首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background:

Histopathological studies and animal models suggest that hippocampal subfields may be differently affected by aging, Alzheimer's disease (AD), and other diseases. High‐resolution images at 4 Tesla depict details of the internal structure of the hippocampus allowing for in vivo volumetry of different subfields. The aims of this study were as follows: (1) to determine patterns of volume loss in hippocampal subfields in normal aging, AD, and amnestic mild cognitive impairment (MCI). (2) To determine if measurements of hippocampal subfields provide advantages over total hippocampal volume for differentiation between groups.

Methods:

Ninety‐one subjects (53 controls (mean age: 69.3 ± 7.3), 20 MCI (mean age: 73.6 ± 7.1), and 18 AD (mean age: 69.1 ± 9.5) were studied with a high‐resolution T2 weighted imaging sequence aimed at the hippocampus. Entorhinal cortex (ERC), subiculum, CA1, CA1‐CA2 transition zone (CA1‐2), CA3 & dentate gyrus (CA3&DG) were manually marked in the anterior third of the hippocampal body. Hippocampal volume was obtained from the Freesurfer and manually edited.

Results:

Compared to controls, AD had smaller volumes of ERC, subiculum, CA1, CA1‐2, and total hippocampal volumes. MCI had smaller CA1‐2 volumes. Discriminant analysis and power analysis showed that CA1‐2 was superior to total hippocampal volume for distinction between controls and MCI.

Conclusion:

The patterns of subfield atrophy in AD and MCI were consistent with patterns of neuronal cell loss/reduced synaptic density described by histopathology. These preliminary findings suggest that hippocampal subfield volumetry might be a better measure for diagnosis of early AD and for detection of other disease effects than measurement of total hippocampus. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.
  相似文献   

3.
BACKGROUND: Alzheimer disease (AD) is the most common form of dementia worldwide. Mild cognitive impairment (MCI) is the recent terminology for patients with cognitive deficiencies in the absence of functional decline. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to dementia at a rate of 10% to 15% per year. Patients with AD and MCI experience progressive brain atrophy. OBJECTIVE: To analyze the structural magnetic resonance imaging data for 24 patients with amnestic MCI and 25 patients with mild AD using an advanced 3-dimensional cortical mapping technique. DESIGN: Cross-sectional cohort design. Patients/ METHODS: We analyzed the structural magnetic resonance imaging data of 24 amnestic MCI (mean MMSE, 28.1; SD, 1.7) and 25 mild AD patients (all MMSE scores, >18; mean MMSE, 23.7; SD, 2.9) using an advanced 3-dimensional cortical mapping technique. RESULTS: We observed significantly greater cortical atrophy in patients with mild AD. The entorhinal cortex, right more than left lateral temporal cortex, right parietal cortex, and bilateral precuneus showed 15% more atrophy and the remainder of the cortex primarily exhibited 10% to 15% more atrophy in patients with mild AD than in patients with amnestic MCI. CONCLUSION: There are striking cortical differences between mild AD and the immediately preceding cognitive state of amnestic MCI. Cortical areas affected earlier in the disease process are more severely affected than those that are affected late. Our method may prove to be a reliable in vivo disease-tracking technique that can also be used for evaluating disease-modifying therapies in the future.  相似文献   

4.
Basic mobility, balance, gait and dual-task performance were characterised in 140 consecutive subjects referred to a multidisciplinary university hospital in a geriatric setting for cognitive symptoms and possible dementia. After completion of an extensive diagnostic evaluation, subjects were classified into four diagnostic categories: no cognitive impairment, mild cognitive impairment, Alzheimer's disease (AD) and other dementia. Mean age was 57 +/- 9.2, 60 +/- 7.3, 68 +/- 9.9 and 64 +/- 10.5, respectively. Data on motor function, medication use and presence of white matter changes were evaluated and compared between the diagnostic groups. Motor function seems to be affected in very mild AD but not in mild cognitive impairment, as assessed with performance-based tests. AD subjects were slowed and had difficulties in dual-task performance requiring concurrently performing a cognitive task while walking.  相似文献   

5.
This study aimed at elucidating whether (a) brain areas associated with motor function show a change in functional magnetic resonance imaging (fMRI) signal in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD), (b) such change is linear over the course of the disease, and (c) fMRI changes in aMCI and AD are driven by hippocampal atrophy, or, conversely, reflect a nonspecific neuronal network rewiring generically associated to brain tissue damage. FMRI during the performance of a simple motor task with the dominant right‐hand, and structural MRI (i.e., dual‐echo, 3D T1‐weighted, and diffusion tensor [DT] MRI sequences) were acquired from 10 AD patients, 15 aMCI patients, and 11 healthy controls. During the simple‐motor task, aMCI patients had decreased recruitment of the left (L) inferior frontal gyrus compared to controls, while they showed increased recruitment of L postcentral gyrus and head of L caudate nucleus, and decreased activation of the cingulum compared with AD patients. Effective connectivity was altered between primary sensorimotor cortices (SMC) in aMCI patients vs. controls, and between L SMC, head of L caudate nucleus, and cingulum in AD vs. aMCI patients. Altered fMRI activations and connections were correlated with the hippocampal atrophy in aMCI and with the overall GM microstructural damage in AD. Motor‐associated functional cortical changes in aMCI and AD mirror fMRI changes of the cognitive network, suggesting the occurrence of a widespread brain rewiring with increasing structural damage rather than a specific response of cognitive network. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a T2‐weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi‐atlas label fusion and learning‐based error correction. In contrast to earlier work on automatic subfield segmentation in T2‐weighted MRI [Yushkevich et al., 2010], our approach requires no manual initialization, labels hippocampal subfields over a greater anterior‐posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross‐validation in 29 subjects from a study of amnestic mild cognitive impairment (aMCI) and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797), and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. Hum Brain Mapp, 36:258–287, 2015. © 2014 Wiley Periodicals, Inc .  相似文献   

7.
OBJECTIVE: The present study evaluates the potential relationship between hippocampal atrophy and EEG brain rhythmicity, as assessed by relative band power and alpha frequency indices in a cohort of subjects with mild cognitive impairment (MCI). METHODS: Eighty-eight subjects falling within the definition of MCI patients were enrolled. All subjects underwent EEG recording and magnetic resonance imaging (MRI). Volumetric morphometry estimates of the hippocampal region were computed. Individual EEG frequencies were indexed by the theta/alpha transition frequency (TF) and the individual alpha frequency (IAF). The relative power was separately computed for delta, theta, alpha1, alpha2 and alpha3 frequency bands. The MCI cohort was classified into four subgroups, based on the mean and standard deviations of the hippocampal volume of a normal elderly control sample. RESULTS: The group with moderate hippocampal atrophy showed the highest increase in the theta power on frontal regions, and of the alpha2 and alpha3 powers on frontal and temporo-parietal areas. The analysis of the individual alpha frequency markers showed that the values for the alpha markers were highest in the group with the smallest hippocampal volume, whereas in the group with moderate hippocampal atrophy, these values were lower than in the group with severe atrophy. CONCLUSIONS: The relationship between hippocampal atrophy and EEG activity changes in MCI subjects is not proportional to the hippocampal atrophy. Therefore, EEG markers could represent a new tool for differential diagnosis. SIGNIFICANCE: The hippocampal atrophy induces different brain synchronization/desynchronization patterns. EEG changes model the brain activity induced by a discrete change of the hippocampal volume. The changes in the EEG rhythmicity differ greatly from those in MCI patients with subcortical vascular damage.  相似文献   

8.
In this study, we analyzed differences in cortical thickness (CTH) between healthy controls (HC), subjects with stable mild cognitive impairment (S-MCI), progressive MCI (P-MCI), and Alzheimer's disease (AD), and assessed correlations between CHT and clinical disease severity, education, and apolipoprotein E4 (APOE) genotype. Automated CTH analysis was applied to baseline high-resolution structural MR images of 145 subjects with a maximum followup time of 7.4 years pooled from population-based study databases held in the University of Kuopio. Statistical differences in CTH between study groups and significant correlations between CTH and clinical and demographic factors were assessed and displayed on a cortical surface model. Compared to HC group (n = 26), the AD (n = 21) group displayed significantly reduced CTH in several areas of frontal and temporal cortices of the right hemisphere. Higher education and lower MMSE scores were correlated with reduced CTH in the AD group, whereas no significant correlation was found between CDR-SB scores or APOE genotype and CTH. The P-MCI group demonstrated significantly reduced CTH compared to S-MCI in frontal, temporal and parietal cortices even after statistically adjusting for all confounding variables. Ultimately, analysis of CTH can be used to detect cortical thinning in subjects with progressive MCI several years before conversion and clinical diagnosis of AD dementia, irrespective of their cognitive performance, education level, or APOE genotype.  相似文献   

9.
Background:  Grey matter (GM) atrophy has been demonstrated in amnestic mild cognitive impairment (aMCI) and mild Alzheimer's disease (AD), but the role of white matter (WM) atrophy has not been well characterized. Despite these findings, the validity of aMCI concept as prodromal AD has been questioned.
Methods:  We performed brain MRI with voxel-based morphometry analysis in 48 subjects, aiming to evaluate the patterns of GM and WM atrophy amongst mild AD, aMCI and age-matched normal controls.
Results:  Amnestic mild cognitive impairment GM atrophy was similarly distributed but less intense than that of mild AD group, mainly in thalami and parahippocampal gyri. There were no difference between aMCI and controls concerning WM atrophy. In the mild AD group, we found WM atrophy in periventricular areas, corpus callosum and WM adjacent to associative cortices.
Discussion:  We demonstrated that aMCI might be considered a valid concept to detect very early AD pathology, since we found a close proximity in the pattern of atrophy. Also, we showed the involvement of WM in mild AD, but not in aMCI, suggesting a combination of Wallerian degeneration and microvascular ischaemic disease as a plausible additional pathological mechanism for the discrimination between MCI and AD.  相似文献   

10.
Cortical gray matter volume and resting state cortical electroencephalographic rhythms are typically abnormal in subjects with amnesic mild cognitive impairment (MCI) and Alzheimer's disease (AD). Here we tested the hypothesis that in amnesic MCI and AD subjects, abnormalities of EEG rhythms are a functional reflection of cortical atrophy across the disease. Eyes‐closed resting state EEG data were recorded in 57 healthy elderly (Nold), 102 amnesic MCI, and 108 AD patients. Cortical gray matter volume was indexed by magnetic resonance imaging recorded in the MCI and AD subjects according to Alzheimer's disease neuroimaging initiative project ( http://www.adni‐info.org/ ). EEG rhythms of interest were delta (2–4 Hz), theta (4–8 Hz), alpha1 (8–10.5 Hz), alpha2 (10.5–13 Hz), beta1 (13–20 Hz), beta2 (20–30 Hz), and gamma (30–40 Hz). These rhythms were indexed by LORETA. Compared with the Nold, the MCI showed a decrease in amplitude of alpha 1 sources. With respect to the Nold and MCI, the AD showed an amplitude increase of delta sources, along with a strong amplitude reduction of alpha 1 sources. In the MCI and AD subjects as a whole group, the lower the cortical gray matter volume, the higher the delta sources, the lower the alpha 1 sources. The better the score to cognitive tests the higher the gray matter volume, the lower the pathological delta sources, and the higher the alpha sources. These results suggest that in amnesic MCI and AD subjects, abnormalities of resting state cortical EEG rhythms are not epiphenomena but are strictly related to neurodegeneration (atrophy of cortical gray matter) and cognition. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
BACKGROUND: Mild cognitive impairment (MCI) represents a transitional state between normal aging and dementia. However, there is inconsistent opinion as to the validity of subjective memory complaints as a criterion for diagnosis. OBJECTIVE: This study aimed to examine the potential significance of applying a short memory questionnaire in the assessment of Chinese subjects with MCI and early dementia. METHODS: Three hundred and six ambulatory Chinese subjects were recruited. Each participant completed a short memory questionnaire. They were also assessed with the Chinese versions of the mini-mental state examination (CMMSE), Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog), category verbal fluency test (CVFT) and span tests. Severity of cognitive impairment was evaluated using the Clinical Dementia Rating (CDR); subjects with CDR 0.5 were further classified into MCI not demented (MCIND) and MCI possible incipient dementia (MCIID) depending on the subscale scores of CDR. RESULTS: An increasing frequency of memory complaints with increasing CDR was observed (Kruskal Wallis test, chi square = 21.29, df 3, p < 0.001). With a cutoff of 3 or more memory complaints, the memory questionnaire demonstrated a sensitivity of 65.3% and 70.4% in identifying subjects with incipient and early dementia respectively. Significant associations between memory complaints and most cognitive test performance were found (Spearman's correlations, p < 0.01). Logistic regression analysis revealed that educational level, the memory questionnaire, ADAS-Cog total and delayed recall scores were significant predictors of MCIID status. CONCLUSIONS: The findings suggested that a short memory questionnaire is useful in the screening of MCI, particularly in subjects who already present with subtle functioning disturbances. Subjective memory complaints were significant correlated with objective performance of memory functions, reflecting the usefulness of memory complaints in the assessment of MCI.  相似文献   

12.
Objective Aim of this study was to find cerebral perfusion correlates of conversion to dementia in patients with amnestic MCI. Methods 17 healthy subjects (age = 69 ± 3, 9 females), and 23 amnestic MCI patients (age = 70 ± 6, 10 females) underwent brain MR scan and 99mTc ECD SPECT. Conversion to AD was ascertained on average 19 ± 10 months after baseline: 9 had converted (age = 69 ± 3, 4 females), and 14 had not (age = 71 ± 8, 6 females). We processed SPECT images with SPM2 following an optimized protocol and performed a voxel-based statistical analysis comparing amnestic MCI patients converted to AD and non-converted to dementia vs controls. We assessed the effect of gray matter atrophy on the above results with SPM2 using an optimized Voxel-Based Morphometry (VBM) protocol.We compared significant hypoperfusion with significant atrophy on a voxel-byvoxel basis. Results In comparison with normal controls, amnestic MCI patients who converted to AD showed hypoperfusion in the right parahippocampal gyrus and left inferior temporal and fusiform gyri,whereas those who did not convert showed hypoperfusion in the retrosplenial cortex, precuneus and occipital gyri, mainly on the left side.We found no overlap between significant atrophy and significant hypoperfusion regions. Conclusions Parahippocampal and inferior temporal hypoperfusion in amnestic MCI patients appears as a correlate of conversion to AD; hypoperfusion in the retrosplenial cortex is involved in memory impairment but does not seem the key prognostic indicator of conversion to dementia.  相似文献   

13.
Background Amnestic Mild Cognitive Impairment (MCI) is a condition with an increased risk for developing Alzheimer's disease (AD). Presently, gender differences are neglected in the assessment of MCI and AD. Methods We examined verbal and visuospatial episodic memory in 143 subjects diagnosed as healthy controls (HC; N = 48, Mini-Mental State Examination (MMSE) 29.2 ± 1.0 (mean ± standard deviation)), MCI (N = 43,MMSE 28.5 ± 1.4), and AD (N = 49, MMSE 25.1 ± 2.2). Findings Female HC and MCI subjects performed better on verbal episodic memory tasks than males. In contrast, visuospatial episodic memory was better in male than female AD patients. Conclusions We interpret the results in light of a genderspecific cognitive reserve and conclude that the gender-specificity of neuropsychological performance needs to be accounted for in clinical diagnosis of Alzheimer’s disease.  相似文献   

14.
The aim of this study was to investigate memory in patients with mild cognitive impairment (MCI) and mild Alzheimer's disease (AD). Ten patients with MCI, 11 with AD and a group of age and education matched healthy control participants were assessed on a comprehensive battery of semantic memory tests, including traditional semantic memory measures and a non-verbal test of knowledge of object use. The MCI group was impaired on tests of category fluency and all three conditions of an object knowledge test (matching to recipient, function and action), plus a difficult object-naming test. The mild AD group showed additional impairments on traditional measures of semantic memory, including naming high frequency items, comprehension and semantic association. Together these findings suggest that semantic memory impairments occur early in the course of AD, more specifically in patients with "amnesic" MCI, and provide further evidence that impaired category fluency reflects semantic breakdown.  相似文献   

15.
16.
17.
The objective of this study was to investigate the association between structural cerebral changes and neuropsychological deficits in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Sixty patients with MCI, 34 patients with mild to moderate AD, and 32 healthy controls underwent both extensive neuropsychological assessment (CERAD test battery) and high-resolution structural magnetic resonance imaging. We used optimized voxel based morphometry to investigate (i) differences in gray matter density between the three aforementioned groups and (ii) the putative relations of CERAD test performance with atrophic brain changes. When compared to the healthy controls, the AD patients and, to a lesser extent, patients with MCI showed significant density losses predominantly in the medial temporal lobe. Deficits in verbal fluency and word finding were significantly correlated with left fronto-temporal and left temporal (including hippocampal) changes, respectively. Decreased scores in immediate and delayed recall and in delayed recognition were associated with several cortical and subcortical sites including the parahippocampal and posterior cinguli gyri, the right thalamus, and the right hippocampus, whereas deficits in constructional praxis and constructional praxis recall referred to sites in the left thalamus and cerebellum, and the temporal cortices (bilaterally), respectively. Our findings lend further support for medial temporal lobe degeneration in MCI and AD and demonstrate that cognitive deficits as assessed on the CERAD do not simply refer to specific changes in discrete cerebral sites but rather reflect morphological alterations in widespread networks.  相似文献   

18.
19.
Neuropsychological deficits, such as poor episodic memory, are consistent features of mild cognitive impairment and also that of early stage of dementia. The aim of the present study was to detect cognitive dysfunction among patients with Alzheimer's disease or with mild cognitive impairment (MCI), which refers to a transitional state between the cognition of normal aeging and mild dementia regarded as a high-risk condition for the development of clinically probable Alzheimer's disease (AD). Computerized tests of memory, attention and executive functions were studied in groups of AD subjects (n=15) and MCI subjects (n=25). On all measures, the performance of the AD group was significantly weaker compared to healthy individuals or to the MCI group. The performance of both the AD and MCI patients in the Paired Associate Learning test was significantly impaired, which may suggest that MCI patients are already in the early stages of the disease.  相似文献   

20.
BACKGROUND: The hippocampal formation is damaged early in Alzheimer's disease (AD). An association between temporal lobe volume and cognitive function has been shown in several studies. Increased limbic-hypothalamic-pituitary-adrenal (LHPA) axis function has been suggested to be related to hippocampal atrophy and cognitive impairment. Our hypothesis was that there is a clear link between hippocampal volume -- notably of the CA1 region -- memory (episodic and visuospatial) and decreased feedback sensitivity in the LHPA axis in AD. METHODS: Sixteen medication-free outpatients with mild to moderate AD were included. Hippocampal volume was measured with magnetic resonance imaging. Dexamethasone suppression tests were performed using .5 mg and .25 mg dexamethasone. Three different components in the neuropsychological battery -- Rey 15 item memory test, Alzheimer's Disease Assessment Scale (ADAS) word recall and spatial span from Wechsler Adult Intelligence Scale - Revised neuropsychological instrument (WAIS-R NI) -- were found to represent episodic and visuospatial memory. RESULTS: Low hippocampal CA1 volume and high post-dexamethasone cortisol levels in combination were significantly associated with Rey 15 item memory and spatial span test outcomes. No association was found between LHPA feedback and hippocampal volume. CONCLUSIONS: Low hippocampal volume and a disturbed negative feedback in the LHPA axis link to specific cognitive impairments in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号