首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian sex determination—insights from humans and mice   总被引:1,自引:0,他引:1  
Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models.  相似文献   

2.
Arboleda VA, Lee H, Sánchez FJ, Délot EC, Sandberg DE, Grody WW, Nelson SF, Vilain E. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Disorders of sex development (DSD) are rare disorders in which there is discordance between chromosomal, gonadal, and phenotypic sex. Only a minority of patients clinically diagnosed with DSD obtains a molecular diagnosis, leaving a large gap in our understanding of the prevalence, management, and outcomes in affected patients. We created a novel DSD‐genetic diagnostic tool, in which sex development genes are captured using RNA probes and undergo massively parallel sequencing. In the pilot group of 14 patients, we determined sex chromosome dosage, copy number variation, and gene mutations. In the patients with a known genetic diagnosis (obtained either on a clinical or research basis), this test identified the molecular cause in 100% (7/7) of patients. In patients in whom no molecular diagnosis had been made, this tool identified a genetic diagnosis in two of seven patients. Targeted sequencing of genes representing a specific spectrum of disorders can result in a higher rate of genetic diagnoses than current diagnostic approaches. Our DSD diagnostic tool provides for first time, in a single blood test, a comprehensive genetic diagnosis in patients presenting with a wide range of urogenital anomalies.  相似文献   

3.
4.
The distal region on the short arm of chromosome 9 is of special interest for scientists interested in sex development as well as in the clinical phenotype of patients with the 9p deletion syndrome, characterized by mental retardation, trigonocephaly and other dysmorphic features. Specific genes responsible for different aspects of the phenotype have not been identified. Distal 9p deletions have also been reported in patients with 46,XY sex reversal, with or without 9p deletion syndrome. Within this region the strongest candidates for the gonadal dysgenesis phenotype are the DMRT genes; however, the genetic mechanism is not clear yet. Multiple ligation-dependent probe amplification represents a useful technique to evaluate submicroscopic interstitial or distal deletions that would help the definition of the minimal sex reversal region on 9p and could lead to the identification of gene(s) responsible of the 46,XY gonadal disorders of sex development (DSD). We designed a synthetic probe set that targets genes within the 9p23-9p24.3 region and analyzed a group of XY patients with impaired gonadal development. We characterized a deletion distal to the DMRT genes in a patient with isolated 46,XY gonadal DSD and narrowed down the breakpoint in a patient with a 46,XY del(9)(p23) karyotype with gonadal DSD and mild symptoms of 9p deletion syndrome. The results are compared with other patients described in the literature, and new aspects of sex reversal and the 9p deletion syndrome candidate regions are discussed.  相似文献   

5.
Half of all patients with a disorder of sex development (DSD) do not receive a specific molecular diagnosis. Comparative genomic hybridization (CGH) can detect copy number changes causing gene haploinsufficiency or over-expression that can lead to impaired gonadal development and gonadal DSD. The purpose of this study was to identify novel candidate genes for 46,XY gonadal dysgenesis (GD) using a customized 1 M array-CGH platform with whole-genome coverage and probe enrichment targeting 78 genes involved in sex development. Fourteen patients with 46,XY gonadal DSD were enrolled in the study. Nine individuals were analyzed by array CGH. All patients were included in a follow up sequencing study of candidate genes. Three novel candidate regions for 46,XY GD were identified in two patients. An interstitial duplication of the SUPT3H gene and a deletion of C2ORF80 were detected in a pair of affected siblings. Sequence analysis of these genes in all patients revealed no additional mutations. A large duplication highlighting PIP5K1B, PRKACG and FAM189A2 as candidates for 46,XY GD, were also detected. All five genes are expressed in testicular tissues, and one is shown to cause gonadal DSD in mice. However detailed functional information is lacking for these genes.  相似文献   

6.
性发育疾病新的分类和基因诊断   总被引:1,自引:0,他引:1  
性发育疾病(Disorders of sex development,DSD)是性决定和性分化异常的一组异质性遗传病,是由于染色体畸变或单基因突变导致的性发育遗传和内分泌途径的改变。曾经用雌雄间体、假两性畸形、真两性畸形和性反转这些术语用于描述性发育疾病,但有轻蔑含义。2006年欧洲儿科内分泌协会(European Society for Pardiatric Endocrinology,ESPE)和Lawson Wilkins儿科内分泌协会(Lawson Wilkins Pardiatric Endocrine Society,LWPES)联合召开了由内分泌学家、外科学家、遗传学家、心理学家和患者支持小组成员参加的会议,提出了新的术语、分类标准和已知的突变基因。在此,与大家共同探讨。  相似文献   

7.
Molecular diagnosis is rarely established in 46,XX testicular (T) disorder of sex development (DSD) individuals with atypical genitalia. The Wilms' tumour factor-1 (WT1) gene is involved in early gonadal development in both sexes. Classically, WT1 deleterious variants are associated with 46,XY disorders of sex development (DSD) because of gonadal dysgenesis. We report a novel frameshift WT1 variant identified in an SRY-negative 46,XX testicular DSD girl born with atypical genitalia. Target massively parallel sequencing involving DSD-related genes identified a novel heterozygous WT1 c.1453_1456del; p.Arg485Glyfs*14 variant located in the fourth zinc finger of the protein which is absent in the population databases. Segregation analysis and microsatellite analysis confirmed the de novo status of the variant that is predicted to be deleterious by in silico tools and to increase WT1 target activation in crystallographic model. This novel and predicted activating frameshift WT1 variant leading to the 46,XX testicular DSD phenotype includes the fourth zinc-finger DNA-binding domain defects in the genetic aetiology of 46,XX DSD.  相似文献   

8.
Disorders of sex development (DSDs) encompass a broad spectrum of conditions affecting the development of the gonads and genitalia. The underlying causes for DSDs include gain or loss of function variants in genes responsible for gonad development or steroidogenesis. Most patients with DSD have an unknown genetic etiology and cannot be given an accurate diagnosis. We used whole exome capture and massively parallel sequencing to analyse a large family with 46,XY DSD and 46,XX premature ovarian insufficiency. In addition, we used a recently developed method for linkage analysis using genotypes extracted from the MPS data. This approach identified a unique linkage peak on chromosome 9 and a novel, 3 bp, in-frame deletion in exon six of NR5A1 (steroidogenic factor-1 or SF1) in all affected individuals. We confirmed that the variant disrupts the SF1 protein and its ability to bind and regulate downstream genes. NR5A1 has key roles at multiple points in gonad development and steroidogenic pathways. The variant described here affects the function of SF1 in early testis development and later ovarian function, ultimately leading to the 46,XY DSD and 46,XX premature ovarian insufficiency phenotypes, respectively. This study shows that even at low coverage, whole exome sequencing, when combined with linkage analysis, can be a powerful tool to identify rapidly the disease-causing variant in large pedigrees.  相似文献   

9.
The development of a testis requires the proper spatiotemporal expression of the SRY gene and other genes that act in a dosage-sensitive manner. Mutations in the SRY gene account for only 10–15% of patients with 46,XY gonadal disorder of sex development (DSD). To enable the diagnostics of deletions and duplications of genes known to be involved in different forms of DSD, we developed a synthetic probe set for multiplex ligation-dependent probe amplification (MLPA) analysis. Here, we report the results from the analysis of 22 patients with 46,XY gonadal DSD. The analysis with the DSD probe set has led to the identification of two copy number variations, an 800-kb NR0B1 ( DAX1 ) locus duplication on Xp21 in a patient with isolated partial gonadal dysgenesis and a duplication of the SRD5A2 gene that represents a rare normal variant. The described MLPA kit represents an optimal complement to DNA sequence analysis in patients with DSD, enabling screening for deletions and duplications of several genes simultaneously. Furthermore, the second identification of an NR0B1 locus duplication in a patient with isolated gonadal dysgenesis, without dysmorphic features and/or mental retardation, highlights the importance of evaluating NR0B1 duplication in patients with gonadal dysgenesis.  相似文献   

10.
COG6-congenital disorder of glycosylation (COG6-CDG) is caused by biallelic mutations in COG6. To-date, 12 variants causing COG6-CDG in less than 20 patients have been reported. Using whole exome sequencing we identified two siblings with a novel homozygous deletion of 26 bp in COG6, creating a splicing variant (c.518_540 + 3del) and a shift in the reading frame. The phenotype of COG6-CDG includes growth and developmental retardation, microcephaly, liver and gastrointestinal disease, hypohydrosis and recurrent infections. We report two patients with novel phenotypic features including bowel malrotation and ambiguous genitalia, directing attention to the role of glycoprotein metabolism in the causation of disorders of sex development (DSD). Searching the glycomic literature, we identified 14 CDGs including males with DSD, a feature not previously accentuated. This study broadens the genetic and phenotypic spectrum of COG6-CDG and calls for increasing awareness to the central role of glycosylation processes in development of human sex and genitalia.  相似文献   

11.
Concern for ambiguous genitalia or chromosome-phenotype discordance detected in a prenatal setting has increased over the last two decades. Practitioners faced with this prenatal finding have a variety of genetic tests available to them; however, it is unclear to what extent prenatal testing for disorders of sex development (DSD) is useful or practical. We undertook a retrospective review of the medical records of 140 individuals evaluated through the DSD clinic at Seattle Children's Hospital with birthdates from 01/01/1994 through 08/16/2011 to determine the rate of prenatal detection of ambiguous genitalia in individuals with DSD, what prenatal diagnostic workup was undertaken, and the postnatal outcome, including whether a postnatal genetic diagnosis was confirmed. Of all 140 subjects, 34 (24%) were identified prenatally. The most common postnatal diagnoses were penoscrotal hypospadias with transposition of the scrotum with no known genetic cause (24/140; 17%) and 21-hydroxylase deficiency (20/140; 14%). Apart from these, no single diagnosis comprised more than a few cases. Prenatal diagnostic testing varied widely, from no tests to multiple molecular tests with amniotic fluid hormone concentrations. In the absence of other fetal anomalies or growth retardation on ultrasound, prenatal karyotype with fluorescence in situ hybridization for the SRY gene is the most useful test when ambiguous genitalia is suspected. Further prenatal testing for Smith-Lemli-Opitz syndrome in 46,XY individuals and congenital adrenal hyperplasia in 46,XX individuals may be considered. However, targeted molecular testing for rare DSD conditions in the absence of a family history of DSD has a low yield.  相似文献   

12.
Differences of sex development (DSDs) are a group of congenital conditions characterized by a discrepancy between chromosomal, gonadal, and genital sex development of an individual, with significant impact on medical, psychological and reproductive life. The genetic heterogeneity of DSDs complicates the diagnosis and almost half of the patients remains undiagnosed. In this context, chromosomal imbalances in syndromic DSD patients may help to identify new genes implicated in DSDs. In this study, we aimed at describing the burden of chromosomal imbalances including submicroscopic ones (copy number variants or CNVs) in a cohort of prenatal syndromic DSD patients, and review their role in DSDs. Our patients carried at least one pathogenic or likely pathogenic chromosomal imbalance/CNV or low-level mosaicism for aneuploidy. Almost half of the cases resulted from an unbalanced chromosomal rearrangement. Chromosome 9p/q, 4p/q, 3q and 11q anomalies were more frequently observed. Review of the literature confirmed the causative role of CNVs in DSDs, either in disruption of known DSD-causing genes (SOX9, NR0B1, NR5A1, AR, ATRX, …) or as a tool to suspect new genes in DSDs (HOXD cluster, ADCY2, EMX2, CAMK1D, …). Recurrent CNVs of regulatory elements without coding sequence content (i.e. duplications/deletions upstream of SOX3 or SOX9) confirm detection of CNVs as a mean to explore our non-coding genome. Thus, CNV detection remains a powerful tool to explore undiagnosed DSDs, either through routine techniques or through emerging technologies such as long-read whole genome sequencing or optical genome mapping.  相似文献   

13.
Primary amenorrhea due to 46,XY disorders of sexual development (DSD) is complex with the involvement of several genes. Karyotyping of such patients is important as they may develop dysgerminoma and molecular analysis is important to identify the underlying mechanism and explore the cascade of events occurring during sexual development. The present study was undertaken for the genetic analysis in seven patients from five families presenting with primary amenorrhea and diagnosed with pure gonadal dysgenesis. Karyotyping was done and the patients were screened for underlying changes in SRY, desert hedgehog (DHH), DAX1 (NR0B1) and SF1 (NR5A1) genes, mutations in which are implicated in DSD. All the patients had 46,XY karyotype and two novel SRY mutations were found. In Family 1 (Patient S1.1) a missense mutation c.294G>A was seen, which results in a stop codon at the corresponding amino acid (Trp98X) and in Family 2 (Patients S2.1, S2.2 and S2.3), a missense mutation c.334G>A (Glu112Leu) was identified in all affected sisters. Both mutations were seen to occur in the conserved high mobility group box of SRY gene. One heterozygous change c.427G>A resulting in Glu143Lys in DHH gene in one patient and two heterozygous changes in the intronic region of SF1 (NR5A1) gene (c.244+80G>A+ c.1068-20C>T) in another patient were noted. One individual did not show changes in any of the genes analyzed. These results reiterate the importance of SRY and others, such as SF1 (NR5A1) and DHH, that are involved in the cascade of events leading to sex determination and also their role in sex reversal.  相似文献   

14.
Recent genome-wide association studies (GWAS) have identified a number of novel genetic associations with complex human diseases. In spite of these successes, results from GWAS generally explain only a small proportion of disease heritability, an observation termed the 'missing heritability problem'. Several sources for the missing heritability have been proposed, including the contribution of many common variants with small individual effect sizes, which cannot be reliably found using the standard GWAS approach. The goal of our study was to explore a complimentary approach, which combines GWAS results with functional data in order to identify novel genetic associations with small effect sizes. To do so, we conducted a GWAS for lymphocyte count, a physiologic quantitative trait associated with asthma, in 462 Hutterites. In parallel, we performed a genome-wide gene expression study in lymphoblastoid cell lines from 96 Hutterites. We found significant support for genetic associations using the GWAS data when we considered variants near the 193 genes whose expression levels across individuals were most correlated with lymphocyte counts. Interestingly, these variants are also enriched with signatures of an association with asthma susceptibility, an observation we were able to replicate. The associated loci include genes previously implicated in asthma susceptibility as well as novel candidate genes enriched for functions related to T cell receptor signaling and adenosine triphosphate synthesis. Our results, therefore, establish a new set of asthma susceptibility candidate genes. More generally, our observations support the notion that many loci of small effects influence variation in lymphocyte count and asthma susceptibility.  相似文献   

15.
目的通过收集19例性发育障碍(d isorders of sexual developm ent,DSD)患儿的资料,探讨此类疾病在小儿期的临床与遗传学特点。方法以外生殖器异常的一个或多个症状就诊的患儿,每例均有完整的染色体核型记录,B超、性激素、CT等检查排除肾上腺皮质增生症和Turner综合征。19例符合标准,初诊年龄在1m-11y,根据核型分为三类:染色体型DSD、46,XX DSD、46,XY DSD。结果17例染色体型DSD:5例45,X/46,XY,临床以严重型尿道下裂并伴有单或双侧隐睾多见;3例47,XXY,其中会阴型尿道下裂2例,单纯小阴茎就诊1例;4例47,XYY,其中2例重型和1例轻度尿道下裂,1例单纯小阴茎;另5例为性和常染色体的结构异常。1例46,XX DSD,以重度尿道下裂就诊,睾丸存在。1例46,XY DSD,重度尿道下裂,右侧腹股沟包块,性腺活检发现输卵管结构。结论小儿期的DSD主要以严重的尿道下裂、隐睾为常见。小阴茎、腹股沟包块或斜疝应引起重视。婴幼儿和青春期为两个诊断高峰,早期及时诊断及治疗,可以提高患儿的生活质量。  相似文献   

16.
Steroidogenic factor‐1 (SF1), encoded by the NR5A1 gene, is a key regulator of steroidogenesis and reproductive development. NR5A1 mutations described in 46,XY patients with disorders of sex development (DSD) can be associated with a range of conditions of phenotypes; however, the genotype–phenotype correlation remains elusive in many cases. In the present study, we describe the impact of five NR5A1 variants (three novel: p.Arg39Cys, p.Ser32Asn, and p.Lys396Argfs*34; and two previously described: p.Cys65Tyr and p.Cys247*) on protein function, identified in seven patients with 46,XY DSD. In vitro functional analyses demonstrate that NR5A1 mutations impair protein functions and result in the DSD phenotype observed in our patients. Missense mutations in the DNA binding domain and the frameshift mutation p.Lys396Argfs*34 lead to both, markedly affected transactivation assays, and loss of DNA binding, whereas the mutation p.Cys247* retained partial transactivation capacity and the ability to bind a consensus SF1 responsive element. SF1 acts in a dose‐dependent manner and regulates a cascade of genes involved in the sex determination and steroidogenesis, but in most cases reported so far, still lead to a sufficient adrenal steroidogenesis and function, just like in our cases, in which heterozygous mutations are associated to 46,XY DSD with intact adrenal steroid biosynthesis.  相似文献   

17.
《Genetics in medicine》2020,22(1):150-159
PurposeXY individuals with disorders/differences of sex development (DSD) are characterized by reduced androgenization caused, in some children, by gonadal dysgenesis or testis regression during fetal development. The genetic etiology for most patients with 46,XY gonadal dysgenesis and for all patients with testicular regression syndrome (TRS) is unknown.MethodsWe performed exome and/or Sanger sequencing in 145 individuals with 46,XY DSD of unknown etiology including gonadal dysgenesis and TRS.ResultsThirteen children carried heterozygous missense pathogenic variants involving the RNA helicase DHX37, which is essential for ribosome biogenesis. Enrichment of rare/novel DHX37 missense variants in 46,XY DSD is highly significant compared with controls (P value = 5.8 × 10−10). Five variants are de novo (P value = 1.5 × 10−5). Twelve variants are clustered in two highly conserved functional domains and were specifically associated with gonadal dysgenesis and TRS. Consistent with a role in early testis development, DHX37 is expressed specifically in somatic cells of the developing human and mouse testis.ConclusionDHX37 pathogenic variants are a new cause of an autosomal dominant form of 46,XY DSD, including gonadal dysgenesis and TRS, showing that these conditions are part of a clinical spectrum. This raises the possibility that some forms of DSD may be a ribosomopathy.  相似文献   

18.
19.
尿道下裂是一种发生在男性外生殖器较为常见的先天性缺陷,可为单纯型尿道下裂,或为性发育异常或其他临床综合征表型中的组成部分;其病因为多种因素相互作用的结果,主要包括遗传和环境两个方面.胚胎外生殖器发育过程中不同环节的缺陷可导致不同类型尿道下裂的发生.目前,已知导致尿道下裂的致病基因主要为两类,影响环节主要包括影响发育早期的激素非依赖时期的基因和晚期激素依赖的性分化阶段的基因.本文就尿道下裂的分子病因进行综述.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号