首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human hearing loss is a common neurosensory disorder about which many basic research and clinically relevant questions are unresolved. At least 50% of hearing loss are due to a genetic etiology. Although hundreds of genes have been reported, there are still hundreds of related deafness genes to be found. Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual nonsyndromic sensorineural hearing loss. Whole‐exome sequencing (WES) identified lipoprotein receptor‐related protein 5 (LRP5), a member of the low‐density lipoprotein receptor family, as the causative gene in this family. In the zebrafish model, lrp5 downregulation using morpholinos led to significant abnormalities in zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. Rescue experiments showed that LRP5 mutation is associated with hearing loss. Knocking down lrp5 in zebrafish results in reduced expression of several genes linked to Wnt signaling pathway and decreased cell proliferation when compared with those in wild‐type zebrafish. In conclusion, the LRP5 mutation influences cell proliferation through the Wnt signaling pathway, thereby reducing the number of supporting cells and hair cells and leading to nonsyndromic hearing loss in this Chinese family.  相似文献   

2.
Autosomal dominant types of nonsyndromic hearing loss (ADNSHL) are typically postlingual in onset and progressive. High genetic heterogeneity, late onset age, and possible confounding due to nongenetic factors hinder the timely molecular diagnoses for most patients. In this study, exome sequencing was applied to investigate a large Chinese family segregating ADNSHL in which we initially failed to find strong evidence of linkage to any locus by whole‐genome linkage analysis. Two affected family members were selected for sequencing. We identified two novel mutations disrupting known ADNSHL genes and shared by the sequenced samples: c.328C>A in COCH (DFNA9) resulting in a p.Q110K substitution and a deletion c. 2814_2815delAA in MYO6 (DFNA22) causing a frameshift alteration p.R939Tfs*2. The pathogenicity of novel coding variants in ADNSHL genes was carefully evaluated by analysis of co‐segregation with phenotype in the pedigree and in light of established genotype–phenotype correlations. The frameshift deletion in MYO6 was confirmed as the causative variant for this pedigree, whereas the missense mutation in COCH had no clinical significance. The results allowed us to retrospectively identify the phenocopy in one patient that contributed to the negative finding in the linkage scan. Our clinical data also supported the emerging genotype–phenotype correlation for DFNA22.  相似文献   

3.
4.
Oculocutaneous albinism (OCA) is an autosomal‐recessive disorder of a defective melanin pathway. The condition is characterized by hypopigmentation of hair, dermis, and ocular tissue. Genetic studies have reported seven nonsyndromic OCA genes, among which Pakistani OCA families mostly segregate TYR and OCA2 gene mutations. Here in the present study, we investigate the genetic factors of eight consanguineous OCA families from Pakistan. Genetic analysis was performed through single‐nucleotide polymorphism (SNP) genotyping (for homozygosity mapping), whole exome sequencing (for mutation identification), Sanger sequencing (for validation and segregation analysis), and quantitative PCR (qPCR) (for copy number variant [CNV] validation). Genetic mapping in one family identified a novel homozygous deletion mutation of the entire TYRP1 gene, and a novel deletion of exon 19 in the OCA2 gene in two apparently unrelated families. In three further families, we identified homozygous mutations in TYR (NM_000372.4:c.1424G > A; p.Trp475*), NM_000372.4:c.895C > T; p.Arg299Cys), and SLC45A2 (NM_016180:c.1532C > T; p.Ala511Val). For the remaining two families, G and H, compound heterozygous TYR variants NM_000372.4:c.1037‐7T > A, NM_000372.4:c.1255G > A (p.Gly419Arg), and NM_000372.4:c.1255G > A (p.Gly419Arg) and novel variant NM_000372.4:c.248T > G; (p.Val83Gly), respectively, were found. Our study further extends the evidence of TYR and OCA2 as genetic mutation hot spots in Pakistani families. Genetic screening of additional OCA cases may also contribute toward the development of Pakistani specific molecular diagnostic tests, genetic counseling, and personalized healthcare.  相似文献   

5.
The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.  相似文献   

6.
In about 20% of non‐syndromic hearing loss (NSHL) cases, inheritance is autosomal dominant (ADNSHL). DIAPH1 mutations define the ADNSHL locus DFNA1. We identified two new families with heterozygous truncating DIAPH1 mutations (p.Ala1210Serfs*31 and p.Arg1213*). In contrast to the extensively studied original DFNA1 family, hearing loss was not confined to low frequencies, but congenital manifestation and rapid progression were confirmed. In line with a recent unrelated study, we identified an association with thrombocytopenia, reclassifying DFNA1 as a syndrome. Consequently, we suggest to include the blood count into the initial clinical workup of patients with autosomal dominant hearing loss to guide the genetic diagnosis. We provide the first data on DIAPH1 expression in the organ of Corti, where it localizes to the inner pillar cells, at the base of the outer hair cells. Homozygous truncating DIAPH1 mutations located N‐terminally to the DFNA1 mutations have recently been identified in autosomal recessive microcephaly. It is therefore noteworthy that we found DIAPH1 expression also in spiral ganglion neurons and in the barrier between the myelinating glia of the peripheral nervous system and oligodendrocytes that form the myelinating glia of the central nervous system (CNS).  相似文献   

7.
8.
Autosomal‐recessive nonsyndromic hearing loss (ARNSHL) features a high degree of genetic heterogeneity. Many genes responsible for ARNSHL have been identified or mapped. We previously mapped an ARNSHL locus at 17q12, herein designated DFNB99, in a consanguineous Chinese family. In this study, whole‐exome sequencing revealed a homozygous missense mutation (c.1259G>A, p.Arg420Gln) in the gene‐encoding transmembrane protein 132E (TMEM132E) as the causative variant. Immunofluorescence staining of the Organ of Corti showed Tmem132e highly expressed in murine inner hair cells. Furthermore, knockdown of the tmem132e ortholog in zebrafish affected the mechanotransduction of hair cells. Finally, wild‐type human TMEM132E mRNA, but not the mRNA carrying the c.1259G>A mutation rescued the Tmem132e knockdown phenotype. We conclude that the variant in TMEM132E is the most likely cause of DFNB99.  相似文献   

9.
Hereditary hearing impairment affects about 1 in 1000 newborns. In most cases hearing loss is non-syndromic with no other clinical features, while in other families deafness is associated with specific clinical abnormalities. Analysis of large families with non-syndromic and syndromic deafness have been used to identify genes or gene locations that cause hearing impairment. The present report describes a large Norwegian family with autosomal dominant non-syndromic, progressive high tone hearing loss with linkage to 1q21-q23. A maximum LOD score of 7.65 (theta = 0.00) was obtained with the microsatellite marker D1S196. Analysis of recombinant individuals maps the deafness gene (DFNA7) to a 22 cM region between D1S104 and D1S466. The region contains several attractive candidate genes. This report supports the idea of extensive genetic heterogeneity in hereditary hearing impairment and represents the first localization of a deafness gene in a Norwegian family.   相似文献   

10.
The fimbrin protein family contains a variety of proteins, among which Plastin1 (PLS1) is an important member. According to recent studies, variations in the coding region of the PLS1 gene are associated with the development of deafness. However, the molecular mechanism of deafness caused by PLS1 gene variants remains unknown. Whole-exome sequencing was performed on hearing-impaired family members and hearing family members to identify pathogenic variants, followed by Sanger sequencing. A minigene assay was conducted to investigate the effect of the variant on PLS1 mRNA splicing. The pathogenicity of the variant was further investigated in zebrafish. RNA-sequencing (RNA-seq) was performed to analyze the dysregulation of downstream signaling pathways caused by knockdown of PLS1 expression. We identified a novel variant, PLS1 c.981+1G>A, in a large Chinese family with hearing loss and showed that the variant is responsible for the occurrence of hearing loss by inducing exon 8 skipping. The variant caused abnormal inner ear phenotypes, characterized by decreases in the mean otolith distance, anterior otolith diameter, posterior otolith diameter, cochlear diameter, and swimming speed and distance in zebrafish. Furthermore, silencing PLS1 expression significantly upregulated the expression of genes in the PI3K-Akt signaling pathway, including Col6a3, Spp1, Itgb3 and hepatocyte growth factor (Hgf). PLS1 c.981+1G>A is a novel pathogenic variant causing hearing loss by inducing exon 8 skipping. Upregulation of the expression of genes in the PI3K-Akt signaling pathway plays an important role in the pathogenesis caused by variants in the PLS1 gene.  相似文献   

11.
We report the case of a 12-year-old girl and her father who both had marked postnatal tall stature, camptodactyly and clinodactyly, scoliosis and juvenile-onset hearing loss. The CATSHL (CAmptodactyly – Tall stature – Scoliosis – Hearing Loss syndrome) syndrome was suspected, and molecular analysis revealed a hitherto unreported, monoallelic variant c.1861C>T (p.Arg621Cys) in FGFR3. This variant affects the same residue, but is different than, the variant p.Arg621His reported in the two families with dominant CATSHL described so far. Interestingly, peg-shaped incisors were observed in the proband, a feature never reported in CATSHL but typical of another FGFR3-related condition, LADD (Lacrimo – Auricolo – Dento – Digital) syndrome. The FGFR3 p.Arg621Cys variant seems to be a newly identified cause of CATSHL syndrome with some phenotypic overlap with the LADD syndrome.  相似文献   

12.
Mutations in the TMPRSS3 gene are known to cause autosomal recessive non-syndromic hearing impairment (ARNSHI). After undergoing a genome scan, 10 consanguineous Pakistani families with ARNSHI were found to have significant or suggestive evidence of linkage to the TMPRSS3 region. In order to elucidate if the TMPRSS3 gene is responsible for ARNSHI in these families, the gene was sequenced using DNA samples from these families. Six TMPRSS3 variants were found to cosegregate in 10 families. None of these variants were detected in 500 control chromosomes. Four novel variants, three of which are missense [c.310G>A (p.Glu104Lys), c.767C>T (p.Ala256Val) and c.1273T>C (p.Cys425Arg)] and one nonsense [c.310G>T (p.Glu104Stop)], were identified. The pathogenicity of novel missense variants was investigated through bioinformatics analyses. Additionally, the previously reported deletion c.208delC (p.His70ThrfsX19) was identified in one family and the known mutation c.1219T>C (p.Cys407Arg) was found in five families, which makes c.1219T>C (p.Cys407Arg) as the most common TMPRSS3 mutation within the Pakistani population. Identification of these novel variants lends support to the importance of elements within the low-density lipoprotein receptor A (LDLRA) and serine protease domains in structural stability, ligand binding and proteolytic activity for proper TMPRSS3 function within the inner ear.  相似文献   

13.
Distal hereditary motor neuropathies (dHMNs) comprise a group of clinically and genetically heterogeneous inherited lower motor neuron syndromes mainly characterized by a distal-predominant pattern of progressive muscle atrophy, weakness and hyporeflexia, without sensory dysfunction. Although at least 21 causative genes for dHMN have been reported, mutational scanning of these genes often fails to identify the causative variants in dHMN cohorts, suggesting that additional causative genes remain to be identified. We studied a four-generation pedigree of a Japanese family with autosomal dominant dHMN to provide insight into the pathogenetic basis of the disease. Neurological examinations were performed on all six family members enrolled in this study. Whole-exome sequencing (WES) was used to identify the causative gene for dHMN. The clinical features of the patients included muscle weakness with distal extensor dominancy in the lower extremities, accompanied by facial and neck flexor muscle impairment, no sensory involvement, and areflexia. Nerve conduction studies demonstrated axonal changes mainly in the peroneal nerve. WES combined with rigorous filtering revealed three missense variants (NM_001083964: c.851G > A [p.Arg284His] in TDRKH, NM_002858: c.1654G > T [p.Gly552Cys] in ABCD3, NM_001005164: c.898A > T [p.Ile300Phe], in OR52E2). The variant in TDRKH is located in a conserved region of the tudor domain which is also present in the survival of motor neuron (SMN) protein, encoded by the SMN1 gene. Therefore, we concluded the variant in TDRKH is likely to be responsible for dHMN in our pedigree.  相似文献   

14.
An audioprofile displays phenotypic data from several audiograms on a single graph that share a common genotype. In this report, we describe the application of audioprofiling to a large family in which a genome-wide screen failed to identify a deafness locus. Analysis of audiograms by audioprofiling suggested that two persons with hearing impairment had a different deafness genotype. On this basis, we reassigned affectation status and identified a p.Cys1837Arg autosomal dominant mutation in alpha-tectorin segregating in all family members except two persons, who segregated autosomal recessive deafness caused by p.Val37Ile and p.Leu90Pro mutations in Connexin 26. One nuclear family in the extended pedigree segregates both dominant and recessive non-syndromic hearing loss.  相似文献   

15.
16.
The ZNF142 gene on chromosome 2q35 contains ten exons and encodes a zinc finger protein 142 with 31 C2H2-type zinc fingers domain. Pathogenic variants in ZNF142 result in an autosomal recessive neurodevelopmental disorder with impaired speech and developmental delay. Here, we report two novel variants (NM_001105537: c.25C > T/c.1741C > T, p.Gln9*/p.Arg581Cys) in ZNF142 in an Iranian family identified by Whole-Exome sequencing and confirmed by Sanger sequencing. These variants are categorized as “pathogenic” and “variant of unknown significance” based on the standards for the interpretation of sequence variations recommended by ACMG, respectively. The proband is a five-year-old male born to consanguineous parents. The compound heterozygous variant (NM_001105537: c.25C > T/c.1741C > T, p.Gln9*/p.Arg581Cys) in ZNF142 was identified in the proband with moderate intellectual disability, global developmental delay, speech impairment, and seizures. This paper reported the sixth family in the world with novel pathogenic variants in the ZNF142 gene as the reason for neurodevelopmental Disorder with Impaired Speech and Hyperkinetic Movements (NEDISHM) and determining the phenotype spectrum of this disease. In this study, we also reviewed the phenotype of the former cases. In contrast to the Malaysian cases, proband in the present paper does not manifest any facial features similar to the patients in the initial study. Further studies on the NEDISHM patients could be valuable to determine the phenotype precisely.  相似文献   

17.
Autosomal recessive axonal neuropathy with neuromyotonia (ARAN-NM) is a rare form of hereditary neuropathy. Mutations in HINT1 gene have been identified to be the cause of this disorder. We report two unrelated patients who presented gait impairment, progressive distal muscle weakness and atrophy, neuromyotonia and foot deformities. Electrophysiological studies showed axonal motor neuropathy and neuromyotonic discharges. Using Next-generation sequencing, we identified two homozygous mutations, NM_005340.6: c.112T?>?C; p.(Cys38Arg) and NM_005340.6: c.289G?>?A; p.(Val97Met) in HINT1 gene. Based on the clinical presentation and molecular genetic analyses, ARAN-NM was diagnosed in both patients and NM_005340.6: c.112T?>?C; p.(Cys38Arg) and NM_005340.6: c.289G?>?A; p.(Val97Met) in HINT1 gene were believe to be causative for the disorder.  相似文献   

18.
Many forms of autosomal dominant non-syndromic hearing impairment are known. While the underlying gene defects and causative mutations have been discovered for some forms, the gene responsible for DFNA4 has remained elusive to date. Examination of a German four-generation kindred led to the identification of a 1.44 Mb map segment in contig NT_011109 as being the most likely DFNA4 candidate region in 19q13.33. The recombination breakpoints in this family and the intervals of two previously reported DFNA4 families allowed us to delineate a minimum consensus region between the markers D19S879 and D19S246. In our family, a maximum two-point LOD score of 4.5 was obtained at theta =0 for the marker D19S867. Within the refined DFNA4 interval the public databases list more than 50 genes, from which several appear to be promising DFNA4 candidates due to similarities with animal models and with other causative genes involved in hearing disability.Abbreviations DFNA Deafness, autosomal dominant - DFNB Deafness, autosomal recessive  相似文献   

19.
Autosomal recessive non‐syndromic hearing loss (ARNSHL) is a highly heterogeneous genetic condition. PDZD7 has emerged as a new genetic etiology of ARNSHL. Biallelic mutations in the PDZD7 gene have been reported in two German families, four Iranian families, and a Pakistani family with ARNSHL. The effect of PDZD7 on ARNSHL in other population has yet to be elucidated. Two Chinese ARNSHL families, each of which had two affected siblings, were included in this study. The families underwent target region capture and high‐throughput sequencing to analyze the exonic, splice‐site, and intronic sequences of 128 genes. Furthermore, 1751 normal Chinese individuals served as controls, and 122 Chinese families segregating with apparent ARNSHL, who had been previously excluded for variants in the common deafness genes GJB2 and SLC26A4, were subjected to screening for candidate mutations. We identified a novel homozygous missense mutation (p.Arg66Leu) and novel compound heterozygous frameshift mutations (p.Arg56fsTer24 and p.His403fsTer36) in Chinese families with ARNSHL. This is the first report to identify PDZD7 as an ARNSHL‐associated gene in the Chinese population. Our finding could expand the pathogenic spectrum and strengthens the clinical diagnostic role of the PDZD7 gene in ARNSHL patients.  相似文献   

20.
We investigated 313 unrelated subjects who presented with hearing loss to identify the novel genetic causes of this condition in Brazil. Causative GJB2/GJB6 mutations were found in 12.7% of the patients. Among the familial cases (100/313), four were selected for exome sequencing. In one case, two novel heterozygous variants were found and were predicted to be pathogenic based on bioinformatics tools, that is, p.Ser906* (MYO6) and p.Arg42Cys (GJB3). We confirmed that this nonsense MYO6 mutation segregated with deafness in this family. Only the proband and her unaffected mother exhibited the GJB3 mutation, which is in the same amino acid of a known Erythrokeratodermia variabilis mutation. None of the patients exhibited this skin disease, but the proband exhibited a more severe hearing loss. Hence, the GJB3 mutation was considered to be a variant of uncertain significance. In conclusion, we described a novel nonsense MYO6 mutation that was responsible for the hearing loss in a Brazilian family. This mutation resides in the neck domain of myosin‐VI after the motor domain. Thus, our data give further support for genotype‐phenotype correlations, which state that when the motor domain of the protein is functioning, the hearing loss is milder and has a later onset. The three remaining families without mutations in the known genes suggest that there are still deafness genes to be revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号