首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 20% of gastric and gastroesophageal junction cancers in the United States and European Union. Lapatinib, a dual HER2 and epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated clinical efficacy in HER2‐amplified cancer cells. However, several studies have shown that some cytokines can mediate resistance to lapatinib using their receptor tyrosine kinase (RTK) pathways. One of these, Heregulin1 (HRG1), can confer resistance to lapatinib‐mediated growth inhibition in HER2‐amplified breast cancer cells, but the underlying mechanisms remain unknown. Here, we investigated whether and how HRG1 causes resistance to lapatinib in gastric and gastroesophageal junction cancers in vitro. HER2‐amplified gastric and gastroesophageal junction cancer cell lines were highly sensitive to lapatinib. Exposure to HRG1 together with lapatinib rescued cells from lapatinib‐induced cell cycle arrest and apoptosis. Downregulation of HER3 with siRNA in the presence of HRG1 re‐sensitized HER2‐amplified cancer cells to lapatinib. Immunoblotting analysis indicated that HRG1 re‐activated HER3 and AKT in the presence of lapatinib, which persisted for at least 72 h. Activation of HER3 and downstream AKT was mediated by residual activity of HER2. HRG1‐mediated resistance could be reduced by PI3K/mTOR inhibitors or by complete inhibition of HER2. Thus, we conclude that HRG1 mediates resistance to lapatinib through HER3 and AKT activation, and that this depends on residual HER2 activity. Lapatinib in combination with anti‐PI3K therapies or more potent HER2 inhibitors would improve the efficacy and avoid the emergence of resistant cells.  相似文献   

2.

Background:

Acquired drug resistance to irinotecan is one of the significant obstacles in the treatment of advanced gastric cancer. This study was performed to clarify the effect of epidermal growth factor receptor (EGFR) inhibitors in combination with SN38, an active metabolite of irinotecan, on the proliferation of irinotecan-refractory gastric cancer.

Methods:

Two irinotecan-resistant gastric cancer cell lines, OCUM-2M/SN38 and OCUM-8/SN38 were, respectively, established by stepwise exposure to SN38 from the parent gastric cancer cell lines OCUM-2M and OCUM-8. The combination effects of two EGFR inhibitors, gefitinib and lapatinib, with SN38 on proliferation, apoptosis, and cell cycle on gastric cancer cells were examined.

Results:

Gefitinib or lapatinib showed synergistic anti-tumour effects against OCUM-2M/SN38 and OCUM-8/SN38 cells when used in combination with SN38, but not against OCUM-2M or OCUM-8 cells. SN38 increased the expression of EGFR and HER2 in OCUM-2M/SN38 and OCUM-8/SN38 cells. The combination of an EGFR inhibitor and SN38 significantly increased the levels of apoptosis-related molecules, caspase-6, p53, and DAPK-2, and resulted in the induction of apoptosis of irinotecan-resistant cells. The EGFR inhibitors increased the S-phase and decreased the UGT1A1 and ABCG expression in irinotecan-resistant cells. The SN38 plus Lapatinib group more effectively suppressed in vivo tumour growth by OCUM-2M/SN38 cells than either alone group.

Conclusion:

The combination treatment with an EGFR inhibitor and irinotecan might produce synergistic anti-tumour effects for irinotecan-refractory gastric cancer cells. The regulation of SN38 metabolism-related genes and cell cycle by EGFR inhibitors might be responsible for the synergism.  相似文献   

3.
Kim JW  Kim HP  Im SA  Kang S  Hur HS  Yoon YK  Oh DY  Kim JH  Lee DS  Kim TY  Bang YJ 《Cancer letters》2008,272(2):296-306
HER2 overexpression is observed in 5-25% of gastric cancers. Lapatinib is a dual inhibitor of the epidermal growth factor receptor and HER2 tyrosine kinase. We examined the antitumor effect of lapatinib in gastric cancer cell lines. Lapatinib induced selective and potent growth inhibition in two HER2-amplified gastric cancer cell lines (SNU-216 and NCI-N87). Lapatinib inhibited the phosphorylation of HER2, EGFR and downstream signaling proteins, resulting in G1 arrest in both cell lines with down-regulation of cMyc and induction of p27kip1. Lapatinib also induced apoptosis in NCI-N87 which has high HER2 amplification ratio. Lapatinib combined with 5-fluorouracil, cisplatin, oxaliplatin or paclitaxel showed an additive or synergistic effect. These results provide a rationale for the future clinical trials of lapatinib combined with cytotoxic drugs in the treatment of HER2-positive gastric cancer.  相似文献   

4.
Lapatinib is a small molecule inhibitor of both HER2 and the epidermal growth factor receptor (EGFR). We investigated the effect of treatment with lapatinib alone or in combination with a fluoropyrimidine derivative S‐1 against pancreatic cancer. The HER2/EGFR expression in each of the four pancreatic cancer cell lines MiaPaca‐2, PANC‐1, Capan‐1 and Capan‐2 was measured by flow cytometry. The anti‐tumor effects of lapatinib (30 mg/kg) and/or S‐1 (10 mg/kg) were evaluated using female BALB/c nude mice xenografts generated using these four cell lines. Synergy between lapatinib and S‐1 was examined by median effect analysis in vitro. Resected pancreatic cancer tissues from 137 patients were immunohistochemically stained with anti‐human HER2 and EGFR antibodies. The administration of lapatinib as a single agent substantially suppressed tumor growth in vivo of all pancreatic cancer cell lines examined. A strong correlation was observed between HER2 expression and the anti‐tumor effect of lapatinib in vivo. Lapatinib synergized with S‐1 to inhibit the tumor growth of MiaPaca‐2 and PANC‐1 xenografts. When used as a single agent in vitro, lapatinib barely inhibit the cell growth of any cell line. However, lapatinib synergized with the anti‐tumor activity of the S‐1 components 5‐fluorouracil and 5‐chloro‐2,4‐dihydrogenase against all cell lines. Immunohistochemical staining demonstrated that 70% of the pancreatic cancers overexpressed HER2 and/or EGFR. Both lapatinib monotherapy and combined treatment with S‐1 may be promising treatments for patients with pancreatic cancers; the majority these cancers express lapatinib target molecules. (Cancer Sci 2009; 00: 000–000)  相似文献   

5.

Background

Trastuzumab has been recently approved for clinical use to treat HER2-expressing advanced gastric cancer, and anti-HER2-targeting therapy has become a promising option for gastric cancer. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and HER2. The aim of the present study was to explore the utility of lapatinib for gastric cancer, with a particular focus on trastuzumab-mediated antibody-dependent cellular cytotoxicity (ADCC).

Methods

Nine gastric cancer cell lines were evaluated for the effects of lapatinib on the cell-surface accumulation of HER2 and analyzed for their additional effects on trastuzumab-mediated ADCC. Also, HER2 signaling with Western blot, proliferative function with the MTT assay, and apoptosis-inducing activity with 7ADD/Annexin-V were investigated when a panel of gastric cancer cell lines was treated with lapatinib.

Results

Lapatinib inhibited HER2 signaling and cell proliferation in the panel of gastric cancer cell lines. Lapatinib also induced the accumulation of HER2 on the cell surface, resulting in the enhancement of trastuzumab-mediated ADCC of gastric cancer.

Conclusions

Lapatinib exhibits inhibitory activity in gastric cancer cells, and the combination of lapatinib with trastuzumab may be a promising treatment strategy for gastric cancer patients.  相似文献   

6.
Lapatinib and bortezomib are highly active against breast cancer cells. Breast cancer patients who initially respond to lapatinib may eventually manifest acquired resistance to this treatment. Thus, the identification of novel agents that may prevent or delay the development of acquired resistance to lapatinib is critical. In the current study, we show that the combination of lapatinib and bortezomib results in a synergistic growth inhibition in human epidermal receptor 2 (HER2)‐overexpressing breast cancer cells and that the combination enhances apoptosis of SK‐BR‐3 cells. Importantly, we found that the combination of lapatinib plus bortezomib more effectively blocked activation of the HER2 pathway in SK‐BR‐3 cells, compared with monotherapy. In addition, we established a model of acquired resistance to lapatinib by chronically challenging SK‐BR‐3 breast cancer cells with increasing concentrations of lapatinib. Here, we showed that bortezomib notably induced apoptosis of lapatinib‐resistant SK‐BR‐3 pools and further inhibited HER2 signaling in the resistant cells. Taken together, the current data indicate a synergistic interaction between lapatinib and bortezomib in HER2‐overexpressing breast cancer cells and provide the rationale for the clinical evaluation of these two noncross‐resistant targeted therapies. The combination of lapatinib and bortezomib may be a potentially novel approach to prevent or delay the onset of acquired resistance to lapatinib in HER2‐overxpressing/estrogen receptor (ER)‐negative breast cancers. (Cancer Sci 2010); 00: 000–000  相似文献   

7.
Targeting the human epidermal growth factor receptor type 2 (HER2) in breast cancer patients whose tumors overexpress HER2 has been clearly demonstrated to be effective in clinical trials with the monoclonal antibody trastuzumab. Not all patients, however, respond to trastuzumab therapy. Lapatinib is an oral receptor tyrosine kinase inhibitor that targets HER2 and the EGFR. Preclinical data reveal that lapatinib has activity in trastuzumab-resistant cell lines as well as synergistic activity with trastuzumab. In a pivotal phase III trial, a combination of lapatinib and capecitabine significantly decreased the risk of disease progression relative to capecitabine alone in women with HER2-positive advanced or metastatic breast cancer previously treated with anthracyclines, taxanes, and trastuzumab. Other trials are evaluating lapatinib in inflammatory breast cancer--for which encouraging data have been reported--in combination with hormone therapy, in combination with trastuzumab, and as an adjunct to adjuvant therapy for early-stage disease. Notably, lapatinib has not been associated with serious or symptomatic cardiotoxicity in clinical trials. It can cross the blood-brain barrier and might therefore have a role in preventing central-nervous-system progression. These features make lapatinib an ideal agent to evaluate more fully in HER2-positive metastatic and early-stage breast cancer.  相似文献   

8.
Lapatinib, an oral, small‐molecule, reversible inhibitor of both EGFR and HER2, is highly active in HER2 positive breast cancer as a single agent and in combination with other therapeutics. However, resistance against lapatinib is an unresolved problem in clinical oncology. Recently, interest in the use of natural compounds to prevent or treat cancers has gained increasing interest because of presumed low toxicity. Quercetin‐3‐methyl ether, a naturally occurring compound present in various plants, has potent anticancer activity. Here, we found that quercetin‐3‐methyl ether caused a significant growth inhibition of lapatinib‐sensitive and ‐resistant breast cancer cells. Western blot data showed that quercetin‐3‐methyl ether had no effect on Akt or ERKs signaling in resistant cells. However, quercetin‐3‐methyl ether caused a pronounced G2/M block mainly through the Chk1‐Cdc25c‐cyclin B1/Cdk1 pathway in lapatinib‐sensitive and ‐resistant cells. In contrast, lapatinib produced an accumulation of cells in the G1 phase mediated through cyclin D1, but only in lapatinib‐sensitive cells. Moreover, quercetin‐3‐methyl ether induced significant apoptosis, accompanied with increased levels of cleaved caspase 3, caspase 7, and poly(ADP‐ribose) polymerase (PARP) in both cell lines. Overall, these results suggested that quercetin‐3‐methyl ether might be a novel and promising therapeutic agent in lapatinib‐sensitive or ‐resistant breast cancer patients. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Lapatinib is a potent reversible and selective inhibitor of the tyrosine kinase domains of epidermal growth factor receptor and human epidermal growth factor receptor (HER)-2 that exerts its action by competitive binding to the intracellular ATP-binding site of the receptor. It is registered for the treatment of advanced or metastatic HER-2+ breast cancer in combination with capecitabine and for hormone receptor-positive breast cancer in combination with an aromatase inhibitor. Lapatinib administered orally once daily is moderately to well tolerated, with rash and gastrointestinal adverse events as the main toxicities. In studies on the efficacy of lapatinib, direct comparisons between lapatinib and trastuzumab are lacking. Results of ongoing randomized phase III studies with lapatinib or trastuzumab in combination with taxanes as first-line agents for metastatic breast cancer as well as in the neoadjuvant and adjuvant settings are awaited.  相似文献   

10.

BACKGROUND:

It has been demonstrated that NK012, a novel 7‐ethyl‐10‐hydroxycamptothecin (SN‐38)‐incorporating polymeric micelle, exerts significantly more potent antitumor activity against various human tumor xenografts than irinotecan (CPT‐11) (a water‐soluble prodrug of SN‐38). Combination therapy of anticancer agents with bevacizumab (Bv), an anti‐vascualr endothelial growth factor humanized monoclonal antibody, has more potently inhibited tumor growth than either agent alone. In the current study, the authors examined the antitumor effect of NK012 in combination with Bv against human lung cancer.

METHODS:

Nude mice bearing lung adenocarcinoma (PC‐14 or A549 xenografts) were administered NK012 at SN‐38‐equivalent doses of 5 mg/kg or 30 mg/kg in combination with or without Bv at 5 mg/kg. CPT‐11 at a dose of 66.7 mg/kg was administered with or without Bv at a dose of 5 mg/kg in the same experimental model. To evaluate interaction with Bv, the pharmacokinetics and microvessel density in tumors that were treated on each regimen were analyzed.

RESULT:

In vitro, the growth‐inhibitory effect of NK012 was 50‐fold more potent than that of CPT‐11 and was almost equivalent to that of SN‐38. In vivo studies revealed that the combination of NK012 plus Bv had significantly greater antitumor activity against human lung cancer xenografts compared with NK012 alone (PC‐14, P = .0261; A549, P < .001). The pharmacokinetic profile of NK012 revealed that coadministration of Bv did not interfere with the accumulation of NK012.

CONCLUSIONS:

In this study, significant antitumor activity was noted with NK012 in combination with Bv against lung cancer cells. The current results warrant the clinical evaluation of NK012 in lung cancer. Cancer 2010. © 2010 American Cancer Society.  相似文献   

11.
In this study, we explore the therapeutic potential of lapatinib a selective inhibitor of both the EGFR and HER2 tyrosine kinases for the treatment of endometrial cancer. The effect of lapatinib on tumour cell growth and receptor activation was studied in a panel of human endometrial cancer cell lines. Candidate molecular markers predicting sensitivity were assessed by baseline gene expression profiling, ELISA, and western blot analyses. Multiple drug effect/combination index (CI) isobologram analysis was used to study the interactions between chemotherapeutic drugs and lapatinib. Concentration-dependent anti-proliferative effects of lapatinib were seen in all endometrial cancer cell lines tested, but varied significantly between individual cell lines (IC(50) range: 0.052-10.9 micromol). HER2 overexpression or increased expression of EGFR was significantly associated with in vitro sensitivity (P=0.024 or 0.011, respectively). Lapatinib exerts growth inhibition in a PTEN-independent manner. Sensitive cell lines also exhibited increased expression of EGFR ligands or HER3. In contrast, lapatinib-resistant cell lines exhibited high androgen receptor (AR) levels or epithelial-to-mesenchymal transition (post-EMT) features. In endometrial cancer cells, at a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for lapatinib plus carboplatin, paclitaxel, docetaxel, and doxorubicin. These observations provide a clear biologic rational to test lapatinib as a single agent or in combination with chemotherapy in endometrial cancer with HER2 overexpression. Expression of EGFR, its ligands, HER3, AR, and post-EMT markers warrant further evaluation to help define patients with HER2-nonoverexpressing endometrial cancer most likely to benefit from lapatinib.  相似文献   

12.
The combination therapy of CPT‐11, a prodrug of SN‐38, with S‐1, a dihydropyrimidine dehydrogenase inhibitory fluoropyrimidine, shows a high clinical response rate in non‐small cell lung cancer (NSCLC). However, this combination causes severe toxicities such as diarrhea. Here, we investigated the advantages of treatment with the SN‐38‐incorporating polymeric micelles NK012 over CPT‐11 in combination with S‐1 in mice bearing a NSCLC xenograft in terms of antitumor activity and toxic effects, particularly intestinal toxicity. In vitro cytotoxic effects were examined in human NSCLC cell lines (A549, PC‐9, PC‐14, EBC‐1 and H520). In vivo antitumor effects were evaluated in PC‐14‐ and EBC‐1‐bearing mice after NK012 or CPT‐11 administration on Days 0 and 7 and S‐1 administration on Days 0–13. Pathological changes in the small intestine were also investigated. The in vitro growth inhibitory effects of NK012 were 56.8‐ to 622‐fold more potent than those of CPT‐11. NK012/S‐1 treatment showed significantly higher antitumor activity both in PC‐14‐bearing (p = 0.0007) and EBC‐1‐bearing mice (p < 0.0001) than CPT‐11/S‐1 treatment. The deformity and decrease in the density of intestinal villi were more severe in CPT‐11/S‐1‐treated mice than in NK012/S‐1‐treated mice. NK012/S‐1 combination is a promising candidate regimen against NSCLC without inducing toxicities such as severe diarrhea and therefore warrants clinical evaluation.  相似文献   

13.
14.
A marked antitumour efficacy is currently obtained by oxaliplatin (LOHP)-fluorouracil (FU)-folinic acid (FA) combination and by CPT11-FU-FA combination. Logically, the triple association LOHP, CPT11 and FUFA will be soon tested in cancer patients. The aim of the present study was to compare two schedules combining SN38 (the active metabolite of CPT11, irinotecan) with FU-FA and LOHP. The two schedules differed by the SN38 position. The relative contribution of each drug in the resulting global cytotoxicity was evaluated. Two human colon cancer cell lines were used (WIDR and SW620 both p53 mutated). LOHP plus FA were applied for 2 h, just before a 48 h FU exposure. The SN38 sequence was applied for 24 h, starting either 48 h before LOHP-FA (schedule A), or just after LOHP-FA exposure (schedule B). Cytotoxicity was assessed by the 3-(4,5-demethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) test and drug interactions were analysed according to the Chou and Talalay method, based on the computation of a combination index (CI). The SN38 position significantly induces a shift from additivity-antagonism when SN38 was applied after LOHP, towards additivity-synergism when SN38 was applied first (P = 0.03). The relative contribution (RC) of each drug in the overall cytotoxicity of the triple combination was defined as the drug concentration giving 50% cell lethality (IC(50)) of the double association without that drug divided by the IC(50)of the triple association. Whatever the SN38 position, the larger contribution was made by LOHP (median RC = 2.4) and the smaller by SN38 (median RC = 1.1). In addition, the contribution of FUFA was improved when SN38 was applied first (median RC = 2.2) as compared to the opposite schedule (median RC = 1.2). Results were in agreement between the two explored cell lines. The present data should be taken into account when establishing the rationale of future trials combining CPT11, LOHP and FU-FA.  相似文献   

15.
In the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients. It remains a major clinical challenge to target the oncogenic pathways with drugs having low resistance. Multiple pathways are involved in the occurrence of lapatinib resistance, including the pathways of receptor tyrosine kinase, non-receptor tyrosine kinase, autophagy, apoptosis, microRNA, cancer stem cell, tumor metabolism, cell cycle, and heat shock protein. Moreover, understanding the relationship among these mechanisms may contribute to future tumor combination therapies. Therefore, it is of urgent necessity to elucidate the precise mechanisms of lapatinib resistance and improve the therapeutic use of this agent in clinic. The present review, in the hope of providing further scientific support for molecular targeted therapies in HER2+ cancers, discusses about the latest findings and new concepts on molecular mechanisms underlying lapatinib resistance.  相似文献   

16.
Molecularly targeted therapy has enabled outstanding advances in cancer treatment. Whereas various anti‐human epidermal growth factor receptor 2 (HER2) drugs have been developed, trastuzumab is still the only anti‐HER2 drug presently available for gastric cancer. In this study, we propose novel treatment options for patients with HER2‐positive gastric cancer. First, we determined the molecular profiles of 12 gastric cancer cell lines, and examined the antitumor effect of the pan‐HER inhibitors afatinib and neratinib in those cell lines. Additionally, we analyzed HER2 alteration in 123 primary gastric cancers resected from Japanese patients to clarify possible candidates with the potential to respond to these drugs. In the drug sensitivity analysis, both afatinib and neratinib produced an antitumor effect in most of the HER2‐amplified cell lines. However, some cells were not sensitive to the drugs. When the molecular profiles of the cells were compared based on the drug sensitivities, we found that cancer cells with lower mRNA expression levels of IGFBP7, a tumor suppressor gene that inhibits the activation of insulin‐like growth factor‐1 receptor (IGF‐1R), were less sensitive to pan‐HER inhibitors. A combination therapy consisting of pan‐HER inhibitors and an IGF‐1R inhibitor, picropodophyllin, showed a notable synergistic effect. Among 123 clinical samples, we found 19 cases of HER2 amplification and three cases of oncogenic mutations. In conclusion, afatinib and neratinib are promising therapeutic options for the treatment of HER2‐amplified gastric cancer. In addition to HER2 amplification, IGFBP7 might be a biomarker of sensitivity to these drugs, and IGF‐1R‐targeting therapy can overcome drug insensitiveness in HER2‐amplified gastric cancer.  相似文献   

17.
目的 探讨ZD1839与伊利替康的活性代谢产物7-乙基-10羟基-喜树碱(SN38)联合的最佳方案及其机制。方法 以药物联合效应测定方法,评价ZD1839和SN38不同给药顺序对人结肠癌细胞HT-29和LoVo的抑制作用;以Western blot和免疫共沉淀方法,分析ZD1839与化疗不同联合方案对各自靶蛋白及其下游分子表达的影响;以流式细胞仪测定不同联合方案对细胞周期的影响;以组蛋白相关的DNA碎片分析,比较不同方案对细胞凋亡指数的影响。结果 先SN38后ZD1839的序贯给药方案表现出明显的协同作用;反之,则表现为拈抗作用。SN38明显抑制细胞拓扑异构酶-1(Topo-1)活性;ZDl839不影响表皮生长因子受体(EGFR)的表达,但能抑制EGFR的磷酸化。与SN38单药相比,SN38联合ZDl839对Topo-1的抑制无增强;与单药ZD1839相比,联合方案对EGFR、MAPK磷酸化的抑制作用无增强,但ZD1839、SN38同时给药,和先SN38后ZD1839序贯给药对AKT的抑制有所增强。同时,联合方案对细胞周期分布的改变影响明显。ZD1839可明显维持化疗诱导的DNA损伤和细胞凋亡。结论 先SN38后ZD1839序贯给药可能是治疗结肠癌的最佳联合模式。  相似文献   

18.
Recent published reports on clinical trials of CPT‐11 indicate the effectiveness of this compound, a prodrug of SN‐38, against malignant glioma in combination with anti‐vascular endothelial growth factor antibody. Here, we determined if NK012, and SN‐38 incorporating micelle, can be an appropriate formulation for glioblastoma treatment compared with CPT‐11. In vitro cytotoxicity was evaluated against several glioma lines with NK012, CPT‐11, SN‐38, ACNU, CDDP and etoposide. For the in vivo test, a human glioma line (U87MG) transfected with the luciferase gene was inoculated into nude mice brain for pharmacokinetic analysis by fluorescence microscopy and high‐performance liquid chromatography after intravenous injection of NK012 and CPT‐11. In vivo antitumor activity of NK012 and CPT‐11 was evaluated by bioluminescence image and Kaplan‐Meier analyses. The growth‐inhibitory effects of NK012 were 34‐ to 444‐fold more potent than those of CPT‐11. Markedly enhanced and prolonged distribution of free SN‐38 in the xenografts was observed after NK012 injection compared with CPT‐11. NK012 showed significantly potent antitumor activity against an orthotopic glioblastoma multiforme xenograft and significantly longer survival rate than CPT‐11 (p = 0.0014). This implies that NK012 can pass through the blood brain tumor barrier effectively. NK012, which combines enhanced distribution with prolonged sustained release, may be ideal for glioma treatment. Currently, a phase I study of NK012 is almost complete in Japan and the US. The present translational study warrants the clinical phase II study of NK012 in patients with malignant glioma. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Lapatinib, a dual tyrosine kinase inhibitor of the epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2), is clinically active in patients with breast cancer positive for HER2 amplification. The mechanism of this anti-tumor action has remained unclear, however. We have now investigated the effects of lapatinib in HER2 amplification-positive breast cancer cells with or without an activating PIK3CA mutation. Lapatinib induced apoptosis in association with upregulation of the pro-apoptotic protein Bcl-2 interacting mediator of cell death (BIM) through inhibition of the MEK-ERK signaling pathway in breast cancer cells with HER2 amplification. RNA interference (RNAi)-mediated depletion of BIM inhibited lapatinib-induced apoptosis, implicating BIM induction in this process. The pro-apoptotic effect of lapatinib was less pronounced in cells with a PIK3CA mutation than in those without one. Lapatinib failed to inhibit AKT phosphorylation in PIK3CA mutant cells, likely because of hyperactivation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway by the mutation. Depletion of PIK3CA (a catalytic subunit of PI3K) revealed that survivin expression is regulated by the PI3K pathway in these cells, suggesting that insufficient inhibition of PI3K-survivin signaling is responsible for the limited pro-apoptotic effect of lapatinib in HER2 amplification-positive cells with a PIK3CA mutation. Consistent with this notion, depletion of survivin by RNAi or treatment with a PI3K inhibitor markedly increased the level of apoptosis in PIK3CA mutant cells treated with lapatinib. Our results thus suggest that inhibition of both PI3K-survivin and MEK-ERK-BIM pathways is required for effective induction of apoptosis in breast cancer cells with HER2 amplification.  相似文献   

20.
Lapatinib and capecitabine combination therapy is effective in trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer. We investigated the biomarkers from serum of patients receiving lapatinib and capecitabine Patients received lapatinib 1,250 mg once daily and capecitabine 2,000 mg/m(2)/day, day 1-14, every 3 weeks. Serum samples were obtained before treatment initiation. Levels of transforming growth factor-α (TGF-α), epidermal growth factor (EGF), extracellular domains of EGFR and HER2 were measured by enzyme-linked immunosorbent assay. The effect of TGF-α on in vitro sensitivity of SK-BR-3 cells to lapatinib was investigated. Sixty-four patients were included. Response rate was significantly higher in patients with low serum TGF-α (≤ 3.75 pg/ml) compared to high TGF-α (>3.75 pg/ml) [61.1% (11/18) vs. 17.4% (8/46), respectively; P = 0.001]. Low serum TGF-α was independently associated with better response in multivariate analysis [adjusted odds ratio, 8.96; 95% confidence interval (CI) 2.4-34.2]. Time-to-progression tended to be shorter in patients with high serum TGF-α compared to low TGF-α [median 3.8 months (95% CI 2.3-5.4) vs. 6.5 (95% CI 6.1-6.8), respectively; P = 0.067]. We confirmed that TGF-α diminished the sensitivity of SK-BR3-cells to lapatinib in vitro. The in vitro antiproliferative effect of cetuximab in combination with lapatinib was higher than that of lapatinib alone in SK-BR3-cells exposed to TGF-α. These data suggest that TGF-α plays a role in resistance to lapatinib and capecitabine therapy among HER2-positive breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号