首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Abstract

Adhesive interactions between hematopoietic progenitor cells and extracellular matrix can improve progenitor cell survival. These mechanisms involve a number of different molecules. CD44 is one such molecule, although its molecular basis has not been elucidated. In this study, we investigated the effect of CD44 monoclonal antibodies and hyaluronan, which is a ligand of CD44, on drug-induced apoptosis in human myeloid cell line KG1. Preincubation with anti-CD44 monoclonal antibody J173 or a lower-molecular-weight form of hyaluronan (LMW-HA) could reduce drug-induced apoptosis in a dose-dependent manner from 23·0 ± 1·4% to 5·9 ± 5·0% (p<0·01) or 9·7 ± 1·8% (p<0·01) respectively. On the other hand, another anti-CD44 monoclonal antibody L178 and the native high-molecular-weight polymer of hyaluronan had no effect on drug-induced apoptosis. Furthermore, J173 and LMW-HA induced a rapid increase in tyrosine phosphorylation of intracellular proteins. Genistein, a protein tyrosine kinase inhibitor, abrogated the inhibition of drug-induced apoptosis promoted by J173 and LMW-HA. These results suggest that the anti-apoptotic effect by ligation of CD44 was mediated by tyrosine phosphorylation of intracellular proteins. These data indicate that tyrosine phosphorylation via CD44 is involved in the survival of primitive myeloid cells.  相似文献   

2.
Acute myeloid leukemia (AML) is sustained by the extensive proliferation of leukemic stem and progenitor cells, which give rise to the population of leukemic blasts with defective differentiation and low proliferative capacity. We have recently shown that ligation of CD44, a cell surface molecule present on AML cells, with specific monoclonal antibodies (mAbs) inhibits their proliferation. However, its mechanism has not been investigated yet. Here, using the NB4 cell line as a model of proliferating human AML cells, and the A3D8 mAb to ligate CD44, we show for the first time that CD44 ligation stabilizes the cyclin-dependent kinase inhibitor p27(Kip1) (p27) protein, resulting in increased association with cyclin E/Cdk2 complexes and inhibition of their kinase activity. Moreover, using a p27 antisense vector, we provide direct evidence that p27 is the main mediator of cell growth arrest by CD44. CD44 ligation also leads to p27 accumulation in THP-1, KG1a, and HL60 cell lines and in primary leukemic cells, suggesting that this process is general in AML. Taken together, our present results suggest that CD44 is a new and efficient means to increase the expression of p27 in AML cells. Considering that elevated expression of p27 is a factor of good prognosis in AML, these results provide a new basis for developing CD44-targeted therapy in AML.  相似文献   

3.
Divergent molecular phenotypes of KG1 and KG1a myeloid cell lines   总被引:9,自引:2,他引:9  
The cell line KG1 derived from a patient with erythroleukemia in myeloblastic relapse has the composite phenotype and functional repertoire of myeloblasts. In marked contrast, its subline KG1a has lost myeloid features, acquired new karyotypic markers, and has three characteristics associated with immature T cells: low-level expression of the T cell receptor beta mRNA (but not alpha) transcribed from a germline gene; high-level expression of T3 delta mRNA and intracellular, but not cell surface, T3 protein; and expression of the CD7/gp40 T cell-associated membrane antigen. Both KG1 and KG1a transcribe unrearranged IgH genes. These data suggest that either the KG1 cell line was derived from a common myeloid-lymphoid progenitor or that the KG1a subline phenotype is aberrant.  相似文献   

4.
Untreated, late passage HL60 promyelocytic and KG1 myeloblastic leukaemia cells did not increase proliferation with placenta or Mo T cell conditioned medium containing colony-stimulating factor (CSF) nor with partially purified, recombinant granulocyte/macrophage (GM)-CSF. However, after induction with DMSO or 1,25-dihydroxy-vitamin D3, HL60 cells showed dose-dependent increases in proliferation with crude and purified CSFs. CSF responses and macrophage differentiation were induced in KG1 cells by treatment with tetradecanoylphorbol-acetate (TPA). When cells were exposed to inducing agents for varying periods, washed and exposed to CSF, proliferative responses were related to time of exposure. Cells exposed for 1-4 d showed post-induction CSF-induced proliferation, but cells induced for 5-6 d were inhibited by CSF. Induction of CSF response appeared linked to differentiation, since KG1 cells differentiated with TPA and developed CSF-induced proliferative responses, but showed no differentiation or CSF induced proliferation after treatment with vitamin D3. When HL60 cells were continuously exposed to DMSO or vitamin D3, overall cell production was increased by placenta conditioned medium, but cultures still became senescent and died after several weeks. Cells continuously cultured with DMSO were predominantly macrophages, indicating lineages of DMSO-induced differentiation were modified by continuous culture or the presence of CSF. After treatment with chemical inducers, proliferation of myeloid leukaemia lines is stimulated by CSF, providing a model for post-deterministic regulation of normal and malignant myeloid cell production.  相似文献   

5.
Acute myeloid leukemia (AML) is a heterogeneous leukemia characterized by the blockage of myeloid differentiation at different stages, which define distinct AML subtypes. We have recently reported that the ligation of CD44 with 2 activating monoclonal antibodies (mAbs), A3D8 and H90, triggers terminal differentiation of leukemic blasts in AML-M1/2 to AML-M5 subtypes, which are the most frequent ones. However, fresh AML blasts have short in vitro lifespans. Therefore, to find relevant in vitro cellular models for further studying the mechanisms involved in CD44-induced differentiation, we investigated whether CD44 ligation with A3D8 and H90 mAbs can induce terminal differentiation of THP-1, NB4, and HL60 cells, each interesting models of AML-M5 (monoblastic subtype), AML-M3 (promyelocytic subtype), and AML-M2 (myeloblastic subtype), respectively. We also study whether CD44 ligation induces a loss of proliferative capacity, an important feature of late-stage myeloid differentiation. In the second part of our study, we investigated whether A3D8 and H90 anti-CD44 mAbs can induce the differentiation and inhibit the proliferation of KG1a cells, which are very immature AML-M0 blasts. Using functional, antigenic, and cytologic criteria, we presently show that A3D8 and/or H90 induce terminal differentiation of THP-1, HL60, and NB4 cell lines and strongly inhibit their proliferation. Interestingly, cell-specific effects of H90 and A3D8 are observed. We also observe that incubation with A3D8 for 3 to 6 days induces an apoptotic cell death that is moderate in the case of THP-1 and HL60 cells and massive in the case of NB4 cells. Finally, our results demonstrate for the first time that it is possible to reverse the leukemic blockage of KG1a cells by using both an anti-CD44 mAb and retinoic acid. This result may provide a new experimental basis for a differentiative therapy in AML-M0 patients.  相似文献   

6.
bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells.   总被引:26,自引:3,他引:26  
The present study provides immunobiochemical and molecular data on the differentiation-linked expression of the bcl-2 proto-oncogene in normal and neoplastic myeloid cells. Using a recently developed monoclonal antibody (MoAb) to the bcl-2 molecule, staining of normal bone marrow myeloblasts, promyelocytes, and myelocytes, but neither monocytes nor most polymorphonuclear cells, was demonstrated. By two-color flow cytometric analysis, bcl-2 was evidenced in CD33+ and CD33+/CD34+ myeloid cells as well as in the more primitive CD33-/CD34+ population. The leukemic cell lines HL-60, KG1, GM-1, and K562 were bcl-2 positive together with 11 of 14 acute myeloid leukemias (AML) and three of three chronic myeloid leukemias (CML) in blast crises; six of seven CML were negative. Among myelodysplastic cases, augmentation of the bcl-2 positive myeloblastic compartment was found in refractory anemia with excess of blasts (RAEB) and in transformation (RAEB-t). Western blots of myeloid leukemias and control lymphocytes extracts evidenced an anti-bcl-2 immunoreactive band of the expected size (26 Kd). Moreover, the HL-60 and KG1 cell lines, both positive for the bcl-2 protein, exhibited the appropriate size bcl-2 mRNA (7.5 Kb). These findings clearly indicate that the bcl-2 gene is operative in myeloid cells and that the anti-bcl-2 MoAb identifies its product and not a cross-reactive epitope. Induction of HL-60 differentiation toward the monocytic and granulocytic pathways was accompanied by a marked decrease in bcl-2 mRNA and protein levels; bivariate flow cytometric analysis showed that the fraction becoming bcl-2 negative was in the G1 phase of the cell cycle. These data establish that the bcl-2 proto-oncogene is expressed on myeloid cells and their progenitors and is regulated in a differentiation-linked manner.  相似文献   

7.
OBJECTIVE: Vascular endothelial growth factor (VEGF) interacts with two high-affinity receptor tyrosine kinases (RTK) on vascular endothelium to initiate complementary but disparate biologic responses. We previously reported that acute myeloid leukemia (AML) cells express VEGF and one or both VEGF-A receptors, Flt-1 (VEGFR-1) and KDR (VEGFR-2). To evaluate receptor-selective trophic response to VEGF-A in AML cells, we investigated receptor-specific ligand activation responsible for VEGF-initiated clonogenic response. MATERIALS AND METHODS: Using KG1 (VEGFR-1+/VEGFR-2+) and HL60 (VEGFR-1+) cells with differential VEGF receptor display, we investigated ligand-induced clonogenic response and receptor-initiated signaling after stimulation with VEGF-A, the VEGFR-1 selective ligand placental growth factor (PlGF), or receptor-specific antibody agonists. RESULTS: Recombinant human (rhu)-VEGF increased S-phase fraction and stimulated colony formation in both KG1 and HL60 cells. Ligation of VEGFR-1 or VEGFR-2 with receptor-specific antibody agonists triggered equivalent and concentration-dependent stimulation of colony recovery in KG1 cells, whereas clonogenic response in HL60 cells was restricted to VEGFR-1 activation by antibody or PlGF. In serum-deprived KG1 and HL60 cells, rhu-VEGF stimulated rapid and sustained phosphorylation of Akt/PKB that was inhibited by the phosphatidyl inositol 3-kinase (PI3-K) kinase inhibitor wortmannin. Preincubation with wortmannin inhibited VEGF-induced colony formation in a concentration-dependent fashion. rhu-VEGF-induced clonogenic response and Akt phosphorylation was abolished by the VEGF-RTK inhibitor SU-5416 at concentrations greater than 10 microM, whereas MEK inhibition by PD98059 (1 and 10 microM) was ineffective. In vivo suppression of Akt phosphorylation was confirmed in myeloblast lysates from three patients with advanced myeloid malignancies treated with SU5416. CONCLUSION: These data indicate that VEGF interaction with either VEGFR-1 or VEGFR-2 initiates a clonogenic response in AML cells that is PI3-kinase dependent. RTK inhibitors with broad specificity for angiogenic receptors represent novel therapeutics that merit further clinical investigation in AML.  相似文献   

8.
The synthetic pentapeptide pGlu-Glu-Asp-Cys-Lys has recently been proposed as the active component of a granulocyte-derived inhibitor of normal haematopoiesis. We investigated its biological activity on leukaemic myelopoiesis both in vitro and in vivo in rats. Three different human permanent myeloid leukaemic cell lines (HL60, KG1, ML3) and a rat transplantable acute myeloid leukaemia (Shay leukaemia) were studied. Neither HL60 nor KG1 were sensitive to the peptide whereas a consistently reproducible inhibition of 3H-TdR uptake was observed in ML3 cells. This effect was not due to a unspecific toxic action on target cells and was spontaneously reversible. When injected i.p. twice daily at an appropriate concentration in rats bearing Shay leukaemia, the peptide caused a significant increase in survival. Our results therefore indicate that the synthetic pentapeptide studied inhibits not only normal but also leukaemic myelopoiesis.  相似文献   

9.
KG1a cells (CD34+/38-) express FAS and TRAIL (tumour-necrosis-factor-related apoptosis-inducing ligand) receptors but are resistant to FAS-ligand and TRAIL/APO2-L (apoptosis antigen-2 ligand)-induced apoptosis. KG1a cells are sensitized to FAS-induced apoptosis by chelerythrin, an inhibitor of protein kinase C (PKC). As cytoplasmatic adaptor molecules of FAS, e.g. FLIP [Fas-associated death domain protein (FADD)-like interleukin 1 beta-converting enzyme [FLICE (caspase-8)-inhibitory protein]], also modulate TRAIL signals, we determined whether chelerythrin affected TRAIL-mediated apoptosis. Chelerythrin by itself induced apoptosis in KG1a cells, and apoptosis was associated with activation of caspase-8. While TRAIL alone failed to activate caspase-8 or induce apoptosis, the addition of TRAIL to chelerythrin-treated cells significantly enhanced cleavage of caspase-8 and apoptosis. Chelerythrin-pretreated KG1a cells showed decreased phosphorylation of protein kinase C (PKC)-zeta and downregulation of both FLIP long and FLIP short proteins. Downregulation of FLIP and induction of apoptosis were partially abrogated by pretreatment with the specific caspase-8 inhibitor, Z-IETD-FMK. The decrease in FLIP protein expression induced by chelerythrin was accompanied by a progressive increase in mRNA levels of both FLIP long and FLIP short. CD34+ precursors from normal human marrow were also sensitive to chelerythrin but, in contrast to KG1a cells, were not sensitized to TRAIL-mediated apoptosis. Thus, resistance to TRAIL-induced apoptosis in leukaemic KG1a cells but not in normal CD34+ precursors was overcome in the presence of chelerythrin. The mechanism appeared to involve inhibition of PKC. Central targets were FLIP long and FLIP short, and their interactions with caspase-8. Whether such a pathway can be exploited to selectively target leukaemic progenitor cells remains to be determined.  相似文献   

10.
Adhesion molecules can improve hematopoietic cell survival; however, their role in leukemic cell resistance to drug-induced apoptosis is poorly documented. The CD44 adhesion molecule is strongly expressed on acute myeloid leukemia (AML) blasts. Using 2 myeloid cell lines, HL60 and NB4, evidence is presented that prior incubation with the CD44-specific monoclonal antibody (mAb) A3D8, reported to induce differentiation of AML blasts, significantly decreases apoptosis induced by 3 drugs used in AML chemotherapy: daunorubicin (DNR), mitoxantrone, and etoposide. In addition, in HL60 cells, CD44 ligation with A3D8 mAb fully abrogates the DNR-triggered generation of ceramide, a lipid second messenger involved in the DNR apoptotic signaling pathway. Moreover, results show that the A3D8 mAb and Bcl-2 additively inhibit DNR-induced apoptosis in HL60 cells overexpressing Bcl-2. These results suggest that, to eradicate AML blasts, the differentiation-inducing anti-CD44 mAb A3D8 should not be administered prior to apoptosis-inducing drugs.  相似文献   

11.
The capacity to assemble and retain a pericellular matrix is correlated with the expression of the cell surface binding sites specific for the extracellular matrix macromolecule hyaluronan. These binding proteins have been termed hyaluronan receptors. The lymphocyte-homing receptor CD44 may have identity with these hyaluronan receptors. To determine whether hyaluronan receptors function independently in this capacity for matrix assembly, mammalian cells were transfected with cDNA encoding the putative hyaluronan receptor CD44. After transfection with CD44 cDNA, COS cells gained the capacity to assemble hyaluronan-dependent pericellular matrices in the presence of exogenously added hyaluronan and proteoglycan. Thus, CD44 receptors do function as matrix-organizing, matrix-anchoring hyaluronan-binding proteins. In addition, the expression of CD44/hyaluronan receptors alone is sufficient to direct this matrix assembly. If matrix assembly is a function of cells in vivo that express hyaluronan receptors, this raises interesting possibilities for the role of the receptors in cell migration, when new extracellular matrix environments are encountered.  相似文献   

12.
OBJECTIVE: P-glycoprotein (pgp) is a membrane transporter encoded by the multidrug resistance (MDR1, ABCB1) gene. Pgp is a poor prognostic factor in elderly patients with acute myeloid leukemia (AML). In addition to its role in drug efflux, pgp has been implicated in cellular cholesterol homeostasis. We investigated the effects of exogenous cholesterol removal on pgp expression and function. METHODS: KG1a drug-na?ve, primitive leukemia cells were cultured in serum-free medium with or without the addition of low-density lipoprotein (LDL) cholesterol. After 72 hours, pgp expression and function was assessed by flow cytometry and total cholesterol content of the KG1a cells was determined by the Amplex Red cholesterol assay. The addition of clinically available cholesterol-lowering agents, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors to KG1a cells was also assessed. RESULTS: There was a 39% (SEM = 8.3%; p = 0.03) decrease in pgp protein expression after 3 days of serum-free culture. The decrease was also observed at the message and functional levels. In the presence of low-density lipoprotein cholesterol, pgp expression was restored to 86% of the basal value. Addition of a HMG-CoA reductase inhibitor to KG1a cells resulted in an additional 26% (lovastatin, p = 0.03) and 16% (pravastatin, p = 0.05) reduction in pgp, respectively. Furthermore, toxicity of the pgp substrate drug daunorubicin was enhanced following lovastatin preculture (p = 0.04). CONCLUSION: LDL cholesterol contributes to pgp expression and chemoresistance in primitive leukemia cells. Use of HMG-CoA reductase inhibitors may be of clinical value in lowering pgp expression in AML.  相似文献   

13.
Leukemic CD34(+) immature acute myeloid leukemia (AML) cells express Fas receptor but are frequently resistant to Fas agonistic reagents. Fas plays an important role in T-cell-mediated cytotoxicity, and recently it has been suggested that altered Fas signaling may contribute to drug resistance. Therefore, Fas resistance could be one of the mechanisms by which AML progenitors escape chemotherapy or T-cell-based immune intervention. However, the molecular mechanism of Fas resistance in AML cells has not been identified. Fas signaling can be interrupted at 3 mains levels: Fas clustering, alteration of death-inducing-signaling-complex (DISC) formation, and effector caspase inhibition of downstream caspase-8. This study shows that in the Fas-resistant CD34(+)CD38(-) KG1a cells, Fas agonists resulted in Fas aggregation but not in caspase-8 activation, related to a defect in DISC formation. However, pretreatment with chelerythrin, but not with calphostin C, resulted in the restoration of Fas-induced caspase-8 activation and cytotoxicity, suggesting that some atypical protein kinase C (PKC) isoforms contributed to the lack of DISC formation. Indeed, treatment with antisense oligonucleotides directed against PKC zeta and enforced expression of Par-4, a negative regulator of PKC zeta activity, restored Fas-induced caspase-8 activity and apoptosis. Moreover, it was found that PKC zeta interacts with FADD and that PKC zeta immunoextracts prepared from KG1a cells are able to phosphorylate FADD in vitro, whereas this phosphorylation is dramatically reduced in Par-4 transfectant cells. In conclusion, it is suggested that in AML cells, PKC zeta plays an important role in Fas resistance by inhibiting DISC formation, possibly by phosphorylating FADD.  相似文献   

14.
A primitive human hematopoietic myeloid progenitor cell line, KG1a,characterized by high expression of the CD34 surface antigen has beenobserved to extend long, thin pseudopodia. Once extended, thesepseudopods may take on one of two newly described morphologies, tenupodia or magnupodia. Tenupodia are very thin and form in linear segments. They adhere to the substrate, can bifurcate multiple times,and often appear to connect the membranes of cells more than 300 µmapart. Magnupodia are much thicker and have been observed to extendmore than 330 µm away from the cell. Magnupods are flexible and canexhibit rapid dynamic motion, extending or retracting in a few seconds.During retraction, the extended material often pools into a bulblocated on the pod. Both morphologies can adhere to substrates coatedwith fibronectin, collagen IV, and laminin as well as plastic. The CD34and CD44 antigens are also present on the surface of these podia.Primary human CD34+ cells from fetal liver, umbilicalcord blood, adult bone marrow, and mobilized peripheral blood extendthese podia as well. The morphology that these pseudopods exhibitsuggest that they may play both sensory and mechanical roles duringcell migration and homing after bone marrow transplantation.  相似文献   

15.
The surface changes occurring in three acute myeloid leukemia cell lines (HL60, ML3, and KG1) induced to differentiate by a variety of agents (dimethylsulfoxide, retinoic acid, 12-O-tetradecanoylphorbol-13- acetate, and factors present in lymphocyte conditioned medium) were probed using monoclonal antibodies that are differentiation stage- and lineage-specific. In all cases, the differentiated phenotype was defective and varied with the inducing agent and the cell line used. HL60 proved to be the most sensitive to the effect of the inducers. Retinoic acid was better than DMSO, and TPA was better than the medium factors in the ability to induce granulocytic and monocytic differentiation, respectively, in HL60 cells. These findings indicate that the differentiation block in acute myeloid leukemias is heterogeneous and that each cell line has different phenotypic characteristics that are responsible for the extent of differentiation obtained with a given inducer. These results also suggest that the extent of the differentiation response in vitro may be improved by the use of more suitable inducers for each specific leukemic line.  相似文献   

16.
Sham  RL; Packman  CH; Abboud  CN; Lichtman  MA 《Blood》1991,77(2):363-370
Maturation of human myeloid cells is associated with quantitative and qualitative changes in protein kinase C (PKC) and increases in N-formyl- L-methionyl-L-leucyl-L-phenylalanine (FMLP) receptors, actin, and actin regulatory proteins. We have studied the actin responses and cell shape changes caused by FMLP and its second messenger pathways in HL60 cells undergoing neutrophilic maturation. In uninduced cells, the PKC activators 12-O-tetradecanoyl phorbol-13-acetate (TPA), bryostatin, and 1-oleyl-2-acetylglycerol (OAG) resulted in 15% to 30% decreases in F- actin, whereas FMLP had no effect. Ionomycin had no effect on actin but did cause a 10-fold increase in intracellular calcium. Cells grown for 24 hours in 1% dimethyl sulfoxide (DMSO) acquired the ability to polymerize actin in response to FMLP and ionomycin. TPA continued to cause a decrease in F-actin at 24 hours, but caused an increase in F- actin at 48 to 72 hours of maturation. The PKC inhibitor 1-5- isoquinolinesulfonyl 2-methylpiperazine (H7) partially blocked the F- actin increase caused by TPA in induced cells, but had no effect on the decrease in F-actin caused by TPA in uninduced cells or the increase in F-actin seen in FMLP-treated neutrophils. F-actin rich pseudopods developed following TPA or FMLP stimulation of induced HL60 cells; in uninduced cells neither agent caused pseudopod formation but TPA caused a dramatic loss of surface ruffles. The ability of FMLP and ionomycin to elicit a neutrophil-like actin response in HL60 cells within 24 hours after DMSO treatment shows that the actin regulatory mechanism is mature by that time. The inability of ionomycin to increase F-actin in uninduced cells supports the view that calcium increases alone are insufficient for actin polymerization. The longer maturation time required for HL60 cells to develop an actin polymerization response to TPA compared with FMLP, coupled with the inability of H7 to block the FMLP-mediated F-actin increase in neutrophils, suggests that the F- actin increase caused by FMLP is not mediated solely by PKC. Lastly, the TPA-induced F-actin decrease and shape changes in uninduced HL60 cells, and the longer time required for a "mature" response to TPA, may reflect immaturity in the PKC isoenzyme pattern rather than immaturity of the actin regulatory mechanism.  相似文献   

17.
OBJECTIVE: Tetrahydroxyquinone is a molecule best known as a primitive anticataract drug but is also a highly redox active molecule that can take part in a redox cycle with semiquinone radicals, leading to the formation of reactive oxygen species (ROS). Its potential as an anticancer drug has not been investigated. METHODS: The effects of tetrahydroxyquinone on HL60 leukemia cells are investigated using fluorescein-activated cell sorting-dependent detection of phosphatidylserine exposure combined with 7-amino-actinomycin D exclusion, via Western blotting using phosphospecific antibodies, and by transfection of constitutively active protein kinase B. RESULTS: We observe that in HL60 leukemia cells tetrahydroxyquinone causes ROS production followed by apoptosis through the mitochondrial pathway, whereas cellular physiology of normal human blood leukocytes was not affected by tetrahydroxyquinone. The antileukemic effect of tetrahydroxyquinone is accompanied by reduced activity of various antiapoptotic survival molecules including the protein kinase B pathway. Importantly, transfection of protein kinase B into HL60 cells and thus artificially increasing protein kinase B activity inhibits tetrahydroxyquinone-dependent cytotoxicity. CONCLUSION: Tetrahydroxyquinone provokes cytotoxic effects on leukemia cells by reduced protein kinase B-dependent survival signaling followed by apoptosis through the mitochondrial pathway. Thus, tetrahydroxyquinone may be representative of a novel class of chemotherapeutic drugs, inducing apoptosis in cancer cells through diminished survival signaling possibly as a consequence of ROS generation.  相似文献   

18.
The platelet-endothelial cell adhesion molecule-1 (PE-CAM-1), defined by the CD31 monoclonal antibody (MoAb), was initially described as a cell-cell adhesion molecule mediating both homotypic and heterotypic adhesion. In this report, we show that enriched CD34+ human hematopoietic progenitor cell populations, containing early myeloid, erythroid, and multipotential progenitor cells, are CD31+. Analyses of CD34+ cell lines representing early myeloid, multipotential, and pre- pre-B-lymphoid progenitors indicate that precursors of both myeloid and B-lymphoid cells express PECAM-1 at high levels. Three-color flow- cytometric analyses also show that normal human bone marrow CD31+ CD34+ subsets coexpress myeloid (CD33) or B-lymphoid (CD19, CD10) markers. Except for the monocytic cell line, U937, all CD34- cell lines tested, which represent more mature stages of the myeloid, erythroid, and lymphoid lineages, expressed substantially lower or negligible levels of PECAM-1. Western blotting studies indicated that the CD31 MoAb, JC/70A, detected molecules in the 120- to 140-kD molecular weight range on the monocytic CD34- CD33+ CD31+ cell line, U937; on the CD34+ CD31+ CD33+ CD19- multipotential/lymphomyeloid precursor cell lines, KG1 and KG1B; on the CD34+ CD31+ CD19+ CD10+ CD33- precursor pre-pre-B-cell line, MIK-ALL; and on a CD34(+)-enriched precursor cell population from normal human bone marrow. A single molecular weight species was generally observed with enriched membrane preparations, whereas two PECAM-1 molecules were present in whole-cell lysates of cell lines and the CD34+ bone marrow cell subset. Preliminary studies show that a proportion of the PECAM-1 molecules on the lymphomyeloid/multipotential progenitor cell line, KG1, and on the monocytic cell line, U937, binds to heparin-sepharose. A soluble form of PECAM-1 also binds heparin- sepharose. The high level of expression of PECAM-1 on CD34+ cells suggests that this glycoprotein may function as a heterotypic adhesion molecule, possibly mediating multipotential, myeloid, and early-B- lymphoid precursor cell interactions with stromal cells and extracellular matrix molecules via heparan sulfate proteoglycans. It may also act as a homotypic adhesion molecule by interacting with PECAM- 1 on bone marrow stromal macrophage-like cells and endothelial cells or on endothelial cells during stem/progenitor cell migration. Thus, this molecule has the potential importance of directing both lineage commitment and trafficking of early hematopoietic progenitor cells.  相似文献   

19.
The human promyeloid cell line HL60 differentiates toward monocytes when treated with TPA. We have analyzed, by two-dimensional gel electrophoresis, the phosphoprotein patterns within HL60 cells, labeled to equilibrium with [32P]orthophosphate when cells were treated with suboptimal (1 nM), optimal (5 and 10 nM), and supraoptimal (40 and 100 nM) concentrations of 12-O-tetradecanylphorbol-13-acetate (TPA) as regards the induction of differentiation. No change was detected in the phosphoprotein pattern at 1 nM TPA, whereas four phosphoproteins showed increased levels of phosphorylation at 5 and 10 nM TPA. When cells were treated with 40 and 100 nM TPA, in total eight and ten proteins, respectively, were phosphorylated, including the above four proteins. Two proteins were dephosphorylated when cells were treated with 40 and 100 nM TPA. A 15-kd protein, phosphorylated when HL60 cells were treated with 5 nM TPA, was observed as an intense spot in autoradiographs of total cellular phosphoproteins of two variant HL60 cell lines that are unable to differentiate toward monocytes and prior to treatment with TPA. In the case of three variant cell lines, which like HL60 differentiate toward monocytes, the phosphoprotein spot was almost absent. Thus, paradoxically, the 15-kd phosphoprotein is affected by TPA although its constitutive level of expression or increased phosphorylation state is inversely related to the potential for monocyte differentiation. This observation, together with the TPA dose-response effects on protein phosphorylation, is discussed in relation to multiple protein kinase involvement.  相似文献   

20.
Bohnsack  JF; Chang  J 《Blood》1994,83(2):543-552
Phorbol esters upregulate the functional affinity of beta 1 integrin receptors for fibronectin on human neutrophils and other leukocytes. We investigated the ability of phorbol myristate acetate (PMA) to stimulate the human promyelocytic cell line HL-60 to adhere to fibronectin, either in its undifferentiated state (HL60) or after dimethylsulfoxide-induced differentiation along the granulocytic pathway (dHL60). PMA stimulated little adherence of undifferentiated HL60 to fibronectin or to the 120-kD chymotryptic cell-binding domain (CBD) of fibronectin. In contrast, PMA stimulated dHL60 cells to rapidly adhere to both fibronectin- and to CBD-coated plastic. PMA- stimulated dHL60 adherence to fibronectin was largely mediated by both alpha 4 beta 1 and alpha 5 beta 1, whereas PMA-stimulated dHL60 adherence to CBD was largely mediated by alpha 5 beta 1. There was little contribution from beta 2 integrins to PMA-stimulated dHL60 adherence to fibronectin or CBD. The inability of undifferentiated HL60 to adhere to fibronectin and CBD did not result from lack of expression of alpha 4 beta 1 or alpha 5 beta 1 because HL60 and dHL60 express similar amounts of both alpha 4 beta 1 and alpha 5 beta 1 on their surface. In addition, 1 mmol/L Mn2+ induced similar amounts of alpha 5 beta 1-dependent adherence of both HL60 and dHL60, showing that alpha 5 beta 1 on undifferentiated HL60 is capable of binding to its ligand. These data suggest that activation of protein kinase C cannot functionally upregulate these beta 1 integrins on undifferentiated HL60 cells. The development of PMA-stimulated beta 1-dependent adherence after granulocytic differentiation of HL60 cells suggests that the differentiated HL60 cell is a useful model for investigating functional coupling of protein kinase C to beta 1 integrin in myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号