首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Fas ligand (FasL)-induced lung inflammation has recently been suggested to play an important role in the pathogenesis of acute respiratory disease syndrome (ARDS). In order to further explore this connection, we established a FasL-induced murine model of pulmonary inflammation. Instillation of recombinant FasL (rFasL) into the lung induced neutrophil infiltration and increased pulmonary permeability, as evidenced by increased total protein in the airspace; both occur in patients with ARDS. These effects were accompanied with a rapid induction of proinflammatory mediators: cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) and the chemokines macrophage inflammatory protein-2 (MIP-2) and KC. Pretreatment with a FasL antagonist, a decoy receptor 3 analogue (DcR3 analogue), reduced neutrophil infiltration into the airspace and resulted in a highly significant reduction in the levels of GM-CSF, MIP-2 and KC in bronchoalveolar lavage (BAL) fluid. We postulate that rFasL may be responsible for induction of proinflammatory chemokines and cytokines in the lung, which in turn attract neutrophil infiltration into the airspace. This proinflammatory process and the associated pulmonary permeability may, in part, explain the association of FasL with severe pulmonary inflammation, such as ARDS, and shed new light on FasL and its role in lung injury.  相似文献   

2.
We have shown previously that high concentrations of IL-8 associated with anti-IL-8 autoantibodies (anti-IL-8:IL-8 complexes) are present in lung fluids from patients with the acute respiratory distress syndrome (ARDS), and correlate both with the development and outcome of ARDS. We also detected deposition of these complexes in lung tissues from patients with ARDS but not in control tissues. Moreover, we determined that IgG receptors (FcgammaRs) mediate activity of anti-IL-8:IL-8 complexes. In the current study, we generated anti-KC (KC = chemokine (CXC motif) ligand 1 (CXCL1)) autoantibody:KC immune complexes (KC-functional IL-8) in lungs of mice to develop a mouse model of autoimmune complex-induced lung inflammation. Both wild-type (WT) and gamma-chain-deficient mice that lack receptors for immune complexes (FcgammaRs) were studied. First, the mice were immunized with KC to induce anti-KC autoantibodies. Then, KC was administered intratracheally to generate anti-KC:KC complexes in the lung. Presence of anti-KC:KC complexes was associated with development of severe pulmonary inflammation that was, however, dramatically suppressed in gamma-chain-deficient mice. Second, because sepsis is considered the major risk factor for development of ARDS, we evaluated LPS-treated WT as well as gamma-chain-deficient mice for the presence of anti-KC:KC complexes and pulmonary inflammatory responses. We detected complexes between anti-KC autoantibodies and KC in lung lavages and tissues of mice treated with LPS. Moreover, gamma-chain-deficient mice that lack receptors for immune complexes were protected from LPS-induced pulmonary inflammation. Our results suggest that immune complexes containing autoantibodies contribute to development of lung inflammation in LPS-treated mice.  相似文献   

3.
The Cluster of differentiation 226(CD226)/T cell immunoglobulin and immune receptor tyrosine-based inhibitory motif domain (TIGIT) axis plays an important role in the balance of the immune response. A previous study showed that CD226 is involved in CD4+ T cell differentiation and that blocking CD226 may attenuate experimental autoimmune encephalomyelitis (EAE) development. However, the molecular mechanisms underlying this process remain incompletely understood. In this study, it was found that Cd226−/− mice were less susceptible to EAE and that there was less T helper 17(Th17) cell infiltration with higher levels of regulatory cells (Tregs) infiltration in the Cd226−/− EAE mouse central nervous system (CNS) compared with that in the WT EAE mouse CNS. Moreover, the suppressive function of Cd226−/− Tregs was upregulated compared with that of WT Tregs. Furthermore, it was observed that the expression levels of CTLA-4 and TIGIT on Cd226−/− Tregs were higher than those on WT Tregs during EAE in the spleen and CNS. Our results demonstrate a pivotal role for CD226 in attenuating Treg function in EAE that was associated with downregulating the expression levels of CTLA-4 and TIGIT.  相似文献   

4.
Th1 immune responses are crucial for eliminating Leishmania parasites. However, despite strong Th1 responses, cutaneous leishmaniasis (CL) patients infected with Leishmania braziliensis develop the disease, while milder Th1 responses are found in sub-clinical (SC) infections. Therefore, CL patients may experience impaired regulatory T cell (Treg) function, causing excessive Th1 responses and tissue damage. To address this hypothesis, we characterized the function of circulating Tregs in L. braziliensis infected CL patients and compared them to Tregs from uninfected controls (UC) and SC subjects. The frequency of circulating Tregs was similar in CL patients, UC and SC subjects. Moreover, CL patients Tregs suppressed lymphocyte proliferation and PBMC pro-inflammatory cytokine production more efficiently than UC Tregs, and also produced higher levels of IL-10 than UC and SC Tregs. Furthermore, PBMC and mononuclear cells from lesions of CL patients responded normally to Treg-induced suppression. Therefore, the lesion development in CL patients infected with L. braziliensis is not associated with impairment in Treg function or failure of cells to respond to immunomodulation. Rather, the increased Treg activation in CL patients may impair parasite elimination, resulting in establishment of chronic infection. Thus, immunological strategies that interfere with this response may improve leishmaniasis treatment.  相似文献   

5.
Healing of skin wounds is orchestrated by various types of immune cells, but little is known about the role of FoxP3+ regulatory T cells (Tregs) in this process. Here, we determined if Tregs are important for wound healing in normal mice and if they contribute to the accelerated healing of mice overexpressing the growth and differentiation factor activin. Diphtheria toxin induced Treg depletion prior to injury caused impaired healing characterized by delayed reepithelialization, reduced wound contraction, and impaired vessel maturation. The accelerated wound repair of activin‐transgenic mice was also abrogated. Mechanistically, we found a strong increase in IL‐4 levels combined with overrepresentation of T‐bet+ and GATA‐3+ αβ T cells in Treg‐depleted 7‐day wounds. In addition, numbers of IFN‐γ‐ or IL‐17A‐producing CD4+ and CD4? T cells were elevated. These results demonstrate that Treg depletion in wounds facilitates the expansion of an αβ T‐cell population with features of Th1 and Th2 cells, and suggest that concomitant changes in the cytokine milieu disturb the healing process.  相似文献   

6.
Recombinant human IL-2 has been used to treat inflammatory diseases and cancer; however, side effects like skin rashes limit the use of this therapeutic. To identify key molecules and cells inducing this side effect, we characterized IL-2-induced cutaneous immune reactions and investigated the relevance of CD25 (IL-2 receptor α) in the process. We injected IL-2 intradermally into WT mice and observed increases in immune cell subsets in the skin with preferential increases in frequencies of IL-4- and IL-13-producing group 2 innate lymphoid cells and IL-17-producing dermal γδ T cells. This overall led to a shift toward type 2/type 17 immune responses. In addition, using a novel topical genetic deletion approach, we reduced CD25 on skin, specifically on all cutaneous cells, and found that IL-2-dependent effects were reduced, hinting that CD25 — at least partly — induces this skin inflammation. Reduction of CD25 specifically on skin Tregs further augmented IL-2-induced immune cell infiltration, hinting that CD25 on skin Tregs is crucial to restrain IL-2-induced inflammation. Overall, our data support that innate lymphoid immune cells are key cells inducing side effects during IL-2 therapy and underline the significance of CD25 in this process.  相似文献   

7.
The inflammatory response to lung infections must be tightly regulated, enabling pathogen elimination while maintaining crucial gas exchange. Using recently described "depletion of regulatory T cell" (DEREG) mice, we found that selective depletion of regulatory T cells (Tregs) during acute respiratory syncytial virus (RSV) infection enhanced viral clearance but increased weight loss, local cytokine and chemokine release, and T-cell activation and cellular influx into the lungs. Conversely, inflammation was decreased when Treg numbers and activity were boosted using interleukin-2 immune complexes. Unexpectedly, lung (but not draining lymph node) Tregs from RSV-infected mice expressed granzyme B (GzmB), and bone marrow chimeric mice with selective loss of GzmB in the Treg compartment displayed markedly enhanced cellular infiltration into the lung after infection. A crucial role for GzmB-expressing Tregs has not hitherto been described in the lung or during acute infections, but may explain the inability of children with perforin/GzmB defects to regulate immune responses to infection. The effects of RSV infection in mice with defective immune regulation closely parallel the observed effects of RSV in children with bronchiolitis, suggesting that the pathogenesis of bronchiolitis may involve an inability to regulate virus-induced inflammation.  相似文献   

8.
9.
《Mucosal immunology》2020,13(4):652-664
The type-2 inflammatory response that promotes asthma pathophysiology occurs in the absence of sufficient immunoregulation. Impaired regulatory T cell (Treg) function also predisposes to severe viral bronchiolitis in infancy, a major risk factor for asthma. Hence, we hypothesized that long-lived, aberrantly programmed Tregs causally link viral bronchiolitis with later asthma. Here we found that transient plasmacytoid dendritic cell (pDC) depletion during viral infection in early-life, which causes the expansion of aberrant Tregs, predisposes to allergen-induced or virus-induced asthma in later-life, and is associated with altered airway epithelial cell (AEC) responses and the expansion of impaired, long-lived Tregs. Critically, the adoptive transfer of aberrant Tregs (unlike healthy Tregs) to asthma-susceptible mice failed to prevent the development of viral-induced or allergen-induced asthma. Lack of protection was associated with increased airway epithelial cytoplasmic-HMGB1 (high-mobility group box 1), a pro-type-2 inflammatory alarmin, and granulocytic inflammation. Aberrant Tregs expressed lower levels of CD39, an ectonucleotidase that hydrolyzes extracellular ATP, a known inducer of alarmin release. Using cultured mouse AECs, we identify that healthy Tregs suppress allergen-induced HMGB1 translocation whereas this ability is markedly impaired in aberrant Tregs. Thus, defective Treg programming in infancy has durable consequences that underlie the association between bronchiolitis and subsequent asthma.  相似文献   

10.
Airway inflammation in asthma is characterized by activation of T helper type-2 (Th2) T cells, IgE production and eosinophilia. In many cases, this process is related to an inappropriate T cell response to environmental allergens, and other T cell-dependent pathways may also be involved (such as Th17). Regulatory T cells (Tregs) are T cells that suppress potentially harmful immune responses. Two major subsets of Treg are CD25hi, Foxp3+Tregs and IL-10-producing Tregs. There is evidence that the numbers or function of both subsets may be deficient in patients with atopic allergic disease. Recent work has extended these findings into the airway in asthma where Foxp3 expression was reduced and CD25hi Treg-suppressive function was deficient. In animal models of allergic airways disease, Tregs can suppress established airway inflammation and airway hyperresponsiveness, and protocols to enhance the development, recruitment and function of Tregs have been described. Together with studies of patients and in vitro studies of human T cells, these investigations are defining potential interventions to enhance Treg function in the airway in asthma. Existing therapies including corticosteroids and allergen immunotherapy act on Tregs, in part to increase IL-10 production, while vitamin D3 and long-acting β-agonists enhance IL-10 Treg function. Other possibilities may be enhancement of Treg function via histamine or prostanoid receptors, or by blocking pro-inflammatory pathways that prevent suppression by Tregs (activation of Toll-like receptors, or production of cytokines such as IL-6 and TNF-α). As Tregs can also suppress the potentially beneficial immune response important for controlling infections and cancer, a therapeutic intervention should target allergen- or site-specific regulation.  相似文献   

11.
Allergic diseases and asthma are caused by dysregulated Th2-type immune responses, which drive disease development in susceptible individuals. Immune tolerance to allergens prevents inflammatory symptoms in the respiratory mucosa and provides protection against inflammation in the airways. Increasing evidence indicates that Foxp3+ regulatory T cells (Tregs) play a critical role in immune tolerance and control Th2-biased responses. Tregs develop in the thymus from CD4+ T cells (natural Tregs) and also in the periphery by the conversion of naïve CD4+ T cells (induced Tregs). Increased susceptibility to allergy and airway inflammation is hypothesized to result from impaired development and function of Tregs. Thus, strategies to induce allergen-specific Tregs hold great promise for treatment and prevention of asthma.The incidence of chronic inflammatory lung diseases, such as asthma, has increased dramatically in recent years in industrialized countries. Asthma is characterized by airway hyperresponsiveness, chronic pulmonary eosinophilia, elevated serum IgE, excessive mucus production, and airway remodeling.1 These symptoms are believed to result from interactions between environmental stimuli and a variety of genes influencing immune and respiratory function. In susceptible individuals, environmental stimuli induce immune dysfunction, which drives Th2 responses to otherwise harmless antigens. Although it is clear that Th2 responses drive pathological changes in asthma, the mechanisms that develop in vivo to prevent Th2-driven inflammation in nonallergic individuals are not clear.The identification of reciprocally inhibitory functions of Th1 and Th2 cells led to the concept that a defect in Th1-type immune responses resulted in deregulated Th2 responses and increased incidence of allergic diseases. Based on this concept, the hygiene hypothesis was proposed, which posits that decreased exposure to Th1-inducing infections, such as mycobacteria and viruses, leads to unconstrained development of Th2 responses and increased incidence of allergic diseases.1,2 However, this simple explanation is insufficient to explain many experimental findings. First, Th1-responding cells are not always beneficial in allergic asthma and have been reported to contribute to and exacerbate this disease.3,4 For example, adoptive transfer of Th1 cells resulted in enhanced airway eosinophilia and Th2 responses.5 Similarly, inhaled recombinant interferon-γ did not significantly alter clinical symptoms in humans.6 Second, epidemiological data suggest a parallel increase in Th2-mediated allergic diseases and Th1-mediated autoimmune diseases, such as Type 1 diabetes, multiple sclerosis, and rheumatoid arthritis.7 These findings suggest that other regulatory mechanisms play a critical role in inhibiting the development of inappropriate Th2 (and Th1) responses.The respiratory mucosal surface is exposed to a vast quantity of environmental antigens, which challenge the immune system. Thus, the immune system must discriminate between, and appropriately respond to, both pathogenic and innocuous antigens. Under nonallergic circumstances, soluble proteins do not provoke a strong immune response, but instead induce a state of antigen-specific tolerance or hyporesponsiveness. T cell tolerance is achieved through central and peripheral mechanisms. Central tolerance encompasses deletion of T cells during negative selection, as well as selection of Tregs in the thymus. On the other hand, peripheral tolerance encompasses the mechanisms that lead to T cell tolerance to antigens; these include ignorance, deletion, anergy induction, and active suppression by CD4+Foxp3+ regulatory T cells (Tregs).There is growing evidence that Tregs play an important role in inhibiting Th2-mediated responses to allergens and maintaining immune tolerance. Studies in mouse models have shown that peripheral CD4+ T cell tolerance, induced by respiratory exposure to allergens, prevents the development of allergen-induced airway hyperresponsiveness.8 Likewise, we have reported that intravenous administration of soluble antigens results in antigen-specific anergy in Th2 cells and reduces airway inflammation.9 In this review we summarize current knowledge of Treg development and their role in the regulation of Th2-mediated allergic responses.  相似文献   

12.
Galectin-9 (Gal-9) ameliorates autoimmune reactions by suppressing Th17 cells while augmenting Foxp3+ regulatory T cells (Tregs). However, the exact mechanism of Gal-9-mediated immune modulation has been elusive. In a MOG-induced experimental allergic encephalomyelitis model using Gal-9−/− mice, we observed exacerbated inflammation and an increase in IL-17-producing Th17 cells balanced by a decrease in Foxp3+ Tregs. During in vitro Th17 skewing using TGF-β1 and IL-6, exogenous Gal-9 suppressed Th17 cell development and expanded Foxp3+ Tregs from naïve CD4 T cells in an IL-2-dependent manner. Although Gal-9 induced cell death in Tim3-expressing differentiated Th17 cells, Gal-9 suppressed Th17 development in a Tim-3-independent. Benzyl-α-GalNAc (an O-glycan biosynthesis inhibitor), but not swainsonine (a complex-type N-glycan biosynthesis inhibitor) abrogated Gal-9-mediated inhibition of Th17 development indicating that there is a linkage between Gal-9 and an unidentified glycoprotein(s) with O-linked β-galactosides that suppress Th17 development.  相似文献   

13.
14.
Introduction: Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL ?17A) expressing CD4+T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung.

Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017.

Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.  相似文献   

15.
16.
Multiple sclerosis (MS) has been proposed to be an immune‐mediated disease in the central nervous system (CNS) that can be triggered by virus infections. In Theiler's murine encephalomyelitis virus (TMEV) infection, during the first week (acute stage), mice develop polioencephalomyelitis. After 3 weeks (chronic stage), mice develop immune‐mediated demyelination with virus persistence, which has been used as a viral model for MS. Regulatory T cells (Tregs) can suppress inflammation, and have been suggested to be protective in immune‐mediated diseases, including MS. However, in virus‐induced inflammatory demyelination, although Tregs can suppress inflammation, preventing immune‐mediated pathology, Tregs may also suppress antiviral immune responses, leading to more active viral replication and/or persistence. To determine the role and potential translational usage of Tregs in MS, we treated TMEV‐infected mice with ex vivo generated induced Tregs (iTregs) on day 0 (early) or during the chronic stage (therapeutic). Early treatment worsened clinical signs during acute disease. The exacerbation of acute disease was associated with increased virus titers and decreased immune cell recruitment in the CNS. Therapeutic iTreg treatment reduced inflammatory demyelination during chronic disease. Immunologically, iTreg treatment increased interleukin‐10 production from B cells, CD4+ T cells and dendritic cells, which may contribute to the decreased CNS inflammation.  相似文献   

17.
T helper 17 (Th17) cells were first described as a novel T helper cell lineage independent from Th1 and Th2 subsets. Th17 cells play vital roles in inflammation and tumor immunity. It causes the dissipation of antitumor immunity and contribution to the survival of tumor cells, worsening tumor growth and metastasis. Tumor-infiltrating Th17 cells were seen innumerous cancers in mice and humans. There has been an association between intratumoral Th17 cell infiltration and both good and bad prognoses. Besides the protumoral roles defined for IL-17 andTh17 cells, several reports have shown that Th17 cells also drive antitumoral immunity. Various mechanisms by which Th17 cells control tumor growth are as following: recruitment of several immune cells including DCs, CD4+ T cells, and CD8+ T cells within tumors, activation of CD8+ T cells, and probably plasticity toward Th1 phenotype, related to IFN-γ and TNF-α production. Regulatory T cells (Tregs) have been exhibited to infiltrate human tumors and are believed to restrict antitumor immunity. The effect of Treg cells has been more controversial. Whereas some studies have proposed that a high density of Treg cells within the tumor associated with a poor clinical prognosis, other studies have presented a positive clinical prognosis, underlining the importance of elucidating the clinical significance of Treg cells further. Treg and Th17 cells play both positive and negative roles in regulating antitumor immune responses. In spite of the presence of these cells, yet some tumors develop and grow. These T cells by themselves are not adequate to efficiently mount antitumor immune responses.  相似文献   

18.
Coronary artery disease in patients with hypertension is increasing worldwide and leads to severe cardiovascular complications. The cellular and molecular mechanisms that underlie this pathologic condition are not well understood. Experimental and clinical research indicates that immune cells and inflammation play a central role in the pathogenesis of cardiovascular diseases. Recently, it has been reported that CD4(+)CD25(+) regulatory T cells (Tregs) regulate heart fibrosis in hypertension. In this study, we determined the role of Tregs in coronary arteriolar endothelial dysfunction in angiotensin II-dependent hypertensive mice. Mice infused with angiotensin II had significantly increased blood pressure, as determined using telemetry, and apoptotic Treg numbers, as measured using flow cytometry. The mice displayed inflammation, assessed by macrophage activation/infiltration into coronary arterioles and the heart, and increased local tumor necrosis factor-α release, which participates in reduced coronary arteriolar endothelial-dependent relaxation in response to acetylcholine using an arteriograph. Hypertensive mice injected with Tregs isolated from control mice had significantly reduced macrophage activation and infiltration, reduced tumor necrosis factor-α release, and improved coronary arteriolar endothelium-dependent relaxation. Our novel data indicate that Tregs are important in the development of coronary arteriolar endothelial dysfunction in hypertension. These results suggest a new direction in the investigation of vascular disease in hypertension and could lead to a therapeutic strategy that involves immune system modulation using Tregs.  相似文献   

19.
IL-33 is a new member of the IL-1 family that plays a role in inflammation. In this study, we evaluated the potential of IL-33 inhibition as a treatment for systemic lupus erythematosus (SLE) using the lupus-prone model MRL/lpr mice and the underlying mechanisms of action. We treated mice with anti-mouse IL-33 antibody (anti-IL-33Ab) via intraperitoneal injection every other day from week 14 until week 20 for 6 weeks. A control group received the same amount of IgG control. Renal damage and mouse survival were compared. Cytokines, antibodies, immune complex, Tregs, myeloid-derived suppressor cells (MDSCs), and Th17 cells were also analyzed. Correlations between serum IL-33 and SLE disease activity index in human SLE were also investigated. MRL/lpr mice treated with anti-IL-33Ab showed reduced proteinuria and reduced serum anti-dsDNA levels. Nephritis, immune complex deposits, and the circulating antibodies and immune complex besides the mortality were significantly reduced by anti-IL-33Ab. Anti-IL-33Ab remarkably increased Tregs and MDSCs and reduced the Th17 cells and IL-1β, IL-6, and IL-17 levels in MRL/lpr mice. These results suggest that IL-33 inhibition may inhibit SLE via expansion of Tregs and MDSCs and inhibition of Th17 cells and proinflammatory responses, indicating that blockade of IL-33 has a protective effect on SLE.  相似文献   

20.
Introduction: The balance between regulatory T cells (Tregs) and effector T help cells (Th cells) is critical for the control of adaptive immune response during nerve transplantation. However, whether the homeostasis of immune regulation between Tregs and Th cells requires toll-like receptor (TLR) signaling is unclear. The aim of this study is to profile the distribution of spleen Tregs and Th cells in a mouse model of nerve xenografting in the TLR2 and NF-κB gene knockout mice.Methods: The sciatic nerve was taken from a SD rat or an allogeneic mouse and transplanted to a right back leg of recipient C57BL/6, TLR2-/-, or NF-κB-/- mice by subcutaneous transplantation. After 7 days, the T lymphocytes were then isolated from spleen, stained with phenotyping kits, and analyzed by flow cytometry.Results: The results showed that Tregs were decreased after nerve xenografting in the recipient C57BL/6 mouse. In addition, nerve xenografting also increased the Th1 and Th17 but not the Th2 cell populations. In contrast, amelioration of the Tregs elimination was found in TLR2-/- and NF-κB-/- mice after transplantation of the nerve xenograft. Moreover, the mice lacking TLR2 or NF-κB showed attenuation of the increase in Th1 and Th17 cells after nerve xenografting.Conclusions: TLR signaling is involved in T cell population regulation during tissue transplantation. Knock-out of TLR2 and NF-κB prevented Tregs elimination and inhibited Th1- and Th17-driven immune response after nerve xenografting. This study highlighted the potential of inhibiting TLR signaling to modulate T cell-mediated immune regulation to facilitate tolerance to nerve transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号