result, only a narrow volume may be both excited and refocused, removing the problem of signal aliasing for narrow FOVs. Two variants of this technique were developed: cardiac gating is included in the study of the SC to reduce pulsation artifacts, whereas inversion‐recovery (IR) cerebrospinal fluid (CSF) suppression is utilized in the study of the ON to eliminate partial volume effects. The technique was evaluated with phantoms, and mean diffusivity (MD) and fractional anisotropy (FA) measurements were made in the SC and ON of two healthy volunteers.

Results

The technique provides contiguous‐slice, reduced‐FOV images that do not suffer from aliasing and have reduced magnetic susceptibility artifacts. MD and FA values determined here lie within the ranges quoted in the literature.

Conclusion

Contiguous‐slice zonally orthogonal multislice (CO‐ZOOM‐EPI is a new technique for diffusion‐weighted imaging of small structures such as the ON and SC with high resolution and reduced distortions due to susceptibility variations. This technique is able to acquire contiguous slices that may allow further nerve‐tracking analyses. J. Magn. Reson. Imaging 2009;29:454–460. © 2009 Wiley‐Liss, Inc.  相似文献   

14.

Purpose:

To apply myelin‐sensitive quantitative magnetic resonance imaging (MRI) techniques in defined hypomyelinating conditions and to identify spatial patterns of myelination as criteria for characterization of undefined disorders.

Materials and Methods:

Seven patients were included, based on the diagnosis of mitochondrial cytopathy, Pelizaeus‐Merzbacher disease, GJA12/GJC2‐related Pelizaeus‐Merzbacher‐like disease, hypomyelination with atrophy of the basal ganglia and cerebellum, and leukoencephalopathy with ataxia, delayed dentition, and hypomyelination. The control group comprised 23 children and adolescents (age range 2.6–22.4 years). The 3T MRI protocol consisted of high‐resolution T1‐ and T2‐weighted 3D MRI, diffusion tensor (DTI), and magnetization transfer (MT) imaging. Parameter maps of mean diffusivity, fractional anisotropy, and MT saturation were displayed as pseudocolor overlays and assessed by region‐of‐interest and histogram analysis.

Results:

Structural MRI revealed widespread signal alterations in white matter, but were hampered by signal heterogeneity. Quantitative DTI and MT reflected the degree of hypomyelination and discriminative patterns of myelination emerged on MT saturation maps.

Conclusion:

The quantitative parameters in the defined hypomyelination conditions provide additional criteria to further classify undefined white matter disorders. J. Magn. Reson. Imaging 2012; 36:1329–1338. © 2012 Wiley Periodicals, Inc.  相似文献   

15.

Purpose:

To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans.

Materials and Methods:

Image distortion parameters were obtained by image coregistration, performed only between diffusion‐weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion‐weighted image.

Results:

The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods.

Conclusion:

The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross‐correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. J. Magn. Reson. Imaging 2013;37:1460–1467. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Time-resolved contrast-enhanced 3D MR angiography (MRA) methods have gained in popularity but are still limited by the tradeoff between spatial and temporal resolution. A method is presented that greatly reduces this tradeoff by employing undersampled 3D projection reconstruction trajectories. The variable density k-space sampling intrinsic to this sequence is combined with temporal k-space interpolation to provide time frames as short as 4 s. This time resolution reduces the need for exact contrast timing while also providing dynamic information. Spatial resolution is determined primarily by the projection readout resolution and is thus isotropic across the FOV, which is also isotropic. Although undersampling the outer regions of k-space introduces aliased energy into the image, which may compromise resolution, this is not a limiting factor in high-contrast applications such as MRA. Results from phantom and volunteer studies are presented demonstrating isotropic resolution, broad coverage with an isotropic field of view (FOV), minimal projection reconstruction artifacts, and temporal information. In one application, a single breath-hold exam covering the entire pulmonary vasculature generates high-resolution, isotropic imaging volumes depicting the bolus passage.  相似文献   

17.

Purpose:

To develop and evaluate a two‐dimensional (2D) fast spin echo (FSE) pulse sequence for enhancing temporal resolution and reducing tissue heating for in vivo proton electron double resonance imaging (PEDRI) of mice.

Materials and Methods:

A four‐compartment phantom containing 2 mM TEMPONE was imaged at 20.1 mT using 2D FSE‐PEDRI and regular gradient echo (GRE)‐PEDRI pulse sequences. Control mice were infused with TEMPONE over ~1 min followed by time‐course imaging using the 2D FSE‐PEDRI sequence at intervals of 10–30 s between image acquisitions. The average signal intensity from the time‐course images was analyzed using a first‐order kinetics model.

Results:

Phantom experiments demonstrated that EPR power deposition can be greatly reduced using the FSE‐PEDRI pulse sequence compared with the conventional gradient echo pulse sequence. High temporal resolution was achieved at ~4 s per image acquisition using the FSE‐PEDRI sequence with a good image SNR in the range of 233–266 in the phantom study. The TEMPONE half‐life measured in vivo was ~72 s.

Conclusion:

Thus, the FSE‐PEDRI pulse sequence enables fast in vivo functional imaging of free radical probes in small animals greatly reducing EPR irradiation time with decreased power deposition and provides increased temporal resolution. J. Magn. Reson. Imaging 2012;471‐475. © 2011 Wiley Periodicals, Inc.  相似文献   

18.

Purpose

To quantify measurement uncertainties of fractional anisotropy, mean diffusivity, and principal eigenvector orientations in human diffusion tensor imaging (DTI) data acquired with common clinical protocols using a wild bootstrap analysis, and to establish optimal scan protocols for clinical DTI acquisitions.

Materials and Methods

A group of 13 healthy volunteers were scanned using three commonly used DTI protocols with similar total scan times. Two important parameters—the number of unique diffusion gradient directions (NUDG) and the ratio of the total number of diffusion‐weighted (DW) images to the total number of non‐DW images (DTIR)—were analyzed in order to investigate their combined effects on uncertainties of DTI‐derived parameters, using results from both the Monte Carlo simulation and the wild bootstrap analysis of uncertainties in human DTI data.

Results

The wild bootstrap analysis showed that uncertainties in human DTI data are significantly affected by both NUDG and DTIR in many brain regions. These results agree with previous predictions based on error‐propagations as well as results from simulations.

Conclusion

Our results demonstrate that within a clinically feasible DTI scan time of about 10 minutes, a protocol with number of diffusion gradient directions close to 30 provides nearly optimal measurement results when combined with a ratio of the total number of DW images over non‐DW images equal to six. Wild bootstrap can serve as a useful tool to quantify the measurement uncertainty from human DTI data. J. Magn. Reson. Imaging 2009;29:422–435. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.  相似文献   

20.

Purpose

To evaluate a new dynamic contrast‐enhanced (DCE) imaging technique called multiecho time‐resolved acquisition (META) for abdominal/pelvic imaging. META combines an elliptical centric time‐resolved three‐dimensional (3D) spoiled gradient‐recalled echo (SPGR) imaging scheme with a Dixon‐based fat‐water separation algorithm to generate high spatiotemporal resolution volumes.

Materials and Methods

Twenty‐three patients referred for hepatic metastases or renal masses were imaged using the new META sequence and a conventional fat‐suppressed 3D SPGR sequence on a 3T scanner. In 12 patients, equilibrium‐phase 3D SPGR images acquired immediately after META were used for comparing the degree and homogeneity of fat suppression, artifacts, and overall image quality. In the remaining 11 of 23 patients, DCE 3D SPGR images acquired in a previous or subsequent examination were used for comparing the efficiency of arterial phase capture in addition to the qualitative analysis for the degree and homogeneity of fat suppression, artifacts, and overall image quality.

Results

META images were determined to be significantly better than conventional 3D SPGR images for degree and uniformity of fat suppression and ability to visualize the arterial phase. There were no significant differences in artifact levels or overall image quality.

Conclusion

META is a promising high spatiotemporal resolution imaging sequence for capturing the fast dynamics of hyperenhancing hepatic lesions and provides robust fat suppression even at 3T. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号