首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cement–bone interface plays an important role in load transfer between cemented implant systems and adjacent bone, but little is known about the micromechanical behavior of this interface following in vivo service. Small samples of postmortem‐retrieved cement–bone specimens from cemented total hip replacements were prepared and mechanically loaded to determine the response to tensile and compressive loading. The morphology of the cement–bone interface was quantified using a CT‐based stereology approach. Laboratory‐prepared specimens were used to represent immediate postoperative conditions for comparison. The stiffness and strength of the cement–bone interface from postmortem retrievals was much lower than that measured from laboratory‐prepared specimens. The cement–bone interfaces from postmortem retrievals were very compliant (under tension and compression) and had a very low tensile strength (0.21 ± 0.32 MPa). A linear regression model, including interface contact fraction and intersection fraction between cement and bone, could explain 71% (p < 0.0001) of the variability in experimental response. Bony remodeling following an arthroplasty procedure may contribute to reduced contact between cement and bone, resulting in weaker, more compliant interfaces. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:170–177, 2010  相似文献   

2.
Loss of fixation at the cement–bone interface is known to contribute to aseptic loosening, but little is known about the mechanical damage response of this interface. An in vitro study using cement–bone specimens subjected to shear fatigue loading was performed, and the progression of stiffness changes and creep damage at the interface was measured using digital image correlation techniques. Stiffness changes and creep damage were localized to the contact interface between cement and bone. Interface creep damage followed a three‐phase response with an initial rapid increase in creep, followed by a steady‐state increase, concluding in a final rapid increase in creep. The initial creep phase was accompanied by an increase in interface stiffness, suggesting an initial locking‐in effect at the interface. Interface stiffness decreased as creep damage progressed. Power law models were reasonably successful in describing the creep and stiffness damage response and were a function of loading magnitude, number of loading cycles, and contact area at the interface. More microcrack damage occurred to the cement when compared to the bone, and the damage was localized along the interface. These findings indicate that damage to the cement–bone interface could be minimized by improving cement–bone contact and by strengthening the fatigue resistance of the cement. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:340–346, 2009  相似文献   

3.
Despite the widespread use of cement as a means of fixation of implants to bone, surprisingly little is known about the micromechanical behavior in terms of the local interfacial motion. In this work, we utilized digital image correlation techniques to quantify the micromechanics of the cement–bone interface of laboratory‐prepared cemented total hip replacements subjected to nondestructive, quasistatic tensile and compressive loading. Upon loading, the majority of the displacement response localized at the contact interface region between cement and bone. The contact interface was more compliant (p = 0.0001) in tension (0.0067 ± 0.0039 mm/MPa) than compression (0.0051 ± 0.0031 mm/MPa), and substantial hysteresis occurred due to sliding contact between cement and bone. The tensile strength of the cement–bone interface was inversely proportional to the compliance of the interface and proportional to the cement/bone contact area. When loaded beyond the ultimate strength, the strain localization process continued at the contact interface between cement and bone with microcracking (damage) to both. More overall damage occurred to the cement than to the bone. The opening and closing at the contact interface from loading could serve as a conduit for submicron size particles. In addition, the cement mantle is not mechanically supported by surrounding bone as optimally as is commonly assumed. Both effects may influence the longevity of the reconstruction and could be considered in preclinical tests. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:872–879, 2008  相似文献   

4.
Screw loosening is a common complication in plate fixation. However, the underlying mechanism is unclear. This study investigated screw loosening mechanisms by finite element analysis (FEA) simulation and clinical X‐ray feature analysis. Two FEA models incorporated bone heterogeneity and orthotropy, representing fracture fixation using dynamic compression plate (DCP) and locking compression plate (LCP), were developed. These models were used to examine the volume of bone exceeding a certain stress value around each screw under physiologically‐relevant loading conditions. These damaged bone was then separated and compared by the axial stress and radial stress of each screw. In addition, features of patients’ X‐ray images showing screw loosening were analyzed to validate the loosening features simulated by the models. The FEA study showed that more damaged bone was found at the central two screws which gradually decreased toward the two end screws in all groups. More bone was damaged by the radial stress of each screw than by the axial stress. The radiological analysis of screw loosening showed that bone loss occurred at the screw closest to the fracture line first then subsequent bone loss at the screws further away from the fracture line occurred. This study found that the two screws nearest to the fracture line are more vulnerable to loosening. The radial stress of the screw plays a larger role in screw loosening than the axial stress. Bone resorption triggered by the high radial stress of screws is indicated as the mechanism of screw loosening in the diaphyseal plate fixation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1498–1507, 2019.  相似文献   

5.
Aseptic loosening of cemented total hip replacements is thought to involve mechanical failure of the cement-bone interface. However, the mechanical response of the interface, particularly the post-yield, behavior, is not well understood. The purpose of this study was to determine the constitutive behavior of the cement-bone interface for loading in shear using a combination of experimental and finite element methods. A total of 55 cement-bone specimens (5 × 10 × 15-20 mm) from the proximal femur of human cadavers were loaded to failure under displacement control with use of a custom shear test jig. Finite element models of the test specimens were made and included provision for a two-parameter nonlinear interface model at the cement-bone interface. The experimental tests revealed a complicated load versus displacement response with an initial linear region and a reduction in slope until the ultimate strength (2.25 ± 1.49 MPa) was reached, followed by an exponential decrease in load with increasing displacement until the entire interface debonded. Failure most often occurred at the cement-bone interface, where the cement penetraed into the bone with bone remaining in the cement in 30 specimens and with bone remaining in the cement and cement spicules remaining in the bone in 22 specimens. The adjacent bulk bone and cement did not appear, to permanently deformed. Finite element models of the test specimens revealed that failure initiated at the base of the test specimen before the peak load had been reached. The two interface parameters, interface strength (2.71 ± 1.90 MPa) and interface-softening exponent (4.96 ± 3.47 1/mm), could be determined directly from the experimental data and provided a good fit with the experimental structural response for a wide range of interface strengths. These results show that the cement-bone interface does not fail abruptly when the shean strength is reached but absorbs a substantial amount of energy with post-yield strain-softening behavior.  相似文献   

6.
STUDY DESIGN: The biomechanical behavior of a single lumbar vertebral body after various surgical treatments with acrylic vertebroplasty was parametrically studied using finite-element analysis. OBJECTIVES: To provide a theoretical framework for understanding and optimizing the biomechanics of vertebroplasty. Specifically, to investigate the effects of volume and distribution of bone cement on stiffness recovery of the vertebral body. SUMMARY OF BACKGROUND DATA: Vertebroplasty is a treatment that stabilizes a fractured vertebra by addition of bone cement. However, there is currently no information available on the optimal volume and distribution of the filler material in terms of stiffness recovery of the damaged vertebral body. METHODS: An experimentally calibrated, anatomically accurate finite-element model of an elderly L1 vertebral body was developed. Damage was simulated in each element based on empirical measurements in response to a uniform compressive load. After virtual vertebroplasty (bone cement filling range of 1-7 cm3) on the damaged model, the resulting compressive stiffness of the vertebral body was computed for various spatial distributions of the filling material and different loading conditions. RESULTS: Vertebral stiffness recovery after vertebroplasty was strongly influenced by the volume fraction of the implanted cement. Only a small amount of bone cement (14% fill or 3.5 cm3) was necessary to restore stiffness of the damaged vertebral body to the predamaged value. Use of a 30% fill increased stiffness by more than 50% compared with the predamaged value. Whereas the unipedicular distributions exhibited a comparative stiffness to the bipedicular or posterolateral cases, it showed a medial-lateral bending motion ("toggle") toward the untreated side when a uniform compressive pressure load was applied. CONCLUSION: Only a small amount of bone cement ( approximately 15% volume fraction) is needed to restore stiffness to predamage levels, and greater filling can result in substantial increase in stiffness well beyond the intact level. Such overfilling also renders the system more sensitive to the placement of the cement because asymmetric distributions with large fills can promote single-sided load transfer and thus toggle. These results suggest that large fill volumes may not be the most biomechanically optimal configuration, and an improvement might be achieved by use of lower cement volume with symmetric placement.  相似文献   

7.
Analytical models that predict modulus degradation in cortical bone subjected to uniaxial fatigue loading in tension and compression are presented. On the basis of experimental observations, damage was modeled as self-limiting for tension but not for compression. These mechanistic uniaxial damage models were then developed into a model for flexural fatigue of cortical bone based on laminated beam theory. The unknown coefficients in the uniaxial damage models were obtained by successfully fitting the resulting equations to uniaxial fatigue data from the literature on human cortical bone in tension and compression. Then, the predictions of the flexural model for the behavior of human cortical bone were compared with experimental results from a small but independent set of specimens tested at three different ranges of load in our laboratory. The behavior of the modulus degradation curves and the flexural fatigue lives of the specimens were in excellent agreement with the predictions of the model.  相似文献   

8.
Vertebral compression fractures are caused by many factors including trauma and osteoporosis. Osteoporosis induced fractures are a result of loss in bone mass and quality that weaken the vertebral body. Vertebroplasty and kyphoplasty, involving cement augmentation of fractured vertebrae, show promise in restoring vertebral mechanical properties. Some complications however, are reported due to the performance characteristics of commercially available bone cements. In this study, the biomechanical performance characteristics of two novel composite (PMMA‐CaP) bone cements were studied using an anatomically accurate human cadaveric vertebroplasty model. The study involves mechanical testing on two functional cadaveric spinal unit (2FSU) segments which include monotonic compression and cyclical fatigue tests, treatment by direct cement injection, and microscopic visualization of sectioned vertebrae. The 2FSU segments were fractured, treated, and mechanically tested to investigate the stability provided by two novel bone cements; using readily available commercial acrylic cement as a control. Segment height and stiffness were tracked during the study to establish biomechanical performance. The 2FSU segments were successfully stabilized with all three cement groups. Stiffness values were restored to initial levels following fatigue loading. Cement interdigitation was observed with all cement groups. This study demonstrates efficient reinforcement of the fractured vertebrae through stiffness restoration. The pre‐mixed composite cements were comparable to the commercial cement in their performance and interdigitative ability, thus holding promise for future clinical use. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2067–2074, 2017.
  相似文献   

9.
OBJECT: A preliminary in vitro biomechanical study was conducted to determine if the pressure at a bone graft-mortise interface and the load transmitted along a ventral cervical plate could be used as parameters to assess fusion status. METHODS: An interbody bone graft and a ventral plate were placed at the C3-4 motion segment in six fresh cadaveric goat spines. Polymethylmethacrylate (PMMA) was used to simulate early bone fusion at the bone graft site. The loads along the plate and the simultaneous pressures induced at the graft-endplate interfaces were monitored during simulated stages of bone healing. Each specimen was nondestructively tested in compression loading while the pressures and loads at the graft site were recorded continuously. Each specimen was tested under five conditions (Disc, Graft, Plate, PMMA, and Removal). RESULTS: The pressure at the interface of the bone graft and vertebral endplate did not change significantly with the addition of the ventral plate. The interface pressure and segmental stiffness did increase following PMMA augmentation of the bone graft (simulating an intermediate phase of bone fusion). The load transmitted along the ventral plate in compression increased after the addition of the bone graft, but decreased after PMMA augmentation. Thus, there was an increase in pressure at the graft-endplate interface and a decrease in load transferred along the ventral plate after the simulation of bone fusion. Upon removal of the ventral plate, the simulated fusion bore most of the axial load, thus explaining a further increase in graft site pressure. CONCLUSIONS: These observations support the notions of load sharing and the redistribution of loads occurring during and after bone graft incorporation. In the clinical setting, these parameters may be useful in the assessment of fusion after spine surgery. Although feasibility has been demonstrated in this preliminary study, further research is needed.  相似文献   

10.
Glenoid fixation failure has only been grossly characterized. This lack of information hinders attempts to improve fixation because of a lack of methodologies for detecting and monitoring fixation failure. Our goal was twofold: to collect detailed data of glenoid fixation fracture, and to investigate computed tomography (CT)‐scanning as a tool for investigations of fixation failure. Six cadaver scapulas and six bone‐substitute specimens were cyclically loaded and CT‐scanned at clinical settings after 0, 1,000, 5,000, 10,000, 30,000, 50,000 and 70,000 load cycles. The fixation status was evaluated by inspection of the scans. After 70,000 cycles, the specimens were sectioned, and the fixation inspected by microscopy. The results of the microscopy analysis were compared to the CT‐scan analysis. Fracture of the glenoid fixation initiated at the edge of the glenoid rim and propagated towards and around the keel of the implant. The entire process from initiation to complete fracture took place at the polyethylene implant–cement interface, while the cement, the adjacent bone, and the cement–bone interface remained intact. Thus, strengthening the polyethylene–cement interface should improve glenoid fixation. Microscopy results validated the CT methodology, suggesting that the CT technique is reliable. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1589–1595, 2009  相似文献   

11.
Prevention of aseptic loosening of total knee arthroplasties (TKAs) remains a clinical challenge. Understanding how changes in morphology at the implant–bone interface with in vivo service affect implant stability and strength could lead to new approaches to mitigate loosening. Enbloc TKA retrievals and freshly‐cemented TKA tibial components were used to determine if the mechanical strength of the interface depended on the amount of cement–bone interlock and the morphology of the supporting bone under the cement layer. Implants were sectioned into small specimens of the cement–interface–bone from under the tibial tray. Micro‐CT scans were used to document interlock morphology and architecture of the supporting trabecular bone. Axial compression tests were used to assess mechanical behavior. Postmortem retrievals had lower contact fraction (42 ± 55%) compared to freshly‐cemented constructs (121 ± 61%) (p = 0.0008). Supporting bone architecture parameters were not different for the two groups. Increased interface contact fraction and supporting bone volume fraction (BV/TV) were positive predictors of interface strength (r2 = 0.72, p = 0.0001). For the same supporting bone BV/TV, postmortem specimens had weaker interfaces; they were also more compliant. Cemented TKAs with in vivo service experience a loss of fixation strength and increased micro‐motion due to the loss of cement–bone interlock. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1052–1060, 2014.  相似文献   

12.
The effect of the quality of the bone and of the cement pressurization magnitude and duration on the fixation achieved with polymethylmethacrylate (PMMA) bone cement is studied in vitro. Seventy-one cementbone interface specimens, prepared under various conditions of pressurization of low-viscosity bone cement, are tested in tension. The load at failure and the maximum cement penetration are measured to assess the fixation achieved, and the quality of the bone is assessed by determining the compressive strength of each of the bone specimens. Statistical analysis of the data indicates that the pressure magnitude is the most influential of the factors considered in the cement penetration behavior and in the development of failure load capacity. The duration of the pressure does not appear to be a significant factor. The cement penetration is a decreasing function of the bone strength, reflecting a decrease in the porosity and an increase in the area fraction. Although not directly measured in these tests, these latter bone properties are indirectly measured by the bone compressive strength. The effect of increasing bone strength on the failure load is nonlinear. The development of adequate failure load capacity is the result of a balance between the cement penetration allowed by the porosity of the bone and the inherent strength of the cancellous bone itself. Weak bone, although adequately penetrated by cement, cannot provide strong fixation. Stronger, denser bone limits cement penetration, but pressurization enhances development of failure load capacity through more complete infusion and interlocking of the cement in the available pore space. The strength of the fixation achievable for any bone is limited by the intrinsic strength of the bone. An optimal depth of cement penetration of 4 mm and an optimal bone area fraction of 0.20 are suggested for the most effective fixation.  相似文献   

13.
The ability of a vertebra to carry load after an initial deformation and the determinants of this postfracture load‐bearing capacity are critical but poorly understood. This study aimed to determine the mechanical behavior of vertebrae after simulated mild fracture and to identify the determinants of this postfracture behavior. Twenty‐one human L3 vertebrae were analyzed for bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA) and for microarchitecture by micro–computed tomography (µCT). Mechanical testing was performed in two phases: initial compression of vertebra to 25% deformity, followed, after 30 minutes of relaxation, by a similar test to failure to determine postfracture behavior. We assessed (1) initial and postfracture mechanical parameters, (2) changes in mechanical parameters, (3) postfracture elastic behavior by recovery of vertebral height after relaxation, and (4) postfracture plastic behavior by residual strength and stiffness. Postfracture failure load and stiffness were 11% ± 19% and 53% ± 18% lower than initial values (p = .021 and p < .0001, respectively), with 29% to 69% of the variation in the postfracture mechanical behavior explained by the initial values. Both initial and postfracture mechanical behaviors were significantly correlated with bone mass and microarchitecture. Vertebral deformation recovery averaged 31% ± 7% and was associated with trabecular and cortical thickness (r = 0.47 and r = 0.64; p = .03 and p = .002, respectively). Residual strength and stiffness were independent of bone mass and initial mechanical behavior but were related to trabecular and cortical microarchitecture (|r| = 0.50 to 0.58; p = .02 to .006). In summary, we found marked variation in the postfracture load‐bearing capacity following simulated mild vertebral fractures. Bone microarchitecture, but not bone mass, was associated with postfracture mechanical behavior of vertebrae. © 2011 American Society for Bone and Mineral Research.  相似文献   

14.
Fatigue damage from activities of daily living has been considered to be a major cause of aseptic loosening in cemented total hip arthroplasty. The cement-bone interface is one region where loosening could occur, but to date the fatigue response of the interface has not been examined. Cement-bone specimens were prepared from fresh frozen human cadaver tissue using simulated in vivo conditions. Tensile fatigue tests to failure were performed in an environmental chamber. Loss of specimen stiffness (stiffness damage) and permanent displacement after unloading (creep damage) were found in all specimens. At failure, creep damage accounted for the majority (79.9+/-10.6%) of the total strain damage accumulation at failure (apparent strain, epsilon=0.0114+/-0.00488). A power law relationship between strain-damage rate and time-to-failure showed that the strain-damage rate was an excellent predictor of the fatigue life of the cement-bone interface. The S-N response of the interface was obtained as a function of the applied stress ratio and the initial apparent strain. The total motion between cement and bone (72.2+/-29.8 microm) prior to incipient failure due to both stiffness and creep fatigue damage may be sufficient to result in fibrous tissue formation and contribute to eventual clinical loosening.  相似文献   

15.
In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well‐established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty‐one fresh frozen femora were prepared for resurfacing using the original instruments. ASR? resurfacing prostheses were implanted after dual‐energy X‐ray densitometer scans. Real‐time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 ± 0.13 g/cm2, t‐score was ?0.7 ± 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 ± 9.1 µm/Nm. The regression line between bone density and micro motion was equal to ?56.7 × bone density + 63.8, R = 0.815 (p < 0.001). Bone density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:986–991, 2010  相似文献   

16.
Clinical studies have revealed that aseptic loosening is the dominant cause of failure in total hip arthroplasty, particularly for the acetabular component. For a cemented polyethylene cup, failure is generally accompanied by the formation of fibrous tissue at the cement–bone interface. A variety of reasons for the formation of this tissue have been suggested, including osteolysis and mechanical overload at the cement–bone interface. In this study, a computational cement damage accumulation method was used to investigate the effect of polyethylene cup penetration, cement mantle thickness, and cement porosity on the number of cycles required to achieve mechanical fatigue failure of the cement mantle. Cup penetration was found to increase cement mantle stresses, resulting in a reduction in cement mantle fatigue life of 9% to 11% for a high cup penetration rate. The effect of using a thin (2 mm) over a thick (4 mm) cement mantle also reduced cement mantle fatigue life between 9% and 11%, and greatly raised cancellous bone stresses. Cement porosity was found to have very little effect on cement mantle fatigue life. Failure modes and cement stresses involved suggest that only extreme combinations of a thin cement mantle and high cup penetration may lead to mechanical failure of the cement mantle, thereby allowing wear debris access to the cement–bone interface. A thin cement mantle may also lead to the mechanical overload of the cement–bone interface. In this manner, the authors suggest that the mechanical factors may contribute to the failure mode of cemented polyethylene cups. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:565–570, 2010  相似文献   

17.
Tibial tray malalignment has been associated with increased subsidence and failure. We constructed a finite element model of knee arthroplasty to determine the biomechanical factors involved in increasing the risk of subsidence with malalignment. Four fresh‐frozen human knees were implanted with a tibial tray and subjected to forces representative of walking for up to 100,000 cycles. Cyclic displacement was measured between the tray and proximal tibia. The vertical load was shifted medially to generate a load distribution ratio of 55:45 (medial/lateral) to represent neutral alignment or 75:25 to represent varus alignment. Subjected specific geometry and material properties were obtained from qCT scans of tibia to construct a finite element model. The tray was subjected to a single load cycle representing experimental conditions. Tray displacement computed by the model matched that measured experimentally. Forces representing varus tray alignment generated greater strains in the proximal tibia and a greater volume of bone was subjected to strains higher than the fatigue threshold. Local compressive strains directly correlated with experimental subsidence and failure. Our results indicate that failure after tray malalignment is likely due to fatigue damage to the proximal tibia rather than shear across the implant–bone interface or failure of the cement mantle. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:347–353, 2011  相似文献   

18.
The effect of the quality of the bone and of the cement pressurization magnitude and duration on the fixation achieved with polymethylmethacrylate (PMMA) bone cement is studied in vitro. Seventy-one cement-bone interface specimens, prepared under various conditions of pressurization of low-viscosity bone cement, are tested in tension. The load at failure and the maximum cement penetration are measured to assess the fixation achieved, and the quality of the bone is assessed by determining the compressive strength of each of the bone specimens. Statistical analysis of the data indicates that the pressure magnitude is the most influential of the factors considered in the cement penetration behavior and in the development of failure load capacity. The duration of the pressure does not appear to be a significant factor. The cement penetration is a decreasing function of the bone strength, reflecting a decrease in the porosity and an increase in the area fraction. Although not directly measured in these tests, these latter bone properties are indirectly measured by the bone compressive strength. The effect of increasing bone strength on the failure load is nonlinear. The development of adequate failure load capacity is the result of a balance between the cement penetration allowed by the porosity of the bone and the inherent strength of the cancellous bone itself. Weak bone, although adequately penetrated by cement, cannot provide strong fixation. Stronger, denser bone limits cement penetration, but pressurization enhances development of failure load capacity through more complete infusion and interlocking of the cement in the available pore space. The strength of the fixation achievable for any bone is limited by the intrinsic strength of the bone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Tibiofemoral compression causes circumferential tension in the knee meniscus, which is transferred to the tibial bone at the anterior and posterior attachments. The objective of the study was to measure the resulting tensile forces at the horn attachment in a porcine model. The anterior horn attachment of the porcine medial meniscus (n = 10) was separated from the surrounding bone with a core reamer. A force transducer was installed such that tensile forces acting upon the now mobile horn attachment could be measured. The tibiofemoral joint was loaded in compression, starting at a preload of 30 N, with three 150‐N increments, giving 180, 330, and 480 N load. Flexion angles of 0, 30, and 60° were investigated. The average resultant tension at the horn attachment was 26.3, 40.6, and 55.4 N with full extension, 29.2, 47.8, and 62.2 N at 30° flexion and 30.1, 49.6, and 68.1 N at 60° flexion. The tibiofemoral compression had a significant effect on the tension (p < 0.001), whereas no influence of the flexion angle was found (p = 0.291). The study demonstrates that tibiofemoral compressive loads cause considerable tensile forces at the anterior meniscal horn attachment. The data are of interest for models of the repair or replacement of the knee menisci. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1619–1624, 2009  相似文献   

20.
Mixed-mode failure response of the cement-bone interface.   总被引:2,自引:0,他引:2  
Mechanical failure of the cement-bone interface can contribute to clinical loosening of cemented total hip replacements. The conditions that cause loosening are poorly understood, in part, due to a lack of information on the mechanical behavior of the cement bone interface. The purpose of this study was to determine the mechanical behavior of the cement-bone interface due to mixed-mode (combined tension and shear) loading and to develop a failure model for the cement bone interface. Laboratory tests of machined cement-bone test specimens were performed with mixed-mode loading conditions (loading angles of 22.5 degrees, 45 degrees, and 67.5 degrees) to determine the mechanical response in the pre-yield and post-yield state. After accounting for the quantity of interdigitated bone as a covariate, the mixed-mode data were combined with previous tension (0 degrees) and shear data (90 degrees) to develop a failure model for the cement bone interface. The strength of the interface was positively correlated with the quantity of interdigitated bone (r2 = 0.70, 0.53, 0.49, for 22.5 degrees, 45 degrees, and 67.5 degrees, respectively). There was a significant increase in failure strength (P < 0.001) with increasing mixed-mode angle. When all data were incorporated into an elliptical failure criterion, the average error between the actual and predicted strength was 33%. These results can now be incorporated into constitutive models of the cement bone interface to determine the initiation and progression of interface failure in cemented total hip replacements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号