首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental glaucoma can occur as an isolated or syndromic condition and is genetically heterogeneous. We describe a three‐generation family affected with developmental glaucoma, myopia, and/or retinal defects associated with variable craniofacial/dental, auditory, brain, renal, and limb anomalies. Whole‐exome sequencing identified a heterozygous c.124T> C, p.(Trp42Arg) allele in ADAMTSL1; cosegregation analysis confirmed the presence of this allele in four affected family members. The mutation affects a highly conserved residue and is strongly predicted to have a deleterious effect on protein function. Trp42 is normally modified by protein C‐mannosylation, an unusual post‐translational modification. Comparison of ADAMTSL1‐WT (also known as punctin‐1) and ADAMTSL1‐p.Trp42Arg in vitro demonstrated that the latter was not secreted from transfected cells but retained intracellularly. Moreover, ADAMTSL1‐p.Trp42Arg reduced secretion of cotransfected wild‐type ADAMTSL1, suggesting a dominant negative effect for this mutation. These data imply a multisystem role for ADAMTSL1 and present the first disease‐associated variant affecting a C‐mannosylation motif.  相似文献   

2.
Genetic investigations were performed in three brothers from a consanguineous union, the two oldest diagnosed with rod-cone dystrophy (RCD), the youngest with early-onset cone-rod dystrophy and the two youngest with nephrotic-range proteinuria. Targeted next-generation sequencing did not identify homozygous pathogenic variant in the oldest brother. Whole exome sequencing (WES) applied to the family identified compound heterozygous variants in CC2D2A (c.2774G>C p.(Arg925Pro); c.4730_4731delinsTGTATA p.(Ala1577Valfs*5)) in the three brothers with a homozygous deletion in CNGA3 (c.1235_1236del p.(Glu412Valfs*6)) in the youngest correcting his diagnosis to achromatopsia plus RCD. None of the three subjects had cerebral abnormalities or learning disabilities inconsistent with Meckel-Gruber and Joubert syndromes, usually associated with CC2D2A mutations. Interestingly, an African woman with RCD shared the CC2D2A missense variant (c.2774G>C p.(Arg925Pro); with c.3182+355_3825del p.(?)). The two youngest also carried compound heterozygous variants in CUBN (c.7906C>T rs137998687 p.(Arg2636*); c.10344C>G p.(Cys3448Trp)) that may explain their nephrotic-range proteinuria. Our study identifies for the first time CC2D2A mutations in isolated RCD and underlines the power of WES to decipher complex phenotypes.  相似文献   

3.
4.
Dominant mutations in PIEZO2, which codes for the principal mechanotransduction channel for proprioception and touch sensation, have been found to cause different forms of distal arthrogryposis. Some observations suggest that these dominant mutations induce a gain‐of‐function effect on the channel. Here, we report a consanguineous family with three siblings who showed short stature, scoliosis, gross motor impairment, and a progressive form of contractures involving the distal joints that is distinct from that found in patients with dominant mutations in PIEZO2. These siblings also displayed deficits in proprioception and touch sensation. Whole‐exome sequencing performed in the three affected siblings revealed the presence of a rare homozygous variant (c.2708C>G; p.S903*) in PIEZO2. This variant is predicted to disrupt PIEZO2 function by abolishing the pore domain. Sanger sequencing confirmed that all three siblings are homozygous whereas their parents and an unaffected sibling are heterozygous for this variant. Recessive mutations in PIEZO2 thus appear to cause a progressive phenotype that overlaps with, while being mostly distinct from that associated with dominant mutations in the same gene.  相似文献   

5.
Corneal dystrophies are a clinically and genetically heterogeneous group of inherited disorders that bilaterally affect corneal transparency. They are defined according to the corneal layer affected and by their genetic cause. In this study, we identified a dominantly inherited epithelial recurrent erosion dystrophy (ERED)‐like disease that is common in northern Sweden. Whole‐exome sequencing resulted in the identification of a novel mutation, c.2816C>T, p.T939I, in the COL17A1 gene, which encodes collagen type XVII alpha 1. The variant segregated with disease in a genealogically expanded pedigree dating back 200 years. We also investigated a unique COL17A1 synonymous variant, c.3156C>T, identified in a previously reported unrelated dominant ERED‐like family linked to a locus on chromosome 10q23‐q24 encompassing COL17A1. We show that this variant introduces a cryptic donor site resulting in aberrant pre‐mRNA splicing and is highly likely to be pathogenic. Bi‐allelic COL17A1 mutations have previously been associated with a recessive skin disorder, junctional epidermolysis bullosa, with recurrent corneal erosions being reported in some cases. Our findings implicate presumed gain‐of‐function COL17A1 mutations causing dominantly inherited ERED and improve understanding of the underlying pathology.  相似文献   

6.
Multiple morphological anomalies of the sperm flagella (MMAF syndrome) is a severe male infertility phenotype which has so far been formally linked to the presence of biallelic mutations in nine genes mainly coding for axonemal proteins overexpressed in the sperm flagellum. Homozygous mutations in QRICH2, a gene coding for a protein known to be required for stabilizing proteins involved in sperm flagellum biogenesis, have recently been identified in MMAF patients from two Chinese consanguineous families. Here, in order to better assess the contribution of QRICH2 in the etiology of the MMAF phenotype, we analyzed all QRICH2 variants from whole exome sequencing data of a cohort of 167 MMAF-affected subjects originating from North Africa, Iran, and Europe. We identified a total of 14 potentially deleterious variants in 18 unrelated individuals. Two unrelated subjects, representing 1% of the cohort, carried a homozygous loss-of-function variant: c.3501C>G [p.Tyr1167Ter] and c.4614C>G [p.Tyr1538Ter], thus confirming the implication of QRICH2 in the MMAF phenotype and human male infertility. Sixteen MMAF patients (9.6%) carried a heterozygous QRICH2 potentially deleterious variant. This rate was comparable to what was observed in a control group (15.5%) suggesting that the presence of QRICH2 heterozygous variants is not associated with MMAF syndrome.  相似文献   

7.
8.
The Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene was first identified as a cause of lethal congenital contracture syndrome (OMIM 607598), while a recent study reported six additional patients carrying ERBB3 variants which exhibited distinct clinical features with evident intestinal dysmotility (OMIM 243180 ). The potential connection between these phenotypes remains unknown, and the ERBB3-related phenotype spectrum needs to be better characterized. Here, we described a patient presenting with a multisystemic syndrome including skip segment Hirschsprung disease, bilateral clubfoot deformity, and cardiac defect. Trio-whole exome sequencing revealed a novel compound heterozygous variant (c.1914-7C>G; c.2942_2945del) in the patient's ERBB3 gene. RT-PCR and in vitro minigene analysis demonstrated that variant c.1914-7C>G caused aberrant mRNA splicing. Both variants resulted in premature termination codon and complete loss of ERBB3 function. erbb3b knockdown in zebrafish simultaneously caused a reduction in enteric neurons in the distal intestine, craniofacial cartilage defects, and micrognathia, which phenotypically mimics ERBB3-related intestinal dysmotility and some features of lethal congenital contracture syndrome in human patients. These findings provide further patient and animal evidence supporting that ERBB3 deficiency causes a complex syndrome involving multiple systems with phenotypic variability among distinct individuals.  相似文献   

9.
Ectopia lentis (EL) is genetically heterogeneous with both autosomal‐dominant and ‐recessive forms. The dominant disorder can be caused by mutations in FBN1, at the milder end of the type‐1 fibrillinopathies spectrum. Recently in a consanguineous Jordanian family, recessive EL was mapped to locus 1q21 containing the ADAMTSL4 gene and a nonsense mutation was found in exon 11 (c.1785T>G, p.Y595X). In this study, 36 consecutive probands with EL who did not fulfill the Ghent criteria for MFS were screened for mutations in FBN1 and ADAMTSL4. Causative FBN1 mutations were identified in 23/36 (64%) of probands while homozygous or compound heterozygous ADAMTSL4 mutations were identified in 6/12 (50%) of the remaining probands. Where available, familial screening of these families confirmed the mutation co‐segregated with the EL phenotype. This study confirms that homozygous mutations in ADAMTSL4 are associated with autosomal‐recessive EL in British families. Furthermore; the first compound heterozygous mutation is described resulting in a PTC and a missense mutation in the PLAC (protease and lacunin) domain. The identification of a causative mutation in ADAMTSL4 may allow the exclusion of Marfan syndrome in these families and guide the clinical management, of particular relevance in young children affected by EL. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Oculocutaneous albinism (OCA) is an autosomal‐recessive disorder of a defective melanin pathway. The condition is characterized by hypopigmentation of hair, dermis, and ocular tissue. Genetic studies have reported seven nonsyndromic OCA genes, among which Pakistani OCA families mostly segregate TYR and OCA2 gene mutations. Here in the present study, we investigate the genetic factors of eight consanguineous OCA families from Pakistan. Genetic analysis was performed through single‐nucleotide polymorphism (SNP) genotyping (for homozygosity mapping), whole exome sequencing (for mutation identification), Sanger sequencing (for validation and segregation analysis), and quantitative PCR (qPCR) (for copy number variant [CNV] validation). Genetic mapping in one family identified a novel homozygous deletion mutation of the entire TYRP1 gene, and a novel deletion of exon 19 in the OCA2 gene in two apparently unrelated families. In three further families, we identified homozygous mutations in TYR (NM_000372.4:c.1424G > A; p.Trp475*), NM_000372.4:c.895C > T; p.Arg299Cys), and SLC45A2 (NM_016180:c.1532C > T; p.Ala511Val). For the remaining two families, G and H, compound heterozygous TYR variants NM_000372.4:c.1037‐7T > A, NM_000372.4:c.1255G > A (p.Gly419Arg), and NM_000372.4:c.1255G > A (p.Gly419Arg) and novel variant NM_000372.4:c.248T > G; (p.Val83Gly), respectively, were found. Our study further extends the evidence of TYR and OCA2 as genetic mutation hot spots in Pakistani families. Genetic screening of additional OCA cases may also contribute toward the development of Pakistani specific molecular diagnostic tests, genetic counseling, and personalized healthcare.  相似文献   

11.
Class III malocclusion is a common dentofacial deformity. The underlying genetic alteration is largely unclear. In this study, we sought to determine the genetic etiology for Class III malocclusion. A four‐generation pedigree of Class III malocclusion was recruited for exome sequencing analyses. The likely causative gene was verified via Sanger sequencing in an additional 90 unrelated sporadic Class III malocclusion patients. We identified a rare heterozygous variant in endoplasmic reticulum lectin 1 (ERLEC1; NM_015701.4(ERLEC1_v001):c.1237C>T, p.(His413Tyr), designated as ERLEC1‐m in this article) that cosegregated with the deformity in pedigree members and three additional rare missense heterozygous variants (c.419C>G, p.(Thr140Ser), c.419C>T, p.(Thr140Ile), and c.1448A>G, p.(Asn483Ser)) in 3 of 90 unrelated sporadic subjects. Our results showed that ERLEC1 is highly expressed in mouse jaw osteoblasts and inhibits osteoblast proliferation. ERLEC1‐m significantly enhanced this inhibitory effect of osteoblast proliferation. Our results also showed that the proper level of ERLEC1 expression is crucial for proper osteogenic differentiation. The ERLEC1 variant identified in this study is likely a causal mutation of Class III malocclusion. Our study reveals the genetic basis of Class III malocclusion and provides insights into the novel target for clinical management of Class III malocclusion, in addition to orthodontic treatment and orthodontic surgery.  相似文献   

12.
PLA2G6‐associated neurodegeneration (PLAN) and hereditary spastic paraplegia (HSP) are 2 groups of heterogeneous neurodegenerative diseases. In this study, we report PLA2G6 gene mutations in 3 families from Turkey, Morocco, and Romania. Two affected Turkish siblings presenting HSP adds the disease to PLAN phenotypes. They were homozygous for the PLA2G6 missense c.2239C>T, p.Arg747Trp variant and the ages of onset were 9 and 21. Parkinsonism, dystonia or cognitive decline were not the clinical elements in these patients contrary to the cases that has been previously reported with the same variant, however, iron accumulation was evident in their cranial magnetic resonance imaging. The Moroccan patient was homozygous for a novel missense c.1786C>T, p.Leu596Phe variant and the Romanian patient had 2 novel mutations; c.1898C>T, p.Ala633Val and c.1765_1768del, p.Ser589ThrfsTer76. Both of these patients conformed better to childhood onset PLAN with the age of onset at 4 and 7 years, respectively. Interestingly, all identified mutations were affecting the highly conserved patatin‐like phospholipase domain of the PLA2G6 protein.  相似文献   

13.
We here describe novel compound heterozygous missense variants, NM_133443:c.[400C>T] and NM_133443:[1435G>A], in the glutamic‐pyruvic transaminase 2 (GPT2) gene in a large consanguineous family with two affected siblings diagnosed with microcephaly intellectual disability and developmental delay (IDD). In addition to these clinical phenotypes, the male sibling has spastic paraplegia, and the female sibling has epilepsy. Their four extended family members have IDD and microcephaly. Both of these variants, c.400C>T (p.R134C) and c.1435G>A (p.V479M), reside in the pyridoxal phosphate‐dependent aminotransferase domain. The missense variants affect highly conserved amino acids and are classified to be disease‐causing by meta‐SVM. The candidate variants were not found in the Exome Aggregation Consortium (ExAC) dataset or in dbSNP. Both GPT2 variants have an allele frequency of 0% (0/ ∼ 600) in the whole‐exome sequenced Turkish cohort. Upon Sanger sequencing, we confirmed these mutations in all affected family members and showed that the index patient and his affected sister inherited one mutant allele from each unaffected parent. To the best of our knowledge, this is the first family in which a novel compound heterozygous variant in the GPT2 gene was identified.
  相似文献   

14.
The phenotypic spectrum associated with heterozygous mutations in cartilage oligomeric matrix protein gene (COMP) range from a mild form of multiple epiphyseal dysplasia (MED) to pseudoachondroplasia (PSACH). However, the phenotypic effect from biallelic COMP variants is unclear. We investigated a large consanguineous Pakistani family with a severe form of PSACH in 2 individuals. Another 14 family members presented with a mild PSACH phenotype similar to MED. Using exome sequencing and subsequent segregation analysis, we identified homozygosity for a COMP missense variant [c.1423G>A; p.(D475N)] in the 2 severely affected individuals, whereas family members with the mild PSACH phenotype were heterozygous. Our observations show for the first time that a biallelic COMP variant may be associated with pronounced and widespread skeletal malformations suggesting an additive effect of the 2 mutated alleles.  相似文献   

15.
We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1–4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA‐binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole‐exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense‐mediated mRNA decay (NMD), and one canonical splice site variant, c.272‐1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272‐1G>C, were clustered within 20 amino acid residues of the C‐terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.  相似文献   

16.
We report clinical and biochemical finding from three unrelated patients presenting ONCE (Optic Neuropathy, Cardiomyopathy and Encephalopathy with lactic acidosis and combined oxidative phosphorylation deficiency) syndrome. Whole‐exome sequencing (WES) of the three patients and the healthy sister of one of them was used to identify the carry gene. Clinical and biochemical findings were used to filter variants, and molecular, in silico and genetic studies were performed to characterize the candidate variants. Mitochondrial DNA (mtDNA) defects involving mutations, deletions or depletion were discarded, whereas WES uncovered a double homozygous mutation in the MTO1 gene (NM_001123226:c.1510C>T, p.R504C, and c.1669G>A, p.V557M) in two of the patients and the homozygous mutation p.R504C in the other. Therefore, our data confirm p.R504C as pathogenic mutation responsible of ONCE syndrome, and p.V557M as a rare polymorphic variant.  相似文献   

17.
A rare syndromic form of intellectual disability with impaired speech was recently found associated with mutations in CHAMP1 (chromosome alignment‐maintaining phosphoprotein 1), the protein product of which is directly involved in microtubule‐kinetochore attachment. Through whole‐exome sequencing in six unrelated nonconsanguineous families having a sporadic case of intellectual disability, we identified six novel de novo truncating mutations in CHAMP1: c.1880C>G p.(Ser627*), c.1489C>T; p.(Arg497*), c.1876_1877delAG; p.(Ser626Leufs*4), c.1043G>A; p.(Trp348*), c.1002G>A; p.(Trp334*), and c.958_959delCC; p.(Pro320*). Our clinical observations confirm the phenotypic homogeneity of the syndrome, which represents therefore a distinct clinical entity. Besides, our functional studies show that CHAMP1 protein variants are delocalized from chromatin and are unable to bind to two of its direct partners, POGZ and HP1. These data suggest a pathogenic mechanism of the CHAMP1‐associated intellectual disability syndrome mediated by direct interacting partners of CHAMP1, several of which are involved in chromo/kinetochore‐related disorders.  相似文献   

18.
Marbach-Rustad progeroid syndrome is an extremely rare disease caused by a heterozygous variant in the LEMD2 gene. To date, only two patients and one LEMD2 pathogenic variant have been reported in Marbach-Rustad progeroid syndrome. Here we describe the third case of Marbach-Rustad progeroid syndrome worldwide, which is also the first case in China. The proband was affected with premature birth, failed to thrive, facial abnormalities, feeding difficulties, skull defects and delayed motor milestones, but had a normal intelligence and speech. Whole exome sequencing (WES) initially did not find a phenotype-causing variant when the proband was 1 year of age. The reanalysis of WES data 4 years later revealed the proband harbored a de novo heterozygous c.1436C>T(p.Ser479Phe) variant in the LEMD2 gene, which is known responsible for Marbach-Rustad progeroid syndrome. Sanger sequencing confirmed the presence of this variant in the proband and absence in his parents and two elder sisters. Our study provides accurate clinical diagnosis for the proband and adds a new patient with Marbach-Rustad progeroid syndrome. Our study suggests the LEMD2 c.1436C>T(p.Ser479Phe) variant as a hotspot. Our work also indicates reanalysis of WES data of negative cases might identify pathogenic variant and improve diagnostic efficiency.  相似文献   

19.
Linkage to 7q has been the most robust genetic finding in familial autism. A previous scan of multiplex families with autism spectrum disorders found a linkage signal of genome‐wide significance at D7S530 on 7q32. We searched a candidate imprinted region at this location for genetic variants in families with positive linkage scores. Using exon resequencing, we identified three rare potentially pathogenic variants in the TSGA14 gene, which encodes a centrosomal protein. Two variants were missense mutations (c.664C>G; p.P206A and c.766T>G; p.C240G) that changed conserved residues in the same protein domain; the third variant (c.192+5G>A) altered splicing, which resulted in a protein with an internal deletion of 16 residues and a G33D substitution. These rare TSGA14 variants are enriched in the affected subjects (6/348 patients versus 2/670 controls, Fisher's exact two tailed P = 0.022). This is the first report of a possible link of a gene with a centrosomal function with familial autism. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
Recently, several TARDBP mutations have been identified in sporadic amyotrophic lateral sclerosis (SALS) patients among different ethnicities. Our study aims to analyze the clinical features and mutations in the TARDBP gene among Chinese patients with SALS. One hundred sixty-five patients were studied. The mean age of onset was 50.8±12.0 years. The mean diagnostic delay was 18.8±17.1 months. A novel missense mutation (p.N378S) and a novel silent change (p.A321A) were detected in 2 male patients, respectively. A new variant of c.1098C>G in exon 6 and 2 reported variants, g.IVS1+85C>T in intron 1 and c.57A>G in exon 2, were found. The frequency of the “G” variant of c.57A>G in exon 2 and the “G” variant of c.1098C>G in exon 6 were significantly lower in the patient group than in the control (p=0.001 and p=0.024, respectively). Our findings provide first evidence that the frequency of TARDBP gene mutations is rare among Chinese SALS patients (0.61%). Several polymorphisms may influence susceptibility to amyotrophic lateral sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号