首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Noonan syndrome (NS, OMIM 163950) is a common autosomal dominant RASopathy caused mainly by gain‐of‐function germline pathogenic variants in genes involved in the RAS/MAPK signaling pathway. LZTR1 gene has been associated with both dominant and recessive NS. Here, we present seven patients with NS and variants in the LZTR1 gene from seven unrelated families, 14 individuals in total. The detection rAte of LZTR1 variants in our NS cohort was 4% similar to RAF1 and KRAS genes, indicating that variants in this gene might be frequent among our population. Three different variants were detected, c.742G>A (p.Gly248Arg), c.360C>A (p.His120Gln), and c.2245T>C (p.Tyr749His). The pathogenic variant c.742G>A (p.Gly248Arg) was found in five/seven patients. In our cohort 50% of patients presented heart defects and neurodevelopment delay or learning disabilities, short stature was present in 21% of them and one patient had acute lymphoblastic leukemia. This study broadens the spectrum of variants in the LZTR1 gene and provides increased knowledge of the clinical phenotypes observed in Argentinean NS patients.  相似文献   

3.
4.
Noonan syndrome (NS) is a common autosomal dominant/recessive disorder. No large-scale study has been conducted on NS in China, which is the most populous country in the world. Next-generation sequencing (NGS) was used to identify pathogenic variants in patients that exhibited NS-related phenotypes. We assessed the facial features and clinical manifestations of patients with pathogenic or likely pathogenic variants in the RAS-MAPK signaling pathway. Gene-related Chinese NS facial features were described using artificial intelligence (AI).NGS identified pathogenic variants in 103 Chinese patients in eight NS-related genes: PTPN11 (48.5%), SOS1 (12.6%), SHOC2 (11.7%), KRAS (9.71%), RAF1 (7.77%), RIT1 (6.8%), CBL (0.97%), NRAS (0.97%), and LZTR1 (0.97%). Gene-related facial representations showed that each gene was associated with different facial details. Eight novel pathogenic variants were detected and clinical features because of specific genetic variants were reported, including hearing loss, cancer risk due to a PTPN11 pathogenic variant, and ubiquitous abnormal intracranial structure due to SHOC2 pathogenic variants. NGS facilitates the diagnosis of NS, especially for patients with mild/moderate and atypical symptoms. Our study describes the genotypic and phenotypic spectra of NS in China, providing new insights into distinctive clinical features due to specific pathogenic variants.  相似文献   

5.
Dominant mutations in the MYH7 and MYBPC3 genes are common causes of inherited cardiomyopathies, which often demonstrate variable phenotypic expression and incomplete penetrance across family members. Biallelic inheritance is rare but allows gaining insights into the genetic mode of action of single variants. Here, we present three cases carrying a loss‐of‐function (LoF) variant in a compound heterozygous state with a missense variant in either MYH7 or MYBPC3 leading to severe cardiomyopathy with left ventricular noncompaction. Most likely, MYH7 haploinsufficiency due to one LoF allele results in a clinical phenotype only in compound heterozygous form with a missense variant. In contrast, haploinsufficiency in MYBPC3 results in a severe early‐onset ventricular noncompaction phenotype requiring heart transplantation when combined with a de novo missense variant on the second allele. In addition, the missense variant may lead to an unstable protein, as overall only 20% of the MYBPC3 protein remain detectable in affected cardiac tissue compared to control tissue. In conclusion, in patients with early disease onset and atypical clinical course, biallelic inheritance or more complex variants including copy number variations and de novo mutations should be considered. In addition, the pathogenic consequence of variants may differ in heterozygous versus compound heterozygous state.  相似文献   

6.
Developmental and epileptic encephalopathies are genetic disorders in which both the developmental disability and the frequent epileptic activity are the effect of a specific gene variant. While heterozygous variants in SCN1B have been described in families with generalized epilepsy with febrile seizures plus, Type 1, only three cases of homozygous, missense variants in SCN1B have been reported in association with autosomal recessive inheritance of a severe developmental and epileptic encephalopathy. We present two siblings who are homozygous for a novel, missense variant in SCN1B, c.265C>T, predicting p.Arg89Cys. The proband is an 11‐year‐old female with infantile‐onset, fever‐induced, intractable generalized tonic–clonic seizures, myoclonic seizures, and developmental slowing and autism spectrum disorder occurring later in the course of the disease. Her 4‐year‐old brother had a similar epilepsy phenotype, but still displays normal development. This variant has not been previously reported in the homozygous state in control databases. The variant was predicted to be damaging and occurred in the vicinity of other epileptic encephalopathy‐associated missense variants that are biallelic and located in the extracellular immunoglobulin loop domain of the protein, which mediates interaction of the beta‐1 subunit with cellular adhesion molecules. Our report is the first set of siblings with homozygosity for the p.Arg89Cys variant in SCN1B and further implicates biallelic mutations in this gene as a cause of epileptic encephalopathy mimicking Dravet syndrome. Interestingly, the phenotype we observed was milder compared to that previously described in patients with recessive SCN1B mutations.  相似文献   

7.
Total fertilization failure (TFF), which refers to fertilization failure in all mature oocytes, accounting for 5%–10% of in vitro fertilization (IVF) cycles and 1%–3% of intracytoplasmic sperm injection (ICSI) cycles in human. In this study, we recruited three unrelated primary infertile men with repeated cycles of TFF and performed whole-exome sequencing to identify the potential pathogenic variants. We identified homozygous or compound-heterozygous variants of paternal-effect genes ACTL7A and PLCZ1 that followed a Mendelian recessive inheritance pattern. Novel homozygous nonsense variant in ACTL7A [c.C146G: p.S49*] was identified in case 1, who came from a consanguineous family. Ultrastructural observation of ACTL7A-mutated spermatozoa by transmission electron microscopy (TEM) indicated that apparent increased thickness of perinuclear matrix and the acrosome was detached from the nuclear envelop. Besides, two novel compound-heterozygous variants in PLCZ1 were identified in case 2 [c.1174+3A>C:p.?; c.A1274G:p.N425S] and case 3 [c.136-1G>C:p.?; c.G1358A:p.G453D]. Mutated spermatozoa from case 2 with reduced expression of PLCZ1 showed apparent acrosome detachment by TEM analysis. And ICSI with assisted oocyte activation (ICSI-AOA) treatment can partly rescue the TFF. Taken together, our findings revealed that novel biallelic variants in the paternal-effect genes ACTL7A and PLCZ1 were associated with human TFF, which expanding the spectrum of genetic causes and facilitating the genetic diagnosis of male infertility with TFF.  相似文献   

8.
Noonan syndrome is characterized by variable phenotypic expressivity with characteristic dysmorphic facial features, varying degrees of intellectual disability, developmental delay, short stature, and congenital heart defects in 50–80%. Other findings include a webbed neck, cryptorchidism, coagulation defects and eye abnormalities.Thus far, Noonan syndrome has mainly been attributed to heterozygous pathogenic variants in 10+ different genes, with the rare exception of cases due to biallelic pathogenic variants in LZTR1. Recently, homozygous loss-of-function variants in SPRED2 have been identified as a cause of a recessive Noonan syndrome-like phenotype. We present the phenotypes of two additional patients with homozygosity for a previously unreported loss-of-function variant in SPRED2, thereby adding relevant clinical information about the recently described Noonan syndrome-like SPRED2-related phenotype.  相似文献   

9.
NADH‐cytochrome b5 reductase 3 deficiency is an important genetic cause of recessive congenital methemoglobinemia (RCM) and occurs worldwide in autosomal recessive inheritance. In this Mutation Update, we provide a comprehensive review of all the pathogenic mutations and their molecular pathology in RCM along with the molecular basis of RCM in 21 new patients from the Indian population, including four novel variants: c.103A>C (p.Thr35Pro), c.190C>G (p.Leu64Val), c.310G>T (p.Gly104Cys), and c.352C>T (p.His118Tyr). In this update, over 78 different variants have been described for RCM globally. Molecular modeling of all the variants reported in CYB5R3 justifies association with the varying severity of the disease. The majority of the mutations associated with the severe form with a neurological disorder (RCM Type 2) were associated with the FAD‐binding domain of the protein while the rest were located in another domain of the protein (RCM Type 1).  相似文献   

10.
Mutations in the gene coding for the skeletal muscle Cl? channel (CLCN1) lead to dominant or recessive myotonia. Here, we identified and characterized CLCN1 mutations in Costa Rican patients, who had been clinically diagnosed with myotonic dystrophy type 1 but who were negative for DM1 mutations. CLCN1 mutations c.501C>G, p.F167L and c.1235A>C, p.Q412P appeared to have recessive inheritance but patients had atypical clinical phenotypes; c.313C>T, p.R105C was found in combination with c.501C>G, p.F167L in an apparently recessive family and the c.461A>G, p.Q154R variant was associated with a less clear clinical picture. In Xenopus oocytes, none of the mutations exhibited alterations of fast or slow gating parameters or single channel conductance, and mutations p.R105C, p.Q154R, and p.F167L were indistinguishable from wild‐type (WT). p.Q412P displayed a dramatically reduced current density, surface expression and exerted no dominant negative effect in the context of the homodimeric channel. Fluorescently tagged constructs revealed that p.Q412P is expressed inefficiently. Our study confirms p.F167L and p.R105C as myotonia mutations in the Costa Rican population, whereas p.Q154R may be a benign variant. p.Q412P most likely induces a severe folding defect, explaining the lack of dominance in patients and expression systems, but has WT properties once expressed in the plasma membrane.  相似文献   

11.
Setleis syndrome (SS), or focal facial dermal dysplasia type III (FFDD3, MIM #227260), is an autosomal recessive condition caused by biallelic loss-of-function variants in TWIST2. It is characterized by bitemporal atrophic skin lesions and distinctive facial features. Individuals with de novo or inherited duplication or triplication of the chromosomal region 1p36.22p36.21 have also been reported to have the SS phenotype with additional neurodevelopmental challenges (rarely seen in individuals with TWIST2 mutations) and variable expressivity and penetrance. Triplication of this region is also associated with more severe manifestations compared to a duplication. We report a 2-year-old female patient with features of SS associated with a de novo 3.603 Mb triplication at 1p36.23p36.22 identified on postnatal microarray analysis. Her triplication shares a 281.263 kb overlap with gains at 1p36.22, reported by previous groups, delineating the shortest region of overlap (SRO) to date. This SRO involves 10 RefSeq and 4 OMIM morbid map genes and highlights the candidate dosage-sensitive element(s) underlying the cardinal features of SS phenotype in individuals with gains at 1p36.  相似文献   

12.
CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.  相似文献   

13.
Biallelic PDE6C mutations are a known cause for rod monochromacy, better known as autosomal recessive achromatopsia (ACHM), and early‐onset cone photoreceptor dysfunction. PDE6C encodes the catalytic α′‐subunit of the cone photoreceptor phosphodiesterase, thereby constituting an essential part of the phototransduction cascade. Here, we present the results of a study comprising 176 genetically preselected patients who remained unsolved after Sanger sequencing of the most frequent genes accounting for ACHM, and were subsequently screened for exonic and splice site variants in PDE6C applying a targeted next generation sequencing approach. We were able to identify potentially pathogenic biallelic variants in 15 index cases. The mutation spectrum comprises 18 different alleles, 15 of which are novel. Our study significantly contributes to the mutation spectrum of PDE6C and allows for a realistic estimate of the prevalence of PDE6C mutations in ACHM since our entire ACHM cohort comprises 1,074 independent families.  相似文献   

14.
Congenital heart defects and skeletal malformations syndrome (CHDSKM) is a rare autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. CHDSKM is caused by germline mutations in ABL1. To date, three variants have been in association with CHDSKM. In this study, we describe three de novo missense variants, c.407C>T (p.Thr136Met), c.746C>T (p.Pro249Leu), and c.1573G>A (p.Val525Met), and one recurrent variant, c.1066G>A (p.Ala356Thr), in six patients, thereby expanding the phenotypic spectrum of CHDSKM to include hearing impairment, lipodystrophy‐like features, renal hypoplasia, and distinct ocular abnormalities. Functional investigation of the three novel variants showed an increased ABL1 kinase activity. The cardiac findings in additional patients with p.Ala356Thr contribute to the accumulating evidence that patients carrying either one of the recurrent variants, p.Tyr245Cys and p.Ala356Thr, have a high incidence of cardiac abnormalities. The phenotypic expansion has implications for the clinical diagnosis of CHDSKM in patients with germline ABL1 variants.  相似文献   

15.
《Genetics in medicine》2015,17(11):901-911
PurposeThis study was designed to delineate genetic contributions, if any, to sporadic forms of mild to moderate sensorineural hearing loss (SNHL) not related to GJB2 mutations (DFNB1) in a pediatric population.MethodsWe recruited 11 non-DFNB1 simplex cases of mild to moderate SNHL in children. We applied whole-exome sequencing to all 11 probands. We used a filtering strategy assuming that de novo variants of known autosomal dominant (AD) deafness genes, biallelic mutations in autosomal recessive (AR) genes, monoallelic mutations in X chromosome genes for males, and digenic inheritance could be associated. Candidate variants first were prioritized with allele frequency in public databases and confirmed by a phase or a segregation test in each family. Additional information from the literature or public databases was used to identify strong candidate variants.ResultsStrong candidate variants were detected in 5 of 11 probands (45.4%). A diverse mode of inheritance implicated the sporadic occurrence of the phenotype. AR mutations in OTOGL and SERPINB6 and digenic inheritance involving two deafness genes, GPR98 and PDZ7, were detected. A de novo AD mutation also was detected in TECTA and MYH14. No syndromic feature was detected in individuals with GPR98/PDZ7 or MYH14 variants in our cohort at this moment.ConclusionMild to moderate pediatric SNHL, even if sporadic, features a strong genetic etiology and can manifest via diverse modes of inheritance. In addition, a multidisciplinary approach should be used for a correct diagnosis.Genet Med17 11, 901–911.  相似文献   

16.
KIF1A is a neuron‐specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type‐2. Here, we report 11 heterozygous de novo missense mutations (p.S58L, p.T99M, p.G102D, p.V144F, p.R167C, p.A202P, p.S215R, p.R216P, p.L249Q, p.E253K, and p.R316W) in KIF1A in 14 individuals, including two monozygotic twins. Two mutations (p.T99M and p.E253K) were recurrent, each being found in unrelated cases. All these de novo mutations are located in the motor domain (MD) of KIF1A. Structural modeling revealed that they alter conserved residues that are critical for the structure and function of the MD. Transfection studies suggested that at least five of these mutations affect the transport of the MD along axons. Individuals with de novo mutations in KIF1A display a phenotype characterized by cognitive impairment and variable presence of cerebellar atrophy, spastic paraparesis, optic nerve atrophy, peripheral neuropathy, and epilepsy. Our findings thus indicate that de novo missense mutations in the MD of KIF1A cause a phenotype that overlaps with, while being more severe, than that associated with recessive mutations in the same gene.  相似文献   

17.
《Genetics in medicine》2021,23(9):1715-1725
PurposeTo investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development.MethodsWe assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype–phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b.ResultsShared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye.ConclusionWe propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.  相似文献   

18.
Greenberg skeletal dysplasia is an autosomal recessive, perinatal lethal disorder associated with biallelic variants affecting the lamin B receptor (LBR) gene. LBR is also associated with the autosomal recessive anadysplasia‐like spondylometaphyseal dysplasia, and the autosomal dominant Pelger–Huët anomaly, a benign laminopathy characterized by anomalies in the nuclear shape of blood granulocytes. The LBR is an inner nuclear membrane protein that binds lamin B proteins (LMNB1 and LMNB2), interacts with chromatin, and exerts a sterol reductase activity. Here, we report on a novel LBR missense variant [c.1379A>G; p.(D460R)], identified by whole exome sequencing and causing Greenberg dysplasia in two fetuses from a consanguineous Moroccan family. We revised published LBR variants to propose a genotype–phenotype correlation in LBR associated diseases. The diverse phenotypes are correlated to the functional domain affected, the heterozygous or homozygous state of the variants, and their different impact on the residual protein function. LBR represents an instructive example of one gene presenting with two different patterns of inheritance and at least three different clinical phenotypes.  相似文献   

19.
Phenotype analysis of the Noonan syndrome (NS) related to RAF1 mutations demonstrates that a high proportion of cases exhibit severe lymphatic dysplasia and congenital heart disease, especially hypertrophic cardiomyopathy. Because of the difficulty of fetal phenotypic assessment, the percentage of cases with multisystemic prenatal presentation as well as the phenotypic variability may be underestimated. We describe a 35 weeks male preterm infant presenting with de novo missense mutation NM_002880.4(RAF1):c.770C>T (p.Ser257Leu), whose death occurred following birth. Antenatal ultrasound showed polyhydramnios, severe ascites, and tongue protrusion. Autopsy revealed multiple congenital anomalies including intrauterine growth restriction, hydrops fetalis, characteristic facial dysmorphia, short and webbed neck, hypertrichosis, severe lungs hypoplasia, thymic hyperplasia, hepato-splenomegaly, bilateral mild uretero-hydronephrosis, and mild pontocerebellar hypoplasia. Histology revealed increased hepatic hematopoiesis and iron deposits. This report confirms that NS may be associated with multisystem involvement and provides further evidence for the wide phenotypic variability associated with RAF1 variants.  相似文献   

20.
MUTYH‐associated polyposis (MAP) is an adenomatous polyposis transmitted in an autosomal‐recessive pattern, involving biallelic inactivation of the MUTYH gene. Loss of a functional MUTYH protein will result in the accumulation of G:T mismatched DNA caused by oxidative damage. Although p.Y179C and p.G396D are the two most prevalent MUTYH variants, more than 200 missense variants have been detected. It is difficult to determine whether these variants are disease‐causing mutations or single‐nucleotide polymorphisms. To understand the functional consequences of these variants, we generated 47 MUTYH gene variants via site‐directed mutagenesis, expressed the encoded proteins in MutY‐disrupted Escherichia coli, and assessed their abilities to complement the functional deficiency in the E. coli by monitoring spontaneous mutation rates. Although the majority of variants exhibited intermediate complementation relative to the wild type, some variants severely interfered with this complementation. However, some variants retained functioning similar to the wild type. In silico predictions of functional effects demonstrated a good correlation. Structural prediction of MUTYH based on the MutY protein structure allowed us to interpret effects on the protein stability or catalytic activity. These data will be useful for evaluating the functional consequences of missense MUTYH variants detected in patients with suspected MAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号