首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Oxidative stress is currently considered a mediator of cell death in several neurodegenerative diseases. Notably, it may play an important role in the degeneration of dopamine neurons of the substantia nigra in Parkinson’s disease. We examined the effect of a strong oxidant, the herbicide paraquat, on cell distress using native and neuronal pheochromocytoma PC12 cells. Paraquat administration for 8 hours induced a significant cellular death in both native and in neuronal PC12 cells. Since the anti-oxidant properties of estrogens may promote neuroprotectionin vitro andin vivo, we then investigated the ability of estradiol stereoisomers, 17α-estradiol and 17β-estradiol, to rescue PC12 cells submitted to paraquat-induced oxidative stress. Our results show a protective effect of both estradiol stereoisomers in neuronal PC12 cells treated with paraquat, whereas this effect could not be observed in native PC12 cells. We also demonstrate that estrogen receptor β protein expression is modulated by paraquat administration in native PC12 cells, while paraquat does not change estrogen receptor β expression in neuronal PC12 cells. Paraquat also decreases estrogen receptor α in neuronal PC12 cells, thus suggesting new routes for paraquat to collapse cellular metabolism. Besides, the oxidation of dihydrodhodamine-123 into fluorescent rhodamine in the presence of paraquat but not in presence of paraquat and 17α-estradiol or 17β-estradiol,sustain a possible direct scavenging role of both estradiol stereoisomers.  相似文献   

3.
In clinical studies, it has been shown that estrogen replacement therapy in menopause is strongly correlated with a reduced risk of the development of Alzheimer's disease (AD). In in vitro experiments, it was demonstrated that estradiol protects cells against the toxic effects of beta-amyloid, the major component of plaques in brains of AD patients. Therefore, estrogens have become interesting candidates for a possible treatment of neurodegeneration. In plants, a class of compounds has been identified that bind to human estrogen receptor, so-called phytoestrogens, which are part of our daily diet. Here, we compared the effects of alpha- and beta-estradiol with plant-derived kaempferol on beta-amyloid peptide-induced toxicity in PC12 neuroblastoma and T47D human breast cancer cells. The present results demonstrate a protective effect of kaempferol comparable to that observed with estradiol. The effects of the weak estrogen receptor agonists alpha-estradiol and kaempferol were found to be similar to the effects of the strong estrogen receptor agonist beta-estradiol, suggesting a mode of action independent from the nuclear estrogen receptor.  相似文献   

4.
The plasma membrane dopamine transporter is located on presynaptic nerve terminals and is responsible for the termination of dopaminergic neurotransmission via dopamine reuptake. The dopamine transporter may also contribute to the pathogenesis of Parkinson disease. Dopamine transporter expression correlates well with susceptibility to neuronal degeneration in 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine (MPTP)-induced parkinsonism. Recent studies have implicated the dopamine transporter in the uptake of both this neurotoxin and its metabolite, MPP(+), as well as another experimental neurotoxin, 6-hydroxydopamine. In these studies we examined the role of the dopamine transporter in the neurotoxicity of both MPP(+) and 6-hydroxydopamine in the rat brain using in vivo administration of phosphorothioate antisense oligonucleotides targeting dopamine transporter mRNA. Infusion of dopamine transporter antisense (1 nmol/day, 7 days) into the left substantia nigra pars compacta resulted in reduced (3)H-WIN 35-428 binding in the left striatum and significant levodopa and amphetamine-induced contralateral rotations. Unilateral pretreatment with dopamine transporter antisense prior to bilateral intrastriatal infusion of either MPP(+) or 6-hydroxydopamine resulted in asymmetrical striatal (3)H-WIN 35-428 binding and dopamine content as well as significant apomorphine-induced ipsilateral rotations, suggesting neuroprotection of nigrostriatal neurons on the antisense-treated side. Thus, the dopamine transporter appears to play a critical role in determining susceptibility to the experimental neurotoxins MPP(+) and 6-hydroxydopamine. In light of this, the dopamine transporter may prove useful, both as a marker for susceptibility to Parkinson's disease and as a target for therapeutic intervention.  相似文献   

5.
In the present study, we investigated effects of estrogen on cell death induced by carboxy-terminal fragment of amyloid precursor protein (CT), a candidate causative substance in the pathogenesis of Alzheimer's disease. 17 beta-Estradiol attenuated CT-induced cell death in PC12 cells, whereas 17 alpha-estradiol, nonestrogenic stereoisomer, did not exert any significant protective effect on CT-induced cell death. These results suggest that protective effects of estrogen may be mediated by estrogen receptor (ER) in PC12 cells. To confirm the results, we determined the effects of tamoxifen, an estrogen receptor antagonist. Tamoxifen blocked the protective effects of 17 beta-estradiol, although it did not affect those of 17 alpha-estradiol. Overall, it might be thought that the protective effect of estradiol on CT-induced cell death is achieved by hormonal properties mediated through the estrogen receptor rather than the structural properties as a reducing agent.  相似文献   

6.
Excessive methylation has been proposed to be involved in the pathogenesis of Parkinson's disease (PD), via mechanisms that involve phospholipid methylation. Meanwhile, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was found to stimulate phospholipid methylation via the oxidized metabolite, 1-methyl-4-phenyl-pyridinium (MPP+), in the rat brain and liver tissues. In the present study, we investigated the effect of MPP+ on phosphatidylethanolamine N-methyltransferases (PENMT) and the potential role of this pathway in MPP(+)-induced neurotoxicity using PC12 cells. The results obtained indicate that MPP+ stimulated phosphatidylethanolamine (PTE) methylation to phosphatidylcholine (PTC) and correspondingly increased the formation of lysophosphatidylcholine (lyso-PTC). Moreover, the addition of S-adenosylmethionine (SAM) to the cell culture medium increases MPP(+)-induced cytotoxicity. The incubation of 1mM MPP+ and various concentrations of SAM (0-4 mM) decreased the viability of PC12 cells from 80% with MPP+ alone to 38% viability with 4 mM SAM for 4 days incubation. The data also revealed that the addition of S-adenosylhomocysteine (SAH), a methylation inhibitor, offered significant protection against MPP(+)-induced cytotoxicity, indicating that methylation plays a role in MPP(+)-induced cytotoxicity. Interestingly, lyso-PTC showed similar actions to MPP+ in causing many cytotoxic changes with at least 10 times higher potency. Lyso-PTC induced dopamine release and inhibited dopamine uptake in PC12 cells. Lyso-PTC also caused the inhibition of mitochondrial potential and increased the formation of reactive oxygen species in PC12 cells. These results indicate that phospholipid methylation pathway might be involved in MPP+ neurotoxicity and lyso-PTC might play a role in MPP(+)-induced neurotoxicity.  相似文献   

7.
gp120, an HIV coat glycoprotein that may play a role in AIDS-related dementia complex (ADC), induces neuronal toxicity characterized by NMDA receptor activation, accumulation of intracellular calcium, and downstream degenerative events including generation of reactive oxygen species and lipid peroxidation. We have previously demonstrated estrogenic protection against gp120 neurotoxicity in primary hippocampal cultures. We here characterize the mechanism of protection by blocking the classical cytosolic estrogen receptors and by measuring oxidative end points including accumulation of extracellular superoxide and lipid peroxidation. Despite blocking ERalpha and ERbeta with 1 microM tamoxifen, we do not see a decrease in the protection afforded by 100 nM 17 beta-estradiol against 200 pM gp120. Additionally, 17alpha-estradiol, which does not activate estrogen receptors, protects to the same extent as 17beta-estradiol. 17beta-Estradiol does, however, decrease gp120-induced lipid peroxidation and accumulation of superoxide. Together the data suggest an antioxidant mechanism of estrogen protection that is independent of receptor binding.  相似文献   

8.
Li R  Peng N  Li XP  Le WD 《Brain research》2006,1097(1):85-89
Dopamine transporter (DAT) provides not only an integral component of dopaminergic neurotransmission but also a molecular gateway for the accumulation of some neurotoxins such as 1-methyl-4-phenylpyridinium (MPP(+)), a metabolite of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Previous study reported that the neuroprotective effects of green tea polyphenols against MPP(+)-induced neurotoxicity were related to its inhibitory effect on MPP(+) uptake via DAT in dopaminergic cells. To extend the study, we investigated (-)-epigallocatechin gallate (EGCG), a monomer of green tea polyphenols, on DAT internalization in DAT-overexpressed PC12 cells. We found that EGCG (1-100 microM) can induce a dose-dependent inhibition of dopamine uptake in DAT-PC12 cells. In parallel, treatment of EGCG decreased membrane-bound DAT by 15% to 60%. Furthermore, protein kinase C (PKC) inhibitor GF109203X at 2 microM can markedly diminish the inhibitory effects of EGCG on dopamine uptake and reverse the EGCG-induced internalization of DAT. In addition, semiquantitative RT-PCR analysis indicated that EGCG did not affect DAT mRNA expression in the PC12 cells. These data suggest that EGCG exerts its inhibitory effect on DAT by modulating DAT internalization, in which PKC activation may be involved.  相似文献   

9.
Estrogen involvement in neuroprotection is now widely accepted, although the specific molecular and cellular mechanisms of estrogen action in neuroprotection remain unclear. This study examines estrogenic effects in a mixed population of cells in attempts to identify the contributing cells that result in estrogen-mediated neuroprotection. Utilizing primary mesencephalic neurons, we found expression of both estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) with a predominance of ERalpha on both dopamine neurons and astrocytes. We also found that 17beta-estradiol protects dopamine neurons from injury induced by the complex I inhibitor, 1-methyl-4-phenyl pyridinium (MPP(+)) in a time- and ER-dependent manner. At least 4 h of estrogen pre-treatment was required to elicit protection, an effect that was blocked by the ER antagonist, ICI 182,780. Moreover, ERalpha mediated the protection afforded by estrogen since only the ERalpha agonist, HPTE, but not the ERbeta agonist, DPN, protected against dopamine cell loss. Since glial cells were shown to express significant levels of ERalpha, we investigated a possible indirect mechanism of estrogen-mediated neuroprotection through glial cell interaction. Removal of glial cells from the cultures by application of the mitotic inhibitor, 5-fluoro-2'-deoxyuridine, significantly reduced the neuroprotective effects of estrogen. These data indicate that neuroprotection provided by estrogen against MPP(+) toxicity is mediated by ERalpha and involves an interplay among at least two cell types.  相似文献   

10.
Carlos Fonck  Michel Baudry   《Brain research》2001,905(1-2):199-206
MPTP is a toxin presumed to damage dopamine-secreting neurons by an oxygen free radical-mediated mechanism. Two steps in MPTP metabolism are the primary candidates for oxygen free radical generation: (a) MPTP oxidation to MPP(+) by a monoamine oxidase and (b) NADH dehydrogenase inhibition by MPP(+). In order to test the idea that MPTP toxicity is mediated by oxygen free radicals, we assessed lipid peroxidation and the effects of antioxidants in dopaminergic PC12 cells treated with MPTP or MPP(+). For comparison purposes, we also examined the effects of the pro-oxidant tert-butyl-hydroperoxide (TBHP) and of the dopaminergic toxin 6-hydroxydopamine (6-OHDA) in PC12 cells. MPTP and MPP(+), unlike TBHP, failed to induce lipid peroxidation in PC12 cells after a 4-h exposure. All toxins tested (MPTP, MPP(+), TBHP and 6-OHDA) caused a dose-dependent decrease in [(3)H]dopamine ((3)H-DA) uptake in PC12 cultures. The hydroperoxide scavengers glutathione and N-acetyl-cysteine and the superoxide and peroxide scavenger EUK-134 protected PC12 cells from TBHP- and 6-OHDA-induced decrease in (3)H-DA uptake. However, no protection by these antioxidants at various concentrations and time regimens was observed against MPTP- or MPP(+)-induced decreases in (3)H-DA uptake in PC12 cells. In addition, incubation of PC12 cells with the energy-rich substrate, NADH, attenuated MPP(+)-induced decrease in (3)H-DA uptake. These results suggest that MPTP-induced toxicity in dopaminergic PC12 cell cultures, does not involve oxygen free radical production, but rather may be caused by impairment in energy metabolism.  相似文献   

11.
Neuroprotective activity of estrogens is reported in Alzheimer disease and recently has also been suggested for Parkinson disease, a disease affecting more men than women. To characterize this estrogenic activity, we studied the effects of 17beta- and 17alpha-estradiol treatment (1 microg twice daily 5 days before, during the day of four MPTP (15 mg/kg) injections, and for the following 5 days) on dopamine striatal toxicity induced by the neurotoxin MPTP in retired breeder male C57BL/6 mice. Striatal dopamine concentrations and its metabolites dihydroxyphenylacetic acid and homovanillic acid measured by HPLC in MPTP mice that received 17beta-estradiol were comparable to control animals, whereas MPTP mice treated with saline or 17alpha-estradiol showed important decreases of dopamine and its metabolites. Striatal serotonin and its metabolite 5-hydroxyindoleacetic acid concentrations remained unchanged after MPTP and treatments with steroids. Striatal [(3)H]GBR 12935 binding autoradiography to the dopamine transporter was as extensively decreased and correlated with dopamine depletion in MPTP mice, whereas this transporter mRNA decrease in the substantia nigra pars compacta was less pronounced. Treatment with steroids did not significantly change [(3)H]GBR 12935 binding, whereas dopamine transporter mRNA levels were not significantly different from controls. Under the present paradigm in retired breeder male mice, our results show dopaminergic and stereospecificity of estradiol to augment dopamine levels in MPTP-lesioned mice without protecting against the extensive loss of dopamine terminals and moderate cell body loss.  相似文献   

12.
The present study investigated the effect of 5-hydroxydecanoate, a selective mitochondrial K(ATP) channel blocker, on the cytotoxicity of neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) in differentiated PC12 cells. 5-Hydroxydecanoate and glibenclamide (a cell surface and mitochondrial K(ATP) channel inhibitor) reduced the MPP(+)-induced cell death and GSH depletion and showed a maximal inhibitory effect at 5 and 10 microM, respectively. Addition of 5-hydroxydecanoate attenuated the MPP(+)-induced nuclear damage, changes in the mitochondrial membrane permeability and increase in the reactive oxygen species formation in PC12 cells. The results show that 5-hydroxydecanote may prevent the MPP(+)-induced viability loss in PC12 cells by suppressing formation of the mitochondrial permeability transition, leading to the cytochrome c release and caspase-3 activation. This effect appears to be accomplished by the inhibitory action on the formation of reactive oxygen species and the depletion of GSH. The blockade of mitochondrial K(ATP) channels seems to prevent the MPP(+)-induced neuronal cell damage.  相似文献   

13.
In vitro superfusion and in vivo electrochemistry were used to investigate the role of estrogen in modulating MPP(+)-induced dopamine output in the corpus striatum and nucleus accumbens of ovariectomized female rats. For in vitro superfusion experiments, dopamine and dihydroxyphenylacetic acid release were determined using HPLC with electrochemical detection from superfusion of corpus striatum fragments with Kreb's ringer phosphate buffer pulsed with MPP(+) alone or MPP(+) with estrogen. The in vivo electrochemistry experiments recorded the dopamine signal from carbon fiber microelectrodes stereotaxically passed through the corpus striatum and nucleus accumbens. Dopamine release was stimulated by pressure ejection of MPP(+) alone or in combination with estrogen through glass micropipettes fastened to the electrodes. Dopamine output from superfusion chambers which received infusion of MPP(+) with estrogen showed significantly lower output of dopamine compared with chambers which received MPP(+) alone. Outputs of dihydroxyphenylacetic acid did not increase following MPP(+) infusions. Data from the electrochemistry experiments demonstrated that estrogen significantly reduced both the amplitude and clearance rates of the MPP(+)-evoked dopamine signal in both the corpus striatum and nucleus accumbens. Results of this study demonstrate that: (1) MPP(+) evokes striatal dopamine release and this effect is significantly reduced in the presence of estrogen as determined by both in vivo electrochemistry and in vitro superfusion: (2) similar, albeit attenuated effects are observed in the nucleus accumbens as determined with in vivo electrochemistry; (3) estrogen acts to inhibit the clearance of dopamine in both the striatum and nucleus accumbens; and (4) estrogen may function as a neuroprotectant by reducing the uptake of neurotoxin into dopaminergic neurons.  相似文献   

14.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), via its major metabolite 1-methyl-4-phenylpyridinium (MPP(+)), produces in primates including humans clinical, biochemical, and neuropathological changes similar to those which occur in idiopathic Parkinson's disease. Ebselen is an antioxidant drug with glutathione peroxidase-like activity and a proven neuroprotective action in stroke patients. Here we show that Ebselen, when administered before, during, and after MPTP injections, prevents both neuronal loss and clinical symptoms in a primate MPTP model of Parkinson's disease. Ebselen also prevents peroxide radical overproduction induced by serum withdrawal in cultured PC12 cells and hydroxyl radical generation induced by the mitochondrial toxin, MPP(+), in vivo in rat brain. Moreover, Ebselen inhibits MPP(+)-induced toxicity in PC12 cells, without interacting with the dopamine uptake system. Our results demonstrate that compounds which prevent mitochondrial dysfunction and free radical production may be useful as preventive treatment of Parkinson's disease.  相似文献   

15.
Parkinson's disease (PD) is a movement disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Microglia activation and neuroinflammation have been associated with the pathogenesis of PD. Indeed, cytokines have been proposed as candidates that mediate the apoptotic cell death of dopaminergic neurons seen in PD. In this study, we investigated the effect of two natural polyphenols, resveratrol and quercetin, on neuroinflammation. For glial cells, we observed that lipopolysaccharide (LPS)-induced mRNA levels of two proinflammatory genes, interleukin 1-alpha and tumor necrosis factor-alpha, are strongly decreased by treatments with resveratrol or quercetin. We also undertook microglial-neuronal coculture to examine the influence of resveratrol and quercetin on dopaminergic neuronal cell death evoked by LPS-activated microglia. Cytotoxicity assays were performed to evaluate the percentage of cell death, with apoptotic cells identified by both the TdT-mediated dUTP nick end labeling technique and the detection of cleaved caspase-3. We report that treatment of N9 microglial cells with resveratrol or quercetin successfully reduced the inflammation-mediated apoptotic death of neuronal cells in our coculture system. Altogether our results demonstrate that resveratrol and quercetin diminished apoptotic neuronal cell death induced by microglial activation and suggest that these two phytoestrogens may be potent antiinflammatory compounds.  相似文献   

16.
Wang RG  Zhu XZ 《Brain research》2003,961(1):131-138
Endogenous or exogenous substances that are toxic to dopaminergic cells have been proposed as possible cause of idiopathic Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) and manganese are dopaminergic neurotoxins causing a parkinsonism-like syndrome. Here, we studied the possible synergistic reaction between these two neurotoxins using rat PC12 pheochromocytoma cells. MPP(+) induced a delayed neurotoxicity in PC12 cells. Although low concentration of manganese did not cause cell damage, it markedly enhanced MPP(+)-induced neurotoxicity with characteristics of apoptosis, such as DNA laddering and activation of caspase-3. To understand the mechanism of enhancement of subtoxic concentration of manganese on MPP(+)-induced neurotoxicity, we investigated the reactive oxygen species (ROS) generation using a molecular probe, 2',7'-dichlorofluorescein diacetate. Although subtoxic concentration of manganese alone did not induce ROS increase, it significantly enhanced the ROS generation induced by MPP(+). We also determined the intracellular MPP(+) content. A time- and concentration-dependent increase of MPP(+) levels was found in PC12 cells treated with MPP(+). The accumulation of MPP(+) by PC12 cells was not affected by manganese. Taken together, these studies suggest that co-treatment with MPP(+) and manganese may induce synergistic neurotoxicity in PC12 cells and that subtoxic concentration of manganese may potentiate the effect of MPP(+) by an ROS-dependent pathway.  相似文献   

17.
Parkinson's disease has been widely related to both apoptosis and oxidative stress. Many publications relate the loss of mitochondrial potential to an apoptosis-mediated cell death in different in vivo and in vitro models of this pathology. The present study used the dopaminegic specific neurotoxin 1-methyl-4-phenylpyridinium (MPP(+) ) on neuron-like PC12 cells, which is a well-accepted model of Parkinson's disease. Results showed an early increase in oxidants, which drives the modulation of c-Jun N-terminal kinase (JNK) and AKT/mammalian target of rapamycin (mTOR) pathways, mimicking peroxide treatment. However, the cell death found in neuronal PC12 cells treated with MPP(+) was not a caspase-associated apoptosis. Electron microscopic images illustrated autophagic cell death, which was confirmed by a Beclin-1 and ATG expression increase, accumulation of acidic vesicles, and rescue by an autophagy inhibitor. In conclusion, the boost in oxidants from MPP(+) treatment in neuronal PC12 is modulating both survival (AKT/mTOR) and death (JNK) pathways, which are the perpetrators of an autophagic cell death.  相似文献   

18.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The effect of econazole against the cytotoxicity of 1-methyl-4-phenylpyridinium (MPP(+)) in differentiated PC12 cells was assessed in relation to the mitochondrial membrane permeability changes. Treatment of PC12 cells with MPP(+) resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Econazole (0.25-2.5 microM) inhibited the cytotoxicity of MPP(+) or rotenone. The addition of econazole (0.5 microM) significantly attenuated the MPP(+)-induced mitochondrial damage, elevation of intracellular Ca(2+) level and cell death. However, because of the cytotoxicity, econazole at 5 microM did not attenuate the toxicity of MPP(+). The results show that econazole at the low concentrations may reduce the MPP(+)-induced viability loss in PC12 cells by suppressing the mitochondrial permeability transition, leading to activation of caspase-3 and the elevation of intracellular Ca(2+) levels, which are associated with the increased formation of ROS and depletion of GSH.  相似文献   

19.
目的 研究14—3—3蛋白过表达对1-甲基-4苯基吡啶离子(MPP^+诱导的PC12细胞死亡的影响作用及其可能的机制。方法 构建pcDNA3.1(+)-14—3—3真核表达质粒,用脂质体2000转染PCI2细胞;Westernn blot技术检测PC12细胞中14—3—3蛋白、Bcl-2蛋白,和BAD蛋白的表达;然后分别用MTT法、酶标仪及流式细胞仪检测PC12细胞的活力、caspase的活性及PC12细胞的凋亡率。结果 (1)将pcDNA3.1(+)-14—3—3质粒转染PCI2细胞3周后,14—3—3蛋白的表达显著增加;(2)MPP^+诱导PC12细胞存活率的下降是剂量依赖性的,当MPP^+的浓度达100μmol/L时,PC12细胞的存活率丧失约50%;(3)caspase的活性随着MPP^+浓度的增加而增高,当MPP^+浓度到达100μmol/L时caspase的活性也到达最大值,而当MPP^+浓度超过100μmol/L时,caspase的活性急剧下降;(4)用100μmol/L的MPP^+处理PC12细胞24h后,PC12细胞的凋亡率为26.5%,14—3—3蛋白的过表达使PC12细胞的凋亡率下降到8.6%;(5)用100μmol/LMPP^+处理PC12细胞后,Bcl-2蛋白的表达趋于下调而BAD蛋白的表达上调,14—3-3蛋白的过表达能显著的增加Bcl-2蛋白的表达而使BAD蛋白的表达下调。结论 14—3—3蛋白过表达通过上调Bcl-2蛋白的表达并下调BAD蛋白的表达,减少了MPP^+诱导的PC12细胞的凋亡,从而发挥对PC12细胞的保护作用。这些结果可能为PD的治疗提供新的药物靶点。  相似文献   

20.
Exposure of cerebellar granule cells to 1-methyl-4-phenylpiridinium (MPP(+)) results in cell death. We have studied the implication of various membrane transporter systems on MPP(+) neurotoxicity, including the dopamine transporter system (DAT) and cationic amino acid transporters (CAT). We have showed a partial protection against MPP(+) toxicity when the dopamine transporter is inhibited by 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]4-(3-phenylpropyl)piperazinedihydrochloride (GBR-12909). However, almost full protection is only achieved by the simultaneous addition of GBR-12909 and cationic amino acids. These results suggest two ways system of MPP(+) entrance into cerebellar granule cells: the DAT with high activity and the CAT with low activity. We also demonstrated that 5,7-dichlorokynurenic acid (MK-801) failed to protect against MPP(+) exposure, evidencing that N-methyl-D-aspartate (NMDA) receptor is not involved in the MPP(+)-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号